123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753 |
- # -*- coding: utf-8 -*-
- """
- Class for reading output files from NEST simulations
- ( http://www.nest-simulator.org/ ).
- Tested with NEST2.10.0
- Depends on: numpy, quantities
- Supported: Read
- Authors: Julia Sprenger, Maximilian Schmidt, Johanna Senk
- """
- # needed for Python3 compatibility
- from __future__ import absolute_import
- import os.path
- import warnings
- from datetime import datetime
- import numpy as np
- import quantities as pq
- from neo.io.baseio import BaseIO
- from neo.core import Block, Segment, SpikeTrain, AnalogSignal
- value_type_dict = {'V': pq.mV,
- 'I': pq.pA,
- 'g': pq.CompoundUnit("10^-9*S"),
- 'no type': pq.dimensionless}
- class NestIO(BaseIO):
- """
- Class for reading NEST output files. GDF files for the spike data and DAT
- files for analog signals are possible.
- Usage:
- >>> from neo.io.nestio import NestIO
- >>> files = ['membrane_voltages-1261-0.dat',
- 'spikes-1258-0.gdf']
- >>> r = NestIO(filenames=files)
- >>> seg = r.read_segment(gid_list=[], t_start=400 * pq.ms,
- t_stop=600 * pq.ms,
- id_column_gdf=0, time_column_gdf=1,
- id_column_dat=0, time_column_dat=1,
- value_columns_dat=2)
- """
- is_readable = True # class supports reading, but not writing
- is_writable = False
- supported_objects = [SpikeTrain, AnalogSignal, Segment, Block]
- readable_objects = [SpikeTrain, AnalogSignal, Segment, Block]
- has_header = False
- is_streameable = False
- write_params = None # writing is not supported
- name = 'nest'
- extensions = ['gdf', 'dat']
- mode = 'file'
- def __init__(self, filenames=None):
- """
- Parameters
- ----------
- filenames: string or list of strings, default=None
- The filename or list of filenames to load.
- """
- if isinstance(filenames, str):
- filenames = [filenames]
- self.filenames = filenames
- self.avail_formats = {}
- self.avail_IOs = {}
- for filename in filenames:
- path, ext = os.path.splitext(filename)
- ext = ext.strip('.')
- if ext in self.extensions:
- if ext in self.avail_IOs:
- raise ValueError('Received multiple files with "%s" '
- 'extention. Can only load single file of '
- 'this type.' % ext)
- self.avail_IOs[ext] = ColumnIO(filename)
- self.avail_formats[ext] = path
- def __read_analogsignals(self, gid_list, time_unit, t_start=None,
- t_stop=None, sampling_period=None,
- id_column=0, time_column=1,
- value_columns=2, value_types=None,
- value_units=None, lazy=False):
- """
- Internal function called by read_analogsignal() and read_segment().
- """
- if 'dat' not in self.avail_formats:
- raise ValueError('Can not load analogsignals. No DAT file '
- 'provided.')
- # checking gid input parameters
- gid_list, id_column = self._check_input_gids(gid_list, id_column)
- # checking time input parameters
- t_start, t_stop = self._check_input_times(t_start, t_stop,
- mandatory=False)
- # checking value input parameters
- (value_columns, value_types, value_units) = \
- self._check_input_values_parameters(value_columns, value_types,
- value_units)
- # defining standard column order for internal usage
- # [id_column, time_column, value_column1, value_column2, ...]
- column_ids = [id_column, time_column] + value_columns
- for i, cid in enumerate(column_ids):
- if cid is None:
- column_ids[i] = -1
- # assert that no single column is assigned twice
- column_list = [id_column, time_column] + value_columns
- column_list_no_None = [c for c in column_list if c is not None]
- if len(np.unique(column_list_no_None)) < len(column_list_no_None):
- raise ValueError(
- 'One or more columns have been specified to contain '
- 'the same data. Columns were specified to %s.'
- '' % column_list_no_None)
- # extracting condition and sorting parameters for raw data loading
- (condition, condition_column,
- sorting_column) = self._get_conditions_and_sorting(id_column,
- time_column,
- gid_list,
- t_start,
- t_stop)
- # loading raw data columns
- data = self.avail_IOs['dat'].get_columns(
- column_ids=column_ids,
- condition=condition,
- condition_column=condition_column,
- sorting_columns=sorting_column)
- sampling_period = self._check_input_sampling_period(sampling_period,
- time_column,
- time_unit,
- data)
- analogsignal_list = []
- if not lazy:
- # extracting complete gid list for anasig generation
- if (gid_list == []) and id_column is not None:
- gid_list = np.unique(data[:, id_column])
- # generate analogsignals for each neuron ID
- for i in gid_list:
- selected_ids = self._get_selected_ids(
- i, id_column, time_column, t_start, t_stop, time_unit,
- data)
- # extract starting time of analogsignal
- if (time_column is not None) and data.size:
- anasig_start_time = data[selected_ids[0], 1] * time_unit
- else:
- # set t_start equal to sampling_period because NEST starts
- # recording only after 1 sampling_period
- anasig_start_time = 1. * sampling_period
- # create one analogsignal per value column requested
- for v_id, value_column in enumerate(value_columns):
- signal = data[
- selected_ids[0]:selected_ids[1], value_column]
- # create AnalogSignal objects and annotate them with
- # the neuron ID
- analogsignal_list.append(AnalogSignal(
- signal * value_units[v_id],
- sampling_period=sampling_period,
- t_start=anasig_start_time,
- id=i,
- type=value_types[v_id]))
- # check for correct length of analogsignal
- assert (analogsignal_list[-1].t_stop ==
- anasig_start_time + len(signal) * sampling_period)
- return analogsignal_list
- def __read_spiketrains(self, gdf_id_list, time_unit,
- t_start, t_stop, id_column,
- time_column, **args):
- """
- Internal function for reading multiple spiketrains at once.
- This function is called by read_spiketrain() and read_segment().
- """
- if 'gdf' not in self.avail_IOs:
- raise ValueError('Can not load spiketrains. No GDF file provided.')
- # assert that the file contains spike times
- if time_column is None:
- raise ValueError('Time column is None. No spike times to '
- 'be read in.')
- gdf_id_list, id_column = self._check_input_gids(gdf_id_list, id_column)
- t_start, t_stop = self._check_input_times(t_start, t_stop,
- mandatory=True)
- # assert that no single column is assigned twice
- if id_column == time_column:
- raise ValueError('One or more columns have been specified to '
- 'contain the same data.')
- # defining standard column order for internal usage
- # [id_column, time_column, value_column1, value_column2, ...]
- column_ids = [id_column, time_column]
- for i, cid in enumerate(column_ids):
- if cid is None:
- column_ids[i] = -1
- (condition, condition_column, sorting_column) = \
- self._get_conditions_and_sorting(id_column, time_column,
- gdf_id_list, t_start, t_stop)
- data = self.avail_IOs['gdf'].get_columns(
- column_ids=column_ids,
- condition=condition,
- condition_column=condition_column,
- sorting_columns=sorting_column)
- # create a list of SpikeTrains for all neuron IDs in gdf_id_list
- # assign spike times to neuron IDs if id_column is given
- if id_column is not None:
- if (gdf_id_list == []) and id_column is not None:
- gdf_id_list = np.unique(data[:, id_column])
- spiketrain_list = []
- for nid in gdf_id_list:
- selected_ids = self._get_selected_ids(nid, id_column,
- time_column, t_start,
- t_stop, time_unit, data)
- times = data[selected_ids[0]:selected_ids[1], time_column]
- spiketrain_list.append(SpikeTrain(
- times, units=time_unit,
- t_start=t_start, t_stop=t_stop,
- id=nid, **args))
- # if id_column is not given, all spike times are collected in one
- # spike train with id=None
- else:
- train = data[:, time_column]
- spiketrain_list = [SpikeTrain(train, units=time_unit,
- t_start=t_start, t_stop=t_stop,
- id=None, **args)]
- return spiketrain_list
- def _check_input_times(self, t_start, t_stop, mandatory=True):
- """
- Checks input times for existence and setting default values if
- necessary.
- t_start: pq.quantity.Quantity, start time of the time range to load.
- t_stop: pq.quantity.Quantity, stop time of the time range to load.
- mandatory: bool, if True times can not be None and an error will be
- raised. if False, time values of None will be replaced by
- -infinity or infinity, respectively. default: True.
- """
- if t_stop is None:
- if mandatory:
- raise ValueError('No t_start specified.')
- else:
- t_stop = np.inf * pq.s
- if t_start is None:
- if mandatory:
- raise ValueError('No t_stop specified.')
- else:
- t_start = -np.inf * pq.s
- for time in (t_start, t_stop):
- if not isinstance(time, pq.quantity.Quantity):
- raise TypeError('Time value (%s) is not a quantity.' % time)
- return t_start, t_stop
- def _check_input_values_parameters(self, value_columns, value_types,
- value_units):
- """
- Checks value parameters for consistency.
- value_columns: int, column id containing the value to load.
- value_types: list of strings, type of values.
- value_units: list of units of the value columns.
- Returns
- adjusted list of [value_columns, value_types, value_units]
- """
- if value_columns is None:
- raise ValueError('No value column provided.')
- if isinstance(value_columns, int):
- value_columns = [value_columns]
- if value_types is None:
- value_types = ['no type'] * len(value_columns)
- elif isinstance(value_types, str):
- value_types = [value_types]
- # translating value types into units as far as possible
- if value_units is None:
- short_value_types = [vtype.split('_')[0] for vtype in value_types]
- if not all([svt in value_type_dict for svt in short_value_types]):
- raise ValueError('Can not interpret value types '
- '"%s"' % value_types)
- value_units = [value_type_dict[svt] for svt in short_value_types]
- # checking for same number of value types, units and columns
- if not (len(value_types) == len(value_units) == len(value_columns)):
- raise ValueError('Length of value types, units and columns does '
- 'not match (%i,%i,%i)' % (len(value_types),
- len(value_units),
- len(value_columns)))
- if not all([isinstance(vunit, pq.UnitQuantity) for vunit in
- value_units]):
- raise ValueError('No value unit or standard value type specified.')
- return value_columns, value_types, value_units
- def _check_input_gids(self, gid_list, id_column):
- """
- Checks gid values and column for consistency.
- gid_list: list of int or None, gid to load.
- id_column: int, id of the column containing the gids.
- Returns
- adjusted list of [gid_list, id_column].
- """
- if gid_list is None:
- gid_list = [gid_list]
- if None in gid_list and id_column is not None:
- raise ValueError('No neuron IDs specified but file contains '
- 'neuron IDs in column %s. Specify empty list to '
- 'retrieve spiketrains of all neurons.'
- '' % str(id_column))
- if gid_list != [None] and id_column is None:
- raise ValueError('Specified neuron IDs to be %s, but no ID column '
- 'specified.' % gid_list)
- return gid_list, id_column
- def _check_input_sampling_period(self, sampling_period, time_column,
- time_unit, data):
- """
- Checks sampling period, times and time unit for consistency.
- sampling_period: pq.quantity.Quantity, sampling period of data to load.
- time_column: int, column id of times in data to load.
- time_unit: pq.quantity.Quantity, unit of time used in the data to load.
- data: numpy array, the data to be loaded / interpreted.
- Returns
- pq.quantities.Quantity object, the updated sampling period.
- """
- if sampling_period is None:
- if time_column is not None:
- data_sampling = np.unique(
- np.diff(sorted(np.unique(data[:, 1]))))
- if len(data_sampling) > 1:
- raise ValueError('Different sampling distances found in '
- 'data set (%s)' % data_sampling)
- else:
- dt = data_sampling[0]
- else:
- raise ValueError('Can not estimate sampling rate without time '
- 'column id provided.')
- sampling_period = pq.CompoundUnit(str(dt) + '*'
- + time_unit.units.u_symbol)
- elif not isinstance(sampling_period, pq.UnitQuantity):
- raise ValueError("sampling_period is not specified as a unit.")
- return sampling_period
- def _get_conditions_and_sorting(self, id_column, time_column, gid_list,
- t_start, t_stop):
- """
- Calculates the condition, condition_column and sorting_column based on
- other parameters supplied for loading the data.
- id_column: int, id of the column containing gids.
- time_column: int, id of the column containing times.
- gid_list: list of int, gid to be loaded.
- t_start: pq.quantity.Quantity, start of the time range to be loaded.
- t_stop: pq.quantity.Quantity, stop of the time range to be loaded.
- Returns
- updated [condition, condition_column, sorting_column].
- """
- condition, condition_column = None, None
- sorting_column = []
- curr_id = 0
- if ((gid_list != [None]) and (gid_list is not None)):
- if gid_list != []:
- condition = lambda x: x in gid_list
- condition_column = id_column
- sorting_column.append(curr_id) # Sorting according to gids first
- curr_id += 1
- if time_column is not None:
- sorting_column.append(curr_id) # Sorting according to time
- curr_id += 1
- elif t_start != -np.inf and t_stop != np.inf:
- warnings.warn('Ignoring t_start and t_stop parameters, because no '
- 'time column id is provided.')
- if sorting_column == []:
- sorting_column = None
- else:
- sorting_column = sorting_column[::-1]
- return condition, condition_column, sorting_column
- def _get_selected_ids(self, gid, id_column, time_column, t_start, t_stop,
- time_unit, data):
- """
- Calculates the data range to load depending on the selected gid
- and the provided time range (t_start, t_stop)
- gid: int, gid to be loaded.
- id_column: int, id of the column containing gids.
- time_column: int, id of the column containing times.
- t_start: pq.quantity.Quantity, start of the time range to load.
- t_stop: pq.quantity.Quantity, stop of the time range to load.
- time_unit: pq.quantity.Quantity, time unit of the data to load.
- data: numpy array, data to load.
- Returns
- list of selected gids
- """
- gid_ids = np.array([0, data.shape[0]])
- if id_column is not None:
- gid_ids = np.array([np.searchsorted(data[:, 0], gid, side='left'),
- np.searchsorted(data[:, 0], gid, side='right')])
- gid_data = data[gid_ids[0]:gid_ids[1], :]
- # select only requested time range
- id_shifts = np.array([0, 0])
- if time_column is not None:
- id_shifts[0] = np.searchsorted(gid_data[:, 1],
- t_start.rescale(
- time_unit).magnitude,
- side='left')
- id_shifts[1] = (np.searchsorted(gid_data[:, 1],
- t_stop.rescale(
- time_unit).magnitude,
- side='left') - gid_data.shape[0])
- selected_ids = gid_ids + id_shifts
- return selected_ids
- def read_block(self, gid_list=None, time_unit=pq.ms, t_start=None,
- t_stop=None, sampling_period=None, id_column_dat=0,
- time_column_dat=1, value_columns_dat=2,
- id_column_gdf=0, time_column_gdf=1, value_types=None,
- value_units=None, lazy=False, cascade=True):
- seg = self.read_segment(gid_list, time_unit, t_start,
- t_stop, sampling_period, id_column_dat,
- time_column_dat, value_columns_dat,
- id_column_gdf, time_column_gdf, value_types,
- value_units, lazy, cascade)
- blk = Block(file_origin=seg.file_origin, file_datetime=seg.file_datetime)
- blk.segments.append(seg)
- seg.block = blk
- return blk
- def read_segment(self, gid_list=None, time_unit=pq.ms, t_start=None,
- t_stop=None, sampling_period=None, id_column_dat=0,
- time_column_dat=1, value_columns_dat=2,
- id_column_gdf=0, time_column_gdf=1, value_types=None,
- value_units=None, lazy=False, cascade=True):
- """
- Reads a Segment which contains SpikeTrain(s) with specified neuron IDs
- from the GDF data.
- Arguments
- ----------
- gid_list : list, default: None
- A list of GDF IDs of which to return SpikeTrain(s). gid_list must
- be specified if the GDF file contains neuron IDs, the default None
- then raises an error. Specify an empty list [] to retrieve the spike
- trains of all neurons.
- time_unit : Quantity (time), optional, default: quantities.ms
- The time unit of recorded time stamps in DAT as well as GDF files.
- t_start : Quantity (time), optional, default: 0 * pq.ms
- Start time of SpikeTrain.
- t_stop : Quantity (time), default: None
- Stop time of SpikeTrain. t_stop must be specified, the default None
- raises an error.
- sampling_period : Quantity (frequency), optional, default: None
- Sampling period of the recorded data.
- id_column_dat : int, optional, default: 0
- Column index of neuron IDs in the DAT file.
- time_column_dat : int, optional, default: 1
- Column index of time stamps in the DAT file.
- value_columns_dat : int, optional, default: 2
- Column index of the analog values recorded in the DAT file.
- id_column_gdf : int, optional, default: 0
- Column index of neuron IDs in the GDF file.
- time_column_gdf : int, optional, default: 1
- Column index of time stamps in the GDF file.
- value_types : str, optional, default: None
- Nest data type of the analog values recorded, eg.'V_m', 'I', 'g_e'
- value_units : Quantity (amplitude), default: None
- The physical unit of the recorded signal values.
- lazy : bool, optional, default: False
- cascade : bool, optional, default: True
- Returns
- -------
- seg : Segment
- The Segment contains one SpikeTrain and one AnalogSignal for
- each ID in gid_list.
- """
- if isinstance(gid_list, tuple):
- if gid_list[0] > gid_list[1]:
- raise ValueError('The second entry in gid_list must be '
- 'greater or equal to the first entry.')
- gid_list = range(gid_list[0], gid_list[1] + 1)
- # __read_xxx() needs a list of IDs
- if gid_list is None:
- gid_list = [None]
- # create an empty Segment
- seg = Segment(file_origin=",".join(self.filenames))
- seg.file_datetime = datetime.fromtimestamp(os.stat(self.filenames[0]).st_mtime)
- # todo: rather than take the first file for the timestamp, we should take the oldest
- # in practice, there won't be much difference
- if cascade:
- # Load analogsignals and attach to Segment
- if 'dat' in self.avail_formats:
- seg.analogsignals = self.__read_analogsignals(
- gid_list,
- time_unit,
- t_start,
- t_stop,
- sampling_period=sampling_period,
- id_column=id_column_dat,
- time_column=time_column_dat,
- value_columns=value_columns_dat,
- value_types=value_types,
- value_units=value_units,
- lazy=lazy)
- if 'gdf' in self.avail_formats:
- seg.spiketrains = self.__read_spiketrains(
- gid_list,
- time_unit,
- t_start,
- t_stop,
- id_column=id_column_gdf,
- time_column=time_column_gdf)
- return seg
- def read_analogsignal(self, gid=None, time_unit=pq.ms, t_start=None,
- t_stop=None, sampling_period=None, id_column=0,
- time_column=1, value_column=2, value_type=None,
- value_unit=None, lazy=False):
- """
- Reads an AnalogSignal with specified neuron ID from the DAT data.
- Arguments
- ----------
- gid : int, default: None
- The GDF ID of the returned SpikeTrain. gdf_id must be specified if
- the GDF file contains neuron IDs, the default None then raises an
- error. Specify an empty list [] to retrieve the spike trains of all
- neurons.
- time_unit : Quantity (time), optional, default: quantities.ms
- The time unit of recorded time stamps.
- t_start : Quantity (time), optional, default: 0 * pq.ms
- Start time of SpikeTrain.
- t_stop : Quantity (time), default: None
- Stop time of SpikeTrain. t_stop must be specified, the default None
- raises an error.
- sampling_period : Quantity (frequency), optional, default: None
- Sampling period of the recorded data.
- id_column : int, optional, default: 0
- Column index of neuron IDs.
- time_column : int, optional, default: 1
- Column index of time stamps.
- value_column : int, optional, default: 2
- Column index of the analog values recorded.
- value_type : str, optional, default: None
- Nest data type of the analog values recorded, eg.'V_m', 'I', 'g_e'.
- value_unit : Quantity (amplitude), default: None
- The physical unit of the recorded signal values.
- lazy : bool, optional, default: False
- Returns
- -------
- spiketrain : SpikeTrain
- The requested SpikeTrain object with an annotation 'id'
- corresponding to the gdf_id parameter.
- """
- # __read_spiketrains() needs a list of IDs
- return self.__read_analogsignals([gid], time_unit,
- t_start, t_stop,
- sampling_period=sampling_period,
- id_column=id_column,
- time_column=time_column,
- value_columns=value_column,
- value_types=value_type,
- value_units=value_unit,
- lazy=lazy)[0]
- def read_spiketrain(
- self, gdf_id=None, time_unit=pq.ms, t_start=None, t_stop=None,
- id_column=0, time_column=1, lazy=False, cascade=True, **args):
- """
- Reads a SpikeTrain with specified neuron ID from the GDF data.
- Arguments
- ----------
- gdf_id : int, default: None
- The GDF ID of the returned SpikeTrain. gdf_id must be specified if
- the GDF file contains neuron IDs. Providing [] loads all available
- IDs.
- time_unit : Quantity (time), optional, default: quantities.ms
- The time unit of recorded time stamps.
- t_start : Quantity (time), default: None
- Start time of SpikeTrain. t_start must be specified.
- t_stop : Quantity (time), default: None
- Stop time of SpikeTrain. t_stop must be specified.
- id_column : int, optional, default: 0
- Column index of neuron IDs.
- time_column : int, optional, default: 1
- Column index of time stamps.
- lazy : bool, optional, default: False
- cascade : bool, optional, default: True
- Returns
- -------
- spiketrain : SpikeTrain
- The requested SpikeTrain object with an annotation 'id'
- corresponding to the gdf_id parameter.
- """
- if (not isinstance(gdf_id, int)) and gdf_id is not None:
- raise ValueError('gdf_id has to be of type int or None.')
- if gdf_id is None and id_column is not None:
- raise ValueError('No neuron ID specified but file contains '
- 'neuron IDs in column ' + str(id_column) + '.')
- return self.__read_spiketrains([gdf_id], time_unit,
- t_start, t_stop,
- id_column, time_column,
- **args)[0]
- class ColumnIO:
- '''
- Class for reading an ASCII file containing multiple columns of data.
- '''
- def __init__(self, filename):
- """
- filename: string, path to ASCII file to read.
- """
- self.filename = filename
- # read the first line to check the data type (int or float) of the data
- f = open(self.filename)
- line = f.readline()
- additional_parameters = {}
- if '.' not in line:
- additional_parameters['dtype'] = np.int32
- self.data = np.loadtxt(self.filename, **additional_parameters)
- if len(self.data.shape) == 1:
- self.data = self.data[:, np.newaxis]
- def get_columns(self, column_ids='all', condition=None,
- condition_column=None, sorting_columns=None):
- """
- column_ids : 'all' or list of int, the ids of columns to
- extract.
- condition : None or function, which is applied to each row to evaluate
- if it should be included in the result.
- Needs to return a bool value.
- condition_column : int, id of the column on which the condition
- function is applied to
- sorting_columns : int or list of int, column ids to sort by.
- List entries have to be ordered by increasing sorting
- priority!
- Returns
- -------
- numpy array containing the requested data.
- """
- if column_ids == [] or column_ids == 'all':
- column_ids = range(self.data.shape[-1])
- if isinstance(column_ids, (int, float)):
- column_ids = [column_ids]
- column_ids = np.array(column_ids)
- if column_ids is not None:
- if max(column_ids) >= len(self.data) - 1:
- raise ValueError('Can not load column ID %i. File contains '
- 'only %i columns' % (max(column_ids),
- len(self.data)))
- if sorting_columns is not None:
- if isinstance(sorting_columns, int):
- sorting_columns = [sorting_columns]
- if (max(sorting_columns) >= self.data.shape[1]):
- raise ValueError('Can not sort by column ID %i. File contains '
- 'only %i columns' % (max(sorting_columns),
- self.data.shape[1]))
- # Starting with whole dataset being selected for return
- selected_data = self.data
- # Apply filter condition to rows
- if condition and (condition_column is None):
- raise ValueError('Filter condition provided, but no '
- 'condition_column ID provided')
- elif (condition_column is not None) and (condition is None):
- warnings.warn('Condition column ID provided, but no condition '
- 'given. No filtering will be performed.')
- elif (condition is not None) and (condition_column is not None):
- condition_function = np.vectorize(condition)
- mask = condition_function(
- selected_data[
- :, condition_column]).astype(bool)
- selected_data = selected_data[mask, :]
- # Apply sorting if requested
- if sorting_columns is not None:
- values_to_sort = selected_data[:, sorting_columns].T
- ordered_ids = np.lexsort(tuple(values_to_sort[i] for i in
- range(len(values_to_sort))))
- selected_data = selected_data[ordered_ids, :]
- # Select only requested columns
- selected_data = selected_data[:, column_ids]
- return selected_data
|