1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 |
- authors:
- -
- firstname: "Stefan"
- lastname: "Appelhoff"
- affiliation: "Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany"
- id: "ORCID:0000-0001-8002-0877"
- -
- firstname: "Ralph"
- lastname: "Hertwig"
- affiliation: "Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany"
- id: "ORCID:0000-0002-9908-9556"
- -
- firstname: "Bernhard"
- lastname: "Spitzer"
- affiliation: "Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany"
- id: "ORCID:0000-0001-9752-932X"
- title: "The mpib_ecomp_sourcedata dataset"
- description: |
- When judging the average value of sample stimuli (e.g., numbers) people tend
- to either over- or underweight extreme sample values, depending on task
- context. In a context of overweighting, recent work has shown that extreme
- sample values were overly represented also in neural signals, in terms of an
- anti-compressed geometry of number samples in multivariate
- electroencephalography (EEG) patterns. Here, we asked whether neural
- representational geometries may also reflect underweighting of extreme values
- (i.e., compression) which has been observed behaviorally in a great variety
- of tasks.
- keywords:
- - cognitive neuroscience
- - decision-making
- - numerical cognition
- - sequential sampling
- - value distortions
- - compression
- - anti-compression
- - EEG
- - electroencephalography
- - eyetracking
- - representational similarity analysis
- - RSA
- - multivariate pattern analysis
- - MVPA
- - computational modeling
- # "reftype": IsSupplementTo, IsDescribedBy, or IsReferencedBy
- # "id": doi:, arxiv:, or pmid:
- # "citation": any string
- references:
- -
- reftype: "IsSupplementTo"
- id: doi:10.1101/2022.03.31.486560
- citation: "Appelhoff, S., Hertwig, R. & Spitzer, B. EEG-representational geometries and psychometric distortions in approximate numerical judgment. (2022) doi:10.1101/2022.03.31.486560"
- -
- reftype: "IsDescribedBy"
- id: doi:10.5281/zenodo.6411313
- citation: "Appelhoff, Stefan. (2022). eComp Experiment Code (2022.1.0). Zenodo. https://doi.org/10.5281/zenodo.6411319"
- -
- reftype: "IsReferencedBy"
- id: doi:10.5281/zenodo.6411287
- citation: "Appelhoff, Stefan. (2022). eComp Analysis Code (1.0.0). Zenodo. https://doi.org/10.5281/zenodo.6411288"
- -
- reftype: "IsReferencedBy"
- citation: "https://gin.g-node.org/sappelhoff/mpib_ecomp_dataset"
- -
- reftype: "IsReferencedBy"
- citation: "https://gin.g-node.org/sappelhoff/mpib_ecomp_derivatives"
- license:
- name: "Open Data Commons Public Domain Dedication and License (PDDL) v1.0"
- url: "https://opendatacommons.org/licenses/pddl/1-0/"
- funding:
- - "Max Planck Institute for Human Development"
- resourcetype: Dataset
- templateversion: 1.2
|