123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539 |
- import os
- import numpy as np
- from .swcFuncs import transSWC, transSWC_rotAboutPoint
- from .SWCTransforms import SWCTranslate, objFun
- import shutil
- import json
- import subprocess
- def transPreference(x, y):
- """
- Given two transforms x and y, returns if x is preferred over y. Preferences are scaling > translation,
- scaling > rotation, translation > rotation.
- :param x:
- :param y:
- :return:
- """
- if x == 'scale':
- return 0
- elif y == 'scale':
- return 1
- elif x == 'rot':
- return 0
- else:
- return 1
- def getRemainderScale(scale, oldScale):
- """
- Elementwise divides oldScale by scale, effectively removing scale from old scale. The first entry is bounded
- above by 1 and the second entry is bounded below by 1.
- :param scale: 3 member list of 2 member float lists.
- :param oldScale: 3 member list of 2 member float lists.
- :return: 3 member list of 2 member float lists.
- """
- toReturn = []
- for s, oldS in zip(scale, oldScale):
- toReturn.append([min(oldS[0] / s, 1), max(oldS[1] / s, 1)])
- return toReturn
- class IterativeRegistration(object):
- """
- This class is used to run basic Reg-MaxS algorithm.
- """
- def __init__(self, refSWC, gridSizes, rotBounds, transBounds,
- transMinRes, scaleMinRes, rotMinRes, nCPU):
- """
- Initialization
- :param refSWC: valid file path to a valid SWC file, reference SWC
- :param gridSizes: list of three floats, the voxel sizes over which estimations are run, in micrometer
- :param rotBounds: three member list of two member float lists, the bounds for rotation euler angles abour XYZ
- axes, in radians
- :param transBounds: three member list of two member float lists, the bounds for translations along XYZ axes.
- :param transMinRes: float, minimum resolution of exhaustive search for translation parameters in micrometer.
- :param scaleMinRes: float. minimum (multiplicative) resolution of exhuasitve search for scaling paramers.
- :param rotMinRes: float. minimum resolution of exhuastive search for rotation euler angle parameters in radians.
- :param nCPU: int, number of processes to use
- """
- super(IterativeRegistration, self).__init__()
- self.refSWC = refSWC
- self.gridSizes = gridSizes
- self.rotBounds = rotBounds
- self.transBounds = transBounds
- self.rotBounds = rotBounds
- self.transMinRes = transMinRes
- self.rotMinRes = rotMinRes
- self.scaleMinRes = scaleMinRes
- self.nCPU = nCPU
- self.allFuncs = {'trans': self.transOnce, 'rot': self.rotOnce, 'scale': self.scaleOnce}
- def rotOnce(self, SWC2Align, outFiles, ipParFile):
- """
- Runs exhaustive search to find the best rotation euler angles about XYZ axes that maximize the volume overlap
- between SWC2Align and self.refSWC. Results are written in the two file paths of outFiles.
- If solution found is no better than doing nothing or if the angles found are lower than minimum resolution,
- zero angles are returned with done as true
- :param SWC2Align: valid file path to a valid SWC file
- :param outFiles: list of two valid file paths. SWC2Align rotated with optimum parameters is written to
- outFiles[0], a log file of the process is written into ouFiles[1].
- :param ipParFile: valid file path. Temporary file used.
- :return: bestSol, bestVal, done
- bestSol: list of three floats, best Euler angles in radians
- bestVal: float, best value of dissimilarity between SWC2Align and refSWC at the lowest voxel size
- done: boolean, see above.
- """
- pars = [self.refSWC, SWC2Align, outFiles,
- self.gridSizes, self.rotBounds, self.rotMinRes, self.nCPU]
- with open(ipParFile, 'w') as fle:
- json.dump(pars, fle)
- f2call = os.path.join(os.path.split(__file__)[0], 'rotOnce.py')
- subprocess.call(['python', f2call, ipParFile])
- with open(outFiles[1], 'r') as fle:
- out = json.load(fle)
- bestSol = out['bestSol']
- done = out['done']
- bestVal = out['bestVal']
- print(bestSol, bestVal, done)
- return bestSol, bestVal, done
- def transOnce(self, SWC2Align, outFiles, ipParFile):
- """
- Runs exhaustive search to find the best translations along XYZ axes that maximize the volume overlap between
- SWC2Align and self.refSWC. Results are written in the two file paths of outFiles.
- If solution found is no better than doing nothing or if the translations found are lower than
- the minimum resolution, zero translations are returned with done set to true
- :param SWC2Align: valid file path to a valid SWC file
- :param outFiles: list of two valid file paths. SWC2Align translated with optimum parameters is written to
- outFiles[0], a log file of the process is written into ouFiles[1].
- :param ipParFile: valid file path. Temporary file used.
- :return: bestSol, bestVal, done
- bestSol: list of three floats, best translations in micrometer
- bestVal: float, best value of dissimilarity between SWC2Align and refSWC at the lowest voxel size
- done: boolean, see above.
- """
- pars = [self.refSWC, SWC2Align, outFiles,
- self.gridSizes, self.transBounds, self.transMinRes, self.nCPU]
- with open(ipParFile, 'w') as fle:
- json.dump(pars, fle)
- f2call = os.path.join(os.path.split(__file__)[0], 'transOnce.py')
- subprocess.call(['python', f2call, ipParFile])
- with open(outFiles[1], 'r') as fle:
- out = json.load(fle)
- bestSol = out['bestSol']
- done = out['done']
- bestVal = out['bestVal']
- print(bestSol, bestVal, done)
- return bestSol, bestVal, done
- def scaleOnce(self, SWC2Align, outFiles, ipParFile, scaleBounds):
- """
- Runs exhaustive search to find the best scaling parameters along XYZ axes that maximize the volume overlap
- between SWC2Align and self.refSWC. Results are written in the two file paths of outFiles.
- If solution found is no better than doing nothing or if the scaling parameters found are lower than
- the minimum resolution, unity scaling parameters are returned with done set to true
- :param SWC2Align: valid file path to a valid SWC file
- :param outFiles: list of two valid file paths. SWC2Align scaled with optimum parameters is written to
- outFiles[0], a log file of the process is written into ouFiles[1].
- :param ipParFile: valid file path. Temporary file used.
- :return: bestSol, bestVal, done
- bestSol: list of three floats, best scaling parameters
- bestVal: float, best value of dissimilarity between SWC2Align and refSWC at the lowest voxel size
- done: boolean, see above.
- """
- pars = [self.refSWC, SWC2Align, outFiles,
- self.gridSizes, scaleBounds, self.scaleMinRes, self.nCPU]
- with open(ipParFile, 'w') as fle:
- json.dump(pars, fle)
- f2call = os.path.join(os.path.split(__file__)[0], 'scaleOnce.py')
- subprocess.call(['python', f2call, ipParFile])
- with open(outFiles[1], 'r') as fle:
- out = json.load(fle)
- bestSol = out['bestSol']
- done = out['done']
- bestVal = out['bestVal']
- print(bestSol, bestVal, done)
- return bestSol, bestVal, done
- def compare(self, srts, SWC2Align, tempOutFiles, ipParFile, scaleBounds):
- """
- Runs the exhaustive searchs for the transforms in srts and returns some info about the searches
- :param srts: list of strings, valid entries are 'scale', 'trans' and 'rot'
- :param SWC2Align: valid file path of valid SWC file.
- :param tempOutFiles: list of two valid file paths, for temporary internal use.
- :param ipParFile: valid file path, for temporary internal use.
- :param scaleBounds: three member list of two member float lists, the bounds for scaling parameters
- along XYZ axes.
- :return: tempDones, presBestSol, presBestVal, presBestDone, presBestTrans
- tempDones: list of booleans, same size as srts, contains the value of 'done' of respective exhaustive
- searches
- presBestTrans: transform among srts leading to the lowest dissimilarity
- presBestSol: list of three floats, correspong transform parameters
- presBestDone: boolean, 'done' value of presBestTrans
- """
- presBestVal = 1e6
- presBestTrans = 'trans'
- presBestSol = [0, 0, 0]
- presBestDone = False
- tempDones = {}
- for g in srts:
- if g == 'scale':
- bestSol, bestVal, done = self.scaleOnce(SWC2Align, tempOutFiles[g], ipParFile, scaleBounds)
- elif g == 'rot':
- bestSol, bestVal, done = self.rotOnce(SWC2Align, tempOutFiles[g], ipParFile)
- elif g == 'trans':
- bestSol, bestVal, done = self.transOnce(SWC2Align, tempOutFiles[g], ipParFile)
- else:
- raise('Invalid transformation type ' + g)
- tempDones[g] = done
- if (bestVal == presBestVal and transPreference(presBestTrans, g)) or (bestVal < presBestVal):
- presBestTrans = g
- presBestVal = bestVal
- presBestSol = bestSol
- presBestDone = done
- return tempDones, presBestSol, presBestVal, presBestDone, presBestTrans
- def performReg(self, SWC2Align, resFile, scaleBounds,
- inPartsDir=None, outPartsDir=None,
- initGuessType='just_centroids',
- retainTempFiles=False):
- """
- Repeatedly applies translation, rotation and scaling transforms to SWC2Align to maximize its volume overlap
- with self.refSWC. See Reg-MaxS-N manuscript for more info.
- :param SWC2Align: valid file path of a valid SWC file, the SWC that is registered to self.refSWC
- :param resFile: valid file path, where SWC2Align registered to self.refSWC is written
- :param scaleBounds: three member list of two member float lists, the bounds for scaling parameters
- :param inPartsDir: valid directory path, any swc files with this will be transformed exactly same as
- SWC2Align and written in to outPartsDir
- :param outPartsDir: valid directory path
- :param initGuessType: string, valid values are 'just centroids' and 'nothing'. If 'just centroids', the
- centroids are initially matched, if 'nothing' they are not.
- :param retainTempFiles: boolean, whether to retain the intermediate files.
- :return: finalFile, finalSolFile
- finalFile: same as resFile
- finalSolFile: a file at <resFile name>Sol.txt where results of the process are logged.
- """
- resDir, expName = os.path.split(resFile[:-4])
- ipParFile = os.path.join(resDir, 'tmp.json')
- vals = ['trans', 'rot', 'scale']
- tempOutFiles = {}
- for val in vals:
- fle1 = os.path.join(resDir, val + '.swc')
- fle2 = os.path.join(resDir, val + 'bestSol.json')
- tempOutFiles[val] = [fle1, fle2]
- refMean = np.loadtxt(self.refSWC)[:, 2:5].mean(axis=0)
- iterationNo = 0
- tempOutPath = os.path.join(resDir, expName + 'trans')
- if not os.path.isdir(tempOutPath):
- os.mkdir(tempOutPath)
- SWC2AlignLocal = os.path.join(tempOutPath, str(iterationNo) + '.swc')
- SWC2AlignMean = np.loadtxt(SWC2Align)[:, 2:5].mean(axis=0)
- if initGuessType == 'just_centroids':
- transSWC(SWC2Align, np.eye(3), refMean - SWC2AlignMean, SWC2AlignLocal)
- totalTransform = np.eye(4)
- totalTransform[:3, 3] = -SWC2AlignMean
- totalTranslation = refMean
- elif initGuessType == 'nothing':
- shutil.copy(SWC2Align, SWC2AlignLocal)
- totalTransform = np.eye(4)
- totalTransform[:3, 3] = -SWC2AlignMean
- totalTranslation = SWC2AlignMean
- else:
- raise(ValueError('Unknown value for argument \'initGuessType\''))
- SWC2AlignT = SWC2AlignLocal
- scaleDone = False
- bestVals = {}
- while not scaleDone:
- done = False
- srts = ['rot', 'trans']
- while not done:
- tempDones, bestSol, bestVal, lDone, g = self.compare(srts, SWC2AlignT, tempOutFiles, ipParFile, None)
- outFile = os.path.join(tempOutPath, str(iterationNo) + g[0] + '.swc')
- outFileSol = os.path.join(tempOutPath, 'bestSol' + str(iterationNo) + g[0] + '.txt')
- shutil.copyfile(tempOutFiles[g][0], outFile)
- shutil.copyfile(tempOutFiles[g][1], outFileSol)
- with open(outFileSol, 'r') as fle:
- pars = json.load(fle)
- presTrans = np.array(pars['transMat'])
- if g == 'trans':
- totalTranslation += presTrans[:3, 3]
- else:
- totalTransform = np.dot(presTrans, totalTransform)
- print(str(iterationNo) + g)
- bestVals[bestVal] = {"outFile": outFile, "outFileSol": outFileSol,
- "totalTransform": totalTransform,
- "totalTranslation": totalTranslation,
- "iterationIndicator": str(iterationNo) + g
- }
- iterationNo += 1
- done = lDone
- SWC2AlignT = outFile
- bestSol, bestVal, sDone = self.scaleOnce(SWC2AlignT, tempOutFiles['scale'], ipParFile, scaleBounds)
- outFile = os.path.join(tempOutPath, str(iterationNo) + 's.swc')
- outFileSol = os.path.join(tempOutPath, 'bestSol' + str(iterationNo) + 's.txt')
- shutil.copyfile(tempOutFiles['scale'][0], outFile)
- shutil.copyfile(tempOutFiles['scale'][1], outFileSol)
- with open(outFileSol, 'r') as fle:
- pars = json.load(fle)
- presTrans = np.array(pars['transMat'])
- totalTransform = np.dot(presTrans, totalTransform)
- print(str(iterationNo) + 's')
- bestVals[bestVal] = {"outFile": outFile, "outFileSol": outFileSol,
- "totalTransform": totalTransform,
- "totalTranslation": totalTranslation,
- "iterationIndicator": str(iterationNo) + 's'
- }
- iterationNo += 1
- SWC2AlignT = outFile
- tempDones, bestSol, bestVal, lDone, g = self.compare(vals, SWC2AlignT, tempOutFiles, ipParFile, scaleBounds)
- scaleDone = all(tempDones.values())
- if not scaleDone:
- with open(tempOutFiles['rot'][1], 'r') as fle:
- pars = json.load(fle)
- rBestVal = pars['bestVal']
- with open(tempOutFiles['trans'][1], 'r') as fle:
- pars = json.load(fle)
- tBestVal = pars['bestVal']
- if rBestVal < tBestVal:
- g = 'rot'
- else:
- g = 'trans'
- outFile = os.path.join(tempOutPath, str(iterationNo) + g[0] + '.swc')
- outFileSol = os.path.join(tempOutPath, 'bestSol' + str(iterationNo) + g[0] + '.txt')
- shutil.copyfile(tempOutFiles[g][0], outFile)
- shutil.copyfile(tempOutFiles[g][1], outFileSol)
- with open(outFileSol, 'r') as fle:
- pars = json.load(fle)
- presTrans = np.array(pars['transMat'])
- if g == 'trans':
- totalTranslation += presTrans[:3, 3]
- else:
- totalTransform = np.dot(presTrans, totalTransform)
- print(str(iterationNo) + g)
- bestVals[bestVal] = {"outFile": outFile, "outFileSol": outFileSol,
- "totalTransform": totalTransform,
- "totalTranslation": totalTranslation,
- "iterationIndicator": str(iterationNo) + g
- }
- iterationNo += 1
- SWC2AlignT = outFile
- championBestVal = min(bestVals.keys())
- totalTransform = bestVals[championBestVal]["totalTransform"]
- totalTranslation = bestVals[championBestVal]["totalTranslation"]
- bestIterIndicator = bestVals[championBestVal]["iterationIndicator"]
- print("bestIter: {}, bestVal: {}".format(bestIterIndicator, championBestVal))
- totalTransform[:3, 3] += totalTranslation
- for g in vals:
- [os.remove(x) for x in tempOutFiles[g]]
- os.remove(ipParFile)
- if not retainTempFiles:
- shutil.rmtree(tempOutPath)
- finalFile = os.path.join(resDir, expName + '.swc')
- transSWC_rotAboutPoint(SWC2Align,
- totalTransform[:3, :3], totalTransform[:3, 3],
- finalFile,
- [0, 0, 0]
- )
- trans = SWCTranslate(self.refSWC, finalFile, self.gridSizes[-1])
- finalVal = objFun(([0, 0, 0], trans))
- finalSolFile = os.path.join(resDir, expName + 'Sol.txt')
- with open(finalSolFile, 'w') as fle:
- json.dump({'finalVal': finalVal, 'finalTransMat': totalTransform.tolist(), 'refSWC': self.refSWC,
- 'SWC2Align': SWC2Align, 'bestIteration': bestIterIndicator}, fle)
- if inPartsDir is not None:
- if os.path.isdir(inPartsDir):
- dirList = os.listdir(inPartsDir)
- dirList = [x for x in dirList if x.endswith('.swc')]
- if not os.path.isdir(outPartsDir):
- os.mkdir(outPartsDir)
- for entry in dirList:
- transSWC_rotAboutPoint(os.path.join(inPartsDir, entry),
- totalTransform[:3, :3], totalTransform[:3, 3],
- os.path.join(outPartsDir, entry),
- [0, 0, 0]
- )
- else:
- print('Specified partsDir {} not found'.format(inPartsDir))
- return finalFile, finalSolFile
- def composeRefSWC(alignedSWCs, newRefSWC, gridSize):
- """
- Given a list of SWCs, it constructs a fake SWC to represent the union of the volumes occupied by the SWCs.
- :param alignedSWCs: list of SWC files
- :param newRefSWC: valid file path, where the resulting SWC is written
- :param gridSize: float, the voxel size at which the volumes are discretized before forming the union.
- :return: dissim: float, 1 - (# of voxels in the intersection of volumes) / (# of voxels in the union of volumes)
- """
- indVoxs = []
- for aswc in alignedSWCs:
- aPts = np.loadtxt(aswc)[:, 2:5]
- aVox = np.array(np.round(aPts / gridSize), np.int32)
- aVoxSet = set(map(tuple, aVox))
- indVoxs.append(aVoxSet)
- # majority = [sum(x in y for y in indVoxs) >= 0.5 * len(indVoxs) for x in aUnion]
- # newRefVoxSet = [y for x, y in enumerate(aUnion) if majority[x]]
- aUnion = reduce(lambda x, y: x.union(y), indVoxs)
- aInt = reduce(lambda x, y: x.intersection(y), indVoxs)
- newRefVoxSet = aUnion
- newRefXYZ = np.array(list(newRefVoxSet)) * gridSize
- writeFakeSWC(newRefXYZ, newRefSWC)
- # print(len(aInt), len(aUnion))
- return 1 - len(aInt) / float(len(aUnion))
- def calcOverlap(refSWC, SWC2Align, gridSize):
- """
- Given two SWCs, it calculates a measure of dissimilarity between them using their discretized volumes.
- It's defined as 1 - size of intersection of the volumes / size of union of the volumes
- :param refSWC: valid file path to a valid SWC file
- :param SWC2Align: valid file path to a valid SWC file
- :param gridSize: float, the voxel size at which the volumes are discretized.
- :return: float, dissimilarity value
- """
- trans = SWCTranslate(refSWC, SWC2Align, gridSize)
- return objFun(([0, 0, 0], trans))
- def writeFakeSWC(data, fName, extraCol=None):
- """
- Forms a 7 column SWC data from the 3 column XYZ data in 'data' and writes it to a file at path fName adding
- a '!! Fake SWC !!' warning in the header.
- :param data: numpy.ndarray, 3 column XYZ data
- :param fName: valid file path to write the fake SWC file
- :param extraCol: iterable of the same size as the number of rows of data, will be added as the 8th column
- :return:
- """
- data = np.array(data)
- assert data.shape[1] == 3
- if extraCol is not None:
- extraCol = np.array(extraCol)
- assert extraCol.shape == (data.shape[0], ) or extraCol.shape == (data.shape[0], 1)
- toWrite = np.empty((data.shape[0], 8))
- toWrite[:, 7] = extraCol
- else:
- toWrite = np.empty((data.shape[0], 7))
- toWrite[:, 2:5] = data
- toWrite[:, 0] = range(1, data.shape[0] + 1)
- toWrite[:, 1] = 3
- toWrite[:, 5] = 1
- toWrite[:, 6] = -np.arange(1, data.shape[0] + 1)
- formatStr = '%d %d %0.6f %0.6f %0.6f %0.6f %d'
- if extraCol is not None:
- formatStr += ' %d'
- headr = '!! Fake SWC file !!'
- np.savetxt(fName, toWrite, fmt=formatStr, header=headr)
|