Jonathan Oesterle 5eccf19c34 Upload files to 'code/AlphaAnalysis' 2 months ago
..
Readme.md 5eccf19c34 Upload files to 'code/AlphaAnalysis' 2 months ago
__init__.py 5eccf19c34 Upload files to 'code/AlphaAnalysis' 2 months ago
morph.py 5eccf19c34 Upload files to 'code/AlphaAnalysis' 2 months ago
preprocessing.py 5eccf19c34 Upload files to 'code/AlphaAnalysis' 2 months ago

Readme.md

Readme

Morphkit is a morphopy precursor.
This code was written by the MorphPy authors. For an up-to-date version install morphopy: https://github.com/berenslab/MorphoPy

datacite.yml
Title Task-specific regional circuit adaptations in distinct mouse retinal ganglion cells
Authors Oesterle,Jonathan;Institute for Ophthalmic Research, University of Tübingen, Germany; Hertie Institute for AI in Brain Health, University of Tübingen, Tübingen, Germany;ORCID:0000-0001-8919-1445
Ran,Yanli;Institute for Ophthalmic Research, University of Tübingen, Germany; Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, China
Stahr,Paul;Max Planck Institute for Neurobiology of Behavior, Bonn, Germany
Kerr,Jason ND;Max Planck Institute for Neurobiology of Behavior, Bonn, Germany;ORCID:0000-0001-9459-883X
Schubert,Timm;Institute for Ophthalmic Research, University of Tübingen, Germany
Berens,Philipp;Hertie Institute for AI in Brain Health, University of Tübingen, Tübingen, Germany;ORCID:0000-0002-0199-4727
Euler,Thomas;Institute for Ophthalmic Research, University of Tübingen, Germany;ORCID:0000-0002-4567-6966
Description This repository contains the data, analysis pipeline, and models underlying the analyses published in Oesterle, Ran et al. Our study provides evidence that the mouse retina shows regional adaptations in signal processing, enhancing their ability to detect prey during hunting.
License Creative Commons Attribution-NonCommercial-ShareAlike 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)
References Sustained ON alpha retinal ganglion cells in the temporal retina exhibit task-specific regional adaptions in dendritic signal integration [doi:10.1101/2024.03.27.586958] (IsSupplementTo)
Funding DFG; BE 5601/6-1
DFG; BE 5601/9-1
DFG; EU 42/10-1
DFG; EU 42/12-1
NSFC; YR 32200810
MPG
Keywords Neuroscience
Retinal ganglion cells
Visual ecology
Regional circuit adaptations
Resource Type Dataset