Scheduled service maintenance on November 22


On Friday, November 22, 2024, between 06:00 CET and 18:00 CET, GIN services will undergo planned maintenance. Extended service interruptions should be expected. We will try to keep downtimes to a minimum, but recommend that users avoid critical tasks, large data uploads, or DOI requests during this time.

We apologize for any inconvenience.

combineMethodComparisions_normed.py 2.1 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758
  1. import pandas as pd
  2. from matplotlib import pyplot as plt
  3. import seaborn as sns
  4. import os
  5. import sys
  6. from regmaxsn.core.matplotlibRCParams import mplPars
  7. sns.set(rc=mplPars)
  8. setNames = ["LCInt", "ALPN", "OPInt", "AA1", "AA2"]
  9. intSetNames = ["LLC", "OMB", "OPSInt", "AA1", "RAL"]
  10. def combinePlotMethodComparisons(inDir):
  11. plt.ion()
  12. allPerfsDF = pd.DataFrame()
  13. for setInd, setName in enumerate(setNames):
  14. intSetName = intSetNames[setInd]
  15. metricsXL = os.path.join(inDir, "{}.xlsx".format(intSetName))
  16. if os.path.isfile(metricsXL):
  17. metricsDFNormed = pd.DataFrame()
  18. metricsDF = pd.read_excel(metricsXL)
  19. for irName, irDF in metricsDF.groupby("Initial Reference"):
  20. standardisedMeasure = float(irDF.loc[lambda df: df["Method"] == "Standardized",
  21. "Occupancy Based Dissimilarity Measure"])
  22. irDF["Occupancy Based Dissimilarity Measure"] /= standardisedMeasure
  23. metricsDFNormed = metricsDFNormed.append(irDF)
  24. metricsDFNormed["Group"] = setName
  25. allPerfsDF = allPerfsDF.append(metricsDFNormed, ignore_index=True)
  26. [darkblue, green, red, violet, yellow, lightblue] = sns.color_palette()
  27. fig1, ax1 = plt.subplots(figsize=(14, 11.2))
  28. sns.barplot(data=allPerfsDF, x="Group", y="Occupancy Based Dissimilarity Measure",
  29. hue='Method', ax=ax1, hue_order=["PCA", "PCA + RobartsICP", "BlastNeuron",
  30. "Reg-MaxS", "Reg-MaxS-N", "Standardized"],
  31. palette=[red, violet, yellow, lightblue, darkblue, green])
  32. ax1.set_ylabel("Occupancy Based Dissimilarity Measure\nNormalized to Standardized")
  33. ax1.set_xticklabels(setNames)
  34. # ax1.text(0, 12, 'n=4', color='r', fontsize=48)
  35. fig1.tight_layout()
  36. return fig1
  37. if __name__ == "__main__":
  38. assert len(sys.argv) == 2, "Improper Usage! Please use as:\n" \
  39. "python {} <directory with performance excel files".format(sys.argv[0])
  40. fig = combinePlotMethodComparisons(sys.argv[1])