123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251 |
- function [pval table] = circ_hktest(alpha, idp, idq, inter, fn)
- %
- % [pval, stats] = circ_hktest(alpha, idp, idq, inter, fn)
- % Parametric two-way ANOVA for circular data with interations.
- %
- % Input:
- % alpha angles in radians
- % idp indicates the level of factor 1 (1:p)
- % idq indicates the level of factor 2 (1:q)
- % inter 0 or 1 - whether to include effect of interaction or not
- % fn cell array containing strings with the names of the factors
- %
- %
- % Output:
- % pval vector of pvalues testing column, row and interaction effects
- % table cell array containg the anova table
- %
- % The test assumes underlying von-Mises distributrions.
- % All groups are assumed to have a common concentration parameter k,
- % between 0 and 2.
- %
- % PHB 7/19/2009 with code by Tal Krasovsky, Mc Gill University
- %
- % References:
- % Harrison, D. and Kanji, G. K. (1988). The development of analysis of variance for
- % circular data. Journal of applied statistics, 15(2), 197-223.
- %
- % Circular Statistics Toolbox for Matlab
- % process inputs
- alpha = alpha(:); idp = idp(:); idq = idq(:);
- if nargin < 4
- inter = true;
- end
- if nargin < 5
- fn = {'A','B'};
- end
-
- % number of groups for every factor
- pu = unique(idp);
- p = length(pu);
- qu = unique(idq);
- q = length(qu);
- % number of samples
- n = length(alpha);
- % compute important sums for the test statistics
- cn = zeros(p,q); cr = cn;
- pm = zeros(p,1); pr = pm; pn = pm;
- qm = zeros(q,1); qr = qm; qn = qm;
- for pp = 1:p
- p_id = idp == pu(pp); % indices of factor1 = pp
- for qq = 1:q
- q_id = idq == qu(qq); % indices of factor2 = qq
- idx = p_id & q_id;
- cn(pp,qq) = sum(idx); % number of items in cell
- cr(pp,qq) = cn(pp,qq) * circ_r(alpha(idx)); % R of cell
- end
- % R and mean angle for factor 1
- pr(pp) = sum(p_id) * circ_r(alpha(p_id));
- pm(pp) = circ_mean(alpha(p_id));
- pn(pp) = sum(p_id);
- end
- % R and mean angle for factor 2
- for qq = 1:q
- q_id = idq == qu(qq);
- qr(qq) = sum(q_id) * circ_r(alpha(q_id));
- qm(qq) = circ_mean(alpha(q_id));
- qn(qq) = sum(q_id);
- end
- % R and mean angle for whole sample (total)
- tr = n * circ_r(alpha);
- % estimate kappa
- kk = circ_kappa(tr/n);
- % different formulas for different width of the distribution
- if kk > 2
- % large kappa
-
- % effect of factor 1
- eff_1 = sum(pr.^2 ./ sum(cn,2)) - tr.^2/n;
- df_1 = p-1;
- ms_1 = eff_1 / df_1;
- % effect of factor 2
- eff_2 = sum(qr.^2 ./ sum(cn,1)') - tr.^2/n;
- df_2 = q-1;
- ms_2 = eff_2 / df_2;
- % total effect
- eff_t = n - tr.^2/n;
- df_t = n-1;
- m = mean(cn(:));
-
- if inter
- % correction factor for improved F statistic
- beta = 1/(1-1/(5*kk)-1/(10*(kk^2)));
-
- % residual effects
- eff_r = n - sum(sum(cr.^2./cn));
- df_r = p*q*(m-1);
- ms_r = eff_r / df_r;
-
- % interaction effects
- eff_i = sum(sum(cr.^2./cn)) - sum(qr.^2./qn) ...
- - sum(pr.^2./pn) + tr.^2/n;
- df_i = (p-1)*(q-1);
- ms_i = eff_i/df_i;
-
- % interaction test statistic
- FI = ms_i / ms_r;
- pI = 1-fcdf(FI,df_i,df_r);
-
- else
-
- % residual effect
- eff_r = n - sum(qr.^2./qn)- sum(pr.^2./pn) + tr.^2/n;
- df_r = (p-1)*(q-1);
- ms_r = eff_r / df_r;
-
- % interaction effects
- eff_i = [];
- df_i = [];
- ms_i =[];
-
- % interaction test statistic
- FI = [];
- pI = NaN;
- beta = 1;
- end
-
- % compute all test statistics as
- % F = beta * MS(A) / MS(R);
- F1 = beta * ms_1 / ms_r;
- p1 = 1 - fcdf(F1,df_1,df_r);
- F2 = beta * ms_2 / ms_r;
- p2 = 1 - fcdf(F2,df_2,df_r);
-
- else
- % small kappa
-
- % correction factor
- rr = besseli(1,kk) / besseli(0,kk);
- f = 2/(1-rr^2);
-
- chi1 = f * (sum(pr.^2./pn)- tr.^2/n);
- df_1 = 2*(p-1);
- p1 = 1 - chi2cdf(chi1, df_1);
- chi2 = f * (sum(qr.^2./qn)- tr.^2/n);
- df_2 = 2*(q-1);
- p2 = 1 - chi2cdf(chi2, df_2);
-
- chiI = f * (sum(sum(cr.^2 ./ cn)) - sum(pr.^2./pn) ...
- - sum(qr.^2./qn)+ tr.^2/n);
- df_i = (p-1) * (q-1);
- pI = 1 - chi2pdf(chiI, df_i);
-
- end
- na = nargout;
- if na < 2
- printTable;
- end
- prepareOutput;
- function printTable
-
- if kk>2
-
- fprintf('\nANALYSIS OF VARIANCE TABLE (HIGH KAPPA MODE)\n\n');
- fprintf('%s\t\t\t\t%s\t%s\t\t%s\t\t%s\t\t\t%s\n', ' ' ,'d.f.', 'SS', 'MS', 'F', 'P-Value');
- fprintf('--------------------------------------------------------------------\n');
- fprintf('%s\t\t\t\t%u\t\t%.2f\t%.2f\t%.2f\t\t%.4f\n', fn{1}, df_1 , eff_1, ms_1, F1, p1);
- fprintf('%s\t\t\t\t%u\t\t%.2f\t%.2f\t%.2f\t\t%.4f\n', fn{2}, df_2 , eff_2, ms_2, F2, p2);
- if (inter)
- fprintf('%s\t\t%u\t\t%.2f\t%.2f\t%.2f\t\t%.4f\n', 'Interaction', df_i , eff_i, ms_i, FI, pI);
- end
- fprintf('%s\t\t%u\t\t%.2f\t%.2f\n', 'Residual ', df_r, eff_r, ms_r);
- fprintf('--------------------------------------------------------------------\n');
- fprintf('%s\t\t%u\t\t%.2f', 'Total ',df_t,eff_t);
- fprintf('\n\n')
- else
- fprintf('\nANALYSIS OF VARIANCE TABLE (LOW KAPPA MODE)\n\n');
- fprintf('%s\t\t\t\t%s\t%s\t\t\t%s\n', ' ' ,'d.f.', 'CHI2', 'P-Value');
- fprintf('--------------------------------------------------------------------\n');
- fprintf('%s\t\t\t\t%u\t\t%.2f\t\t\t%.4f\n', fn{1}, df_1 , chi1, p1);
- fprintf('%s\t\t\t\t%u\t\t%.2f\t\t\t%.4f\n', fn{2}, df_2 , chi2, p2);
- if (inter)
- fprintf('%s\t\t%u\t\t%.2f\t\t\t%.4f\n', 'Interaction', df_i , chiI, pI);
- end
- fprintf('--------------------------------------------------------------------\n');
- fprintf('\n\n')
-
- end
-
- end
- function prepareOutput
-
- pval = [p1 p2 pI];
-
- if na > 1
- if kk>2
- table = {'Source','d.f.','SS','MS','F','P-Value'; ...
- fn{1}, df_1 , eff_1, ms_1, F1, p1; ...
- fn{2}, df_2 , eff_2, ms_2, F2, p2; ...
- 'Interaction', df_i , eff_i, ms_i, FI, pI; ...
- 'Residual', df_r, eff_r, ms_r, [], []; ...
- 'Total',df_t,eff_t,[],[],[]};
- else
- table = {'Source','d.f.','CHI2','P-Value'; ...
- fn{1}, df_1 , chi1, p1;
- fn{2}, df_2 , chi2, p2;
- 'Interaction', df_i , chiI, pI};
- end
- end
-
- end
- end
|