1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768 |
- %% Probably better version that directly mixes radians
- function [AccuMix, BiasMix]=squircleBehave2(s,A,CardPrez,behB,makefig)
-
- %% Settings/prep
- n=16; % number of equidistant rotations
- testd=6.43; % +/- displacement of test stims in deg (ask Juan)?
- % % developer settings:
- % s=0.2; % noise (in memory/decision-making)
- % A=0.2; % Key Parameter (squircle) 0: all circle; 1: all square
- % behB input with behavioural biases
- % CardPrez=0.6; % Reduce noise near cardinal by this factor (1: off)
- % makefig=1;
- %% Get ori vectors (where oriC is "Circle")
- [oriC, oriP, oriN]=orivectors(n,testd);
- %% Also prepare categorical vector (where oriS is "Square")
- oriS1=[repmat(45,1,4) repmat(3*45,1,4) repmat(5*45,1,4) repmat(7*45,1,4)]; % cat
- oriS1=deg2rad(oriS1);
- oriS2=[0 0 repmat(90,1,4) repmat(2*90,1,4) repmat(3*90,1,4) 360 360]; % anti-cat
- oriS2=deg2rad(oriS2);
-
- % mix oris directly
- if A>=0
- oriM=A*oriS1+(1-A)*oriC;
- elseif A<0
- fA=-A; % need to flip since its negative
- oriM=fA*oriS2+(1-fA)*oriC;
- end
- %% Calculate angular distances
- % between mixed ori and test ori:
- dTp=angdiff(oriM,oriP);
- dTn=angdiff(oriM,oriN);
- %% (optional) better precision at cardinal
- sW=repmat([CardPrez 1 1 CardPrez],1,4);
- sW=sW/mean(sW); % ensure that the mean of the vector is 1
- s=s*sW;
- % (this could be decomposed further into horizontal and vertical,
- % but probably better to keep it simple for now)
- %% Predict choices under either model
- CP_P=sigmoid(dTp,s,0); % p of sensing "ccw" when test was "ccw" (correct)
- CP_N=sigmoid(dTn,s,0); % p of sensing "ccw" when test was "cw" (error)
- %% Accuracy (by objective measures as used in analysis) should be
- AccuMix=(CP_P+(1-CP_N))/2; % for circle this is symmetric
- %% Bias should simply be the average of CPs (CW/CCW)
- BiasMix=(CP_P+CP_N)/2;
- %% Plots
- % note: I'll put 0° at the right (standard circle)
- if makefig
- % subplot(2,2,1); quickplot(oriC,AccuMix,AccuMix,'Accuracy');
- % subplot(2,2,2);
- quickplotcompB(oriC,BiasMix,behB,'Bias');
- % plotori=[oriM oriM(1)]; % to draw complete squircle
- % subplot(2,2,[3 4]); polarplot(plotori,ones(1,n+1),'o-');
- title(['Squircle A=' num2str(A)]); rlim([0 1.5]);
- end
- end
|