123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379 |
- clear all
- mainfolder='';
- addpath(genpath([mainfolder 'subfunctions/']))
- addpath(genpath('subfunctions/rm_anova2'))
- %% Panel 1
- clear all
- %data for polarplots
- [oriC, oriP, oriN]=orivectors(16,6.43);
- theta1=oriC
- theta=[0 0 pi/2 pi/2 pi/2 pi/2 pi pi pi pi pi*1.5 pi*1.5 pi*1.5 pi*1.5 0 0];
- uno=ones(1,16)
- thetaall{1}=[theta theta(1)];
- uno=[uno uno(1)];
- theta1=oriC
- theta2=[0 0 0 0 pi/2 pi/2 pi/2 pi/2 pi pi pi pi pi*1.5 pi*1.5 pi*1.5 pi*1.5]-pi/4
- theta3=[theta1;theta2]
- theta=mean(theta3)
- uno=ones(1,16)
- thetaall{2}=[theta theta(1)];
- uno=[uno uno(1)];
- theta=oriC
- uno=ones(1,16)
- thetaall{3}=[theta theta(1)];
- uno=[uno uno(1)];
- theta1=oriC
- theta2=[0 0 0 0 pi/2 pi/2 pi/2 pi/2 pi pi pi pi pi*1.5 pi*1.5 pi*1.5 pi*1.5]+pi/4
- theta3=[theta1;theta2]
- theta=mean(theta3)
- uno=ones(1,16)
- thetaall{4}=[theta theta(1)];
- theta=[0 0 0 0 pi/2 pi/2 pi/2 pi/2 pi pi pi pi pi*1.5 pi*1.5 pi*1.5 pi*1.5]+pi/4
- uno=ones(1,16)
- thetaall{5}=[theta theta(1)];
- uno=[uno uno(1)];
- A=0.2
- thetaall{4}=A.*thetaall{5}+(1-A)*thetaall{3};
- A=1
- thetaall{5}=A.*thetaall{5}+(1-A)*thetaall{3};
- a{1}=creatcatcardeucl;
- a{3}=creatcontmodel(1);
- a{5}=creatcatcardeucl45;
- A=0.5;
- a{2}=A*a{1}+(1-A)*a{3}
- a{4}=A*a{5}+(1-A)*a{3}
- % Plotting
- figure;
- subplot(2,5,1);
- polarmodelplot(thetaall{1},uno)
- subplot(2,5,2);
- polarmodelplot(thetaall{2},uno)
- subplot(2,5,3);
- polarmodelplot(thetaall{3},uno)
- subplot(2,5,4);
- polarmodelplot(thetaall{4},uno)
- subplot(2,5,5);
- polarmodelplot(thetaall{5},uno)
- subplot(2,5,6);
- moldelmatplot(a{5},theta1)
- subplot(2,5,7);
- moldelmatplot(a{4},theta1)
- subplot(2,5,8);
- moldelmatplot(a{3},theta1)
- subplot(2,5,9);
- moldelmatplot(a{2},theta1)
- subplot(2,5,10);
- moldelmatplot(a{1},theta1)
- %% Panel 2
- clear all
- %Loading data
- beh=load('data_for_plots/Figure_4/all_behaviour_n41_trialbytrial_C05.mat')
- load('data_for_plots/Figure_4/avg_polarbias_n41_C1.mat')
- %Loadin eyedata
- load('data_for_plots/Figure_4/test1_meanrecent_100pth_n41_lastsec.mat')
- eye.all{1}(:,1)=av_a1cued1(:)-av_a1cued2(:)
- eye.all{1}(:,2)=av_a2cued1(:)-av_a2cued2(:)
- load('data_for_plots/Figure_4/test2_meanrecent_100pth_n41_lastsec.mat')
- eye.all{1}(:,3)=av_a1cued1(:)-av_a1cued2(:)
- eye.all{1}(:,4)=av_a2cued1(:)-av_a2cued2(:)
- fp=(~isnan(eye.all{1}(:,1))+~isnan(eye.all{1}(:,2))...
- +~isnan(eye.all{1}(:,3))+~isnan(eye.all{1}(:,4)))==4; %checking we have data from all participants
- eye.all{1}=eye.all{1}(:,:)
- figure('Position' ,[100 600 950 600]);
- %behavioural plot
- subplot(1,3,1)
- colores=[0 0 0];
- % barplotbias(beh.all{1},[-0.51,0.51],'behaviour','A (bias index)',1)
- lineartrendana(beh.all,1,1,[-.4,0.7],'behaviour','B (bias index)',colores,-0.6)
- % polarplot of behav bias
- oi=avg_bCueor;
- oiac=avg_aCueor;
- yourBias=[];
- yourAccu=[];
- for ppp=1:size(oi,2)
- behB=oi(:,ppp)'; %BheaviouralBias
-
- s=avg_Paramsr(ppp,1); % noise (in memory/decision-making)
- A=avg_Paramsr(ppp,2); % Key Parameter (squircle) 0: all circle; 1: all square
- C=avg_Paramsr(ppp,3);
- makefig=0;
- [yourAccu(:,ppp) yourBias(:,ppp)]=squircleBehave2compB(s,A,C,behB,makefig);
-
- end
- counter=1;
- subplot(1,3,2)
- polarplot([0 pi],[1 1],'k-','LineWidth',1);hold on;
- polarplot([pi/2 pi*1.5],[1 1],'k-','LineWidth',1);hold on;
- Aave=round(mean(avg_Paramsr(:,2),1),3)
- Astd=std(avg_Paramsr(:,2),0,1);
- quickplotcompBerrors(bb',(yourBias),(oi),[''],1,Aave);
- counter=counter+1,
- set(gca,'GridAlpha',0.25);
- set(gca,'FontSize',20);
- %eye plot
- subplot(1,3,3)
- lineartrendana(eye.all,1,0,[-.1,.175],'gaze','\Delta (rho) repulsion - attraction',colores,-0.15)
- %% Analysis
- %T test againg 0
- mmm=mean(beh.all{1}(:,:),2);
- mean(beh.all{1}) %mean of B index in each condition
- h = lillietest(mmm);
- [h,p,ci,stats] = ttest(mmm,0)
- [h,p,ci,stats] = ttest(beh.all{1},0)
- [p,h,stats] = ranksum(mmm,0)
- % Anova
- al=[]
- al= cat(1,beh.all{1}(:,1),beh.all{1}(:,2),beh.all{1}(:,3),beh.all{1}(:,4))';
- p=size(beh.all{1},1);
- S=[1:p,1:p,1:p,1:p];
- F1=[ones(p,1);ones(p,1)*2;ones(p,1);ones(p,1)*2]'
- F2=[ones(p*2,1);ones(p*2,1)*2]'
- FACTNAMES={'item order', 'test order'}
- stats = rm_anova2(al,S,F1,F2,FACTNAMES)
- totalSS=sum([stats{2,2},stats{3,2},stats{4,2},stats{5,2},stats{6,2},stats{7,2}]);
- etaS=[stats{2,2}/totalSS,stats{3,2}/totalSS,stats{4,2}/totalSS]
- %% Linear trend analysis beh
- b_beh=lineartrendana(beh.all,0);
- %%
- %T test againg 0
- mmm=mean(eye.all{1}(:,:),2);
- h = lillietest(mmm);
- [h,p,ci,stats] = ttest(mmm,0)
- [h,p,ci,stats] = ttest(eye.all{1},0)
- [p,h,stats] = ranksum(mmm,0)
- 1
- % Anova
- al=[]
- al= cat(1,eye.all{1}(fp,1),eye.all{1}(fp,2),eye.all{1}(fp,3),eye.all{1}(fp,4))';
- p=size(eye.all{1}(fp,1),1);
- S=[1:p,1:p,1:p,1:p];
- F1=[ones(p,1);ones(p,1)*2;ones(p,1);ones(p,1)*2]'
- F2=[ones(p*2,1);ones(p*2,1)*2]'
- FACTNAMES={'item order', 'test order'}
- stats = rm_anova2(al,S,F1,F2,FACTNAMES)
- totalSS=sum([stats{2,2},stats{3,2},stats{4,2},stats{5,2},stats{6,2},stats{7,2}]);
- etaS=[stats{2,2}/totalSS,stats{3,2}/totalSS,stats{4,2}/totalSS]
- %% Linear trend analysis eye
- b_eye=lineartrendana(eye.all,0,0,[-.075,.2]);
- %% Correlation between slopes in beh and eyes
- [rho pval]=corr(b_beh',b_eye','Type','Pearson')
- %%
- figure; % barplotbias(beh.all{1},[-0.51,0.51],'behaviour','A (bias index)',1)
- lineartrendana(beh.all,1,1,[-.9,0.9],'behaviour','B (bias index)')
- %% Subfunctions
- function polarmodelplot(theta,uno)
- polarplot(theta,uno,'k-o','MarkerFaceColor', 'k', 'MarkerSize', 8);
- r=gca;
- r.FontSize=20;
- r.RTickLabel=[];
- r.RGrid='off';
- rlim([0 1.25])
- c=creat_u_d_model;
- d=creat_l_r_model;
- aa=c+d;
- cont=creatcontmodel(1);
- A=0.5;
- a=A*aa+(1-A)*cont
-
- end
-
- function moldelmatplot(a,theta1)
- imagesc(a);hold on;
- xlabel('orientation (°)')
- ylabel('orientation (°)')
-
- xticks = 1:16; %adjust as appropriate, positive integers only
- xlabels = round(rad2deg(theta1(1:4:16))); %time labels
- set(gca, 'XTick', 1:4:16, 'XTickLabel', xlabels, ...
- 'YTick', 1:4:16, 'YTickLabel', xlabels, 'YAxisLocation','left','FontSize',20);
-
- end
- function barplotbias(data,yl,tito,yla,labels,sublabels,colores,xpos)
- ax=notBoxPlot(data,'style','sdline')
- line([0,5], [0,0], 'Color', 'k','LineStyle',':','LineWidth',2);hold on;
- line([2.5,2.5], [-10,10], 'Color', 'k','LineStyle','--','LineWidth',2);hold on;
- for i=1:4
-
- ax(i).semPtch.FaceColor = [0.75 0.75 0.75];
- ax(i).semPtch.EdgeColor = [0.75 0.75 0.75];
- ax(i).semPtch.LineWidth = 3;
- ax(i).data.MarkerSize = 8;
- ax(i).mu.Color = [0 0 0];
- ax(i).sd.Color = [0 0 0];
-
- end
- xticks([1:4])
- xticklabels(labels)
- % xtickangle(45)
- ylim(yl)
- xlim([0.5 4.5])
- ylabel(yla)
- set(gca,'FontSize',20);
- title(tito)
- text(1.5,xpos,sublabels{1},'HorizontalAlignment','center','FontSize',20,'FontWeight','bold')
- text(3.5,xpos,sublabels{2},'HorizontalAlignment','center','FontSize',20,'FontWeight','bold')
- end
- function ball=lineartrendana(all,plotyes,beh,ylimits,btit,ylab,colores,xpos)
- distances(:,1)=all{1}(:,2) %stim 2 cued 1st
- distances(:,2)=all{1}(:,1) %stim 1 cued 1st
- distances(:,3)=all{1}(:,4)%stim 2 cued 2nd
- distances(:,4)=all{1}(:,3) %stim 1 cued 2nd
- %% Check linear trend
- % ball=[];
- % yfit = [];
- for ppp = 1:size(distances,1)
-
- tof=[];
- for c=1:size(distances,2);
- tof=[tof; distances(ppp,c)];
- end
-
- [b,dev,stats] = glmfit(1:size(distances,2),tof,'normal');
- yfit(ppp,:) = polyval([b(2,1),b(1,1)],[1,2,3,4]);
-
- ball(ppp) = b(2);
- end
- [h,p,ci,stats] = ttest(ball,0)
- if plotyes
- if beh
- labels={'Stim 2 ','Stim 1','Stim 2','Stim 1'};
- sublabel={'test 1', 'test 2'};
-
-
-
- else
- labels={'Stim 2 ','Stim 1','Stim 2','Stim 1'};
- % labels={'stim 2 - delay 1','stim 1 - delay 1','stim 2 - delay 2','stim 1 - delay 2'};
- sublabel={'delay 1', 'delay 2'};
- end
- plot(yfit','Color',[colores 0.25],'LineWidth',1);hold on;
- plot(mean(yfit,1)','Color',[0 0 0],'LineWidth',3);hold on;
- barplotbias(distances,ylimits,btit,ylab,labels,sublabel,colores,xpos)
-
- end
- end
|