123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191 |
- clear all;
- mainfolder='U:/'
- load('good_partis.mat') %list of participant with a good performance
- partis=good_partis';
- partis_sub=good_partis';
- %% 1st Panel
- figure;
- oris=[11.25;33.75;56.25;78.75;101.25;123.75;146.25;168.75;191.25;213.75;236.25;258.75;281.25;303.75;326.25;348.75];
- colores=(colormap((hsv(16))));
- colores=[colores(13:16,:);colores(1:4,:);colores(5:8,:);colores(9:12,:);]
- rrr=ones(1,16)*1;
- for ooo=1:16
- polarplot(deg2rad(oris(ooo)),rrr(ooo),'wo','MarkerSize',18,'LineWidth',2,'MarkerFaceColor',colores(ooo,:));hold on,
- end
- rlim([0.5 1.1])
- oris1=[0 90 180 270]'
- ost=[num2str(oris1)]
- ost(:,4)='°'
- thetaticks(oris1)
- thetaticklabels(ost)
- ax=gca;
- ax.ThetaGrid='on';
- ax.RGrid='off';
- ax.RTickLabel=[];
- set(gca,'FontSize',20);
- set(gca,'color','none');
- %% 2nd Panel
- %% Uncomment to run from scratch
- % %% Parameters to be modify per loop
- %
- % tobefound{1} = 'find(data_epoch_thr.trialinfo.object_1_rot==objlist(k)&data_epoch_thr.trialinfo.retrocue==1)';
- % tobefound{2} = 'find(data_epoch_thr.trialinfo.object_2_rot==objlist(k)&data_epoch_thr.trialinfo.retrocue==2)';
- % tobefound{3} = 'find(data_epoch_thr.trialinfo.object_2_rot==objlist(k)&data_epoch_thr.trialinfo.retrocue==2)';
- % tobefound{4} = 'find(data_epoch_thr.trialinfo.object_1_rot==objlist(k)&data_epoch_thr.trialinfo.retrocue_uncued==1)';
- %
- % %%
- % foldlo{1}='eyelink_preprocessed/mean_recentered_th100/object_1_onset_11_seconds/';
- % foldlo{2}='eyelink_preprocessed/mean_recentered_th100/object_1_onset_11_seconds/';
- % foldlo{3}='eyelink_preprocessed/mean_recentered_th100/object_1_onset_11_seconds/';
- % foldlo{4}='eyelink_preprocessed/mean_recentered_th100/2nd_cue_onset_17_5__seconds/';
- %
- % %%
- % item_id_rsa{1}=nan(length(partis),16,3,5501);
- % item_id_rsa{2}=nan(length(partis),16,3,5501);
- % item_id_rsa{3}=nan(length(partis),16,3,5501);
- % item_id_rsa{4}=nan(length(partis),16,3,8751);
- % %%
- % for fff=1:4
- %
- % for ppp=1:length(partis)
- %
- % %% Loading dataset
- % toload =[mainfolder foldlo{fff} partis{ppp,:} '.mat'];
- % load(toload)
- %
- % %Loading logfiles
- %
- % subtable=[];
- %
- % if strcmp(partis_sub{ppp,:},'p11')
- % load([mainfolder 'logfiles/resultfile_p11_table_repaired.mat'])
- % subtable=sub
- % else
- %
- % sub = tdfread([mainfolder 'logfiles/resultfile_' partis_sub{ppp,:} '.txt'],'tab'); %Logfile for this participant
- % subtable=struct2table(sub);
- % end
- %
- %
- %
- % %% Selecting trials per rot only (not ID)
- %
- % objlistid=unique(data_epoch_thr.trialinfo.object_1_id);
- % counter=1;
- %
- % objlist=unique(data_epoch_thr.trialinfo.object_1_rot);
- %
- % for k =1:length(objlist)
- %
- % triales = eval(tobefound{fff});
- % [t_s_ave{counter}] = squeeze(nanmean(data_epoch_thr.eyedat(triales,:,:),1));
- % counter=counter+1;
- %
- % end
- %
- % %% Substracting the mean per condition (not in this case)
- %
- % for k = 1:length(t_s_ave);
- %
- % if ~isempty(t_s_ave{k})
- %
- % rr=(t_s_ave{k});
- % item_id_rsa{fff}(ppp,k,:,:)=[rr];
- %
- % elseif isnan(t_s_ave{k})
- % item_id_rsa{fff}(ppp,k,1:3,1:size(data_epoch_thr.eyedat,3))=NaN;
- % end
- % end
- %
- % time{fff}=data_epoch_thr.time;
- %
- % %%
- %
- % end
- %
- % end
- % %%
- %
- % save('circledata.mat','objlist','item_id_rsa', 'time')
- %% Load results
- load('circledata.mat')
- %% Plots
- IDs = {'1',' ',' ','4','5',' ',' ','8','9',' ',' ','12','13',' ',' ','16'}
- colores=(colormap(flip(hsv(16))));
- toi{1} = [400 1000];
- toi{2} = [1400 2000];
- toi{3} = [5350 5850];
- toi{4} = [2350 2850];
- titu={'stimulus 1';'stimulus 2';'delay 1';'delay 2';}
- figure
- for fff=1:4
-
- subplot(1,4,fff)
-
- ave_item_id_rsa=squeeze(nanmedian(item_id_rsa{fff},1));
- std_item_id_rsa=squeeze(std(item_id_rsa{fff},1,1));
- avg_std_item_id_rsa=squeeze(nanmean(std_item_id_rsa(:,1:2,:),2));
-
- t1=find(time{1}==toi{fff}(1));
- t2=find(time{1}==toi{fff}(2));
-
- for ppp=1:size(item_id_rsa{fff},1)
-
- x=squeeze(mean(item_id_rsa{fff}(ppp,:,1,t1:t2),4));
- y=squeeze(mean(item_id_rsa{fff}(ppp,:,2,t1:t2).*-1,4));
-
- sct=scatter(x,y,60,colores,'filled','MarkerFaceAlpha',.25);hold on;
-
- end
-
- x=mean(ave_item_id_rsa(:,1,t1:t2),3);
- y=mean(ave_item_id_rsa(:,2,t1:t2).*-1,3);
- z=(mean(avg_std_item_id_rsa(:,t1:t2),2)/40)*250;
-
- sct=scatter(x,y,z,colores,'filled','MarkerEdgeColor',[1 1 1],...
- 'LineWidth',1.5)
- set(gca,'Color','k')
-
- ao=0.8/0.0217;
- xlim([-ao ao])
- ylim([-ao ao])
-
- pixtovd=0.0217; %pixel to visual degrees
-
- set(gca,'XTick',-ao:(ao/2):ao)
- set(gca,'XTickLabel',(-ao:(ao/2):ao)*pixtovd)
- set(gca,'YTick',-ao:(ao/2):ao)
- set(gca,'YTickLabel',(-ao:(ao/2):ao)*pixtovd)
-
- title(titu{fff})
- % ylabel('° vis. angle')
- xlabel('° vis. angle')
- set(gca,'FontSize',20);
-
- end
|