1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744 |
- ## Detecting sequentiality
- ### Initialization
- We load the data and relevant functions:
- ```{r, warning=FALSE, message=FALSE, echo=TRUE}
- # find the path to the root of this project:
- if (!requireNamespace("here")) install.packages("here")
- if ( basename(here::here()) == "highspeed" ) {
- path_root = here::here("highspeed-analysis")
- } else {
- path_root = here::here()
- }
- # source all relevant functions from the setup R script:
- source(file.path(path_root, "code", "highspeed-analysis-setup.R"))
- load(file.path(path_root, "data", "tmp", "dt_periods.Rdata"))
- load(file.path(path_root, "data", "tmp", "dt_odd_seq_sim_diff.Rdata"))
- load(file.path(path_root, "data", "tmp", "dt_odd_seq_sim.Rdata"))
- sub_exclude <- c("sub-24", "sub-31", "sub-37", "sub-40")
- ```
- ### Data preparation
- We create a function to determine early and late zones of forward and backward periods:
- ```{r}
- get_zones = function(trs_in){
- if (length(trs_in) == 3) {
- early = trs_in[c(2)]
- late = trs_in[c(3)]
- } else if (length(trs_in) == 4) {
- early = trs_in[c(2)]
- late = trs_in[c(4)]
- } else if (length(trs_in) == 5) {
- early = trs_in[c(2)]
- late = trs_in[c(4)]
- } else if (length(trs_in) == 6) {
- early = trs_in[c(2, 3)]
- late = trs_in[c(5, 6)]
- } else if (length(trs_in) == 7) {
- early = trs_in[c(2, 3)]
- late = trs_in[c(5, 6)]
- }
- return(list(early = early, late = late))
- }
- ```
- We prepare event and decoding data of sequence trials:
- ```{r}
- # create a subset of the events data table only including sequence task events:
- dt_events_seq = dt_events %>%
- filter(condition == "sequence" & trial_type == "stimulus")
- # create a subset of the decoding data only including the sequence task data:
- dt_pred_seq = dt_pred %>%
- filter(condition == "sequence" & class != "other" & mask == "cv" & stim != "cue") %>%
- setDT(.) %>%
- # add serial position, change trial and target cue to the sequence data table:
- .[, c("position", "change", "trial_cue", "accuracy", "trial_cue_position") := get_pos(
- .SD, dt_events_seq), by = .(id, trial, class), .SDcols = c("id", "trial", "class")] %>%
- # add variable to later pool trial_cue_position 1 to 3:
- mutate(cue_pos_label = ifelse(trial_cue_position <= 3, "1-3", trial_cue_position)) %>%
- setDT(.)
- ```
- We define the forward and backward periods depending on the response functions:
- ```{r}
- # define forward and backward period depending on response functions:
- for (cspeed in unique(dt_pred_seq$tITI)) {
- for (period in c("forward", "backward")) {
- # get trs in the relevant forward or backward period based on response functions:
- trs_period = dt_periods[[which(dt_periods$speed == cspeed), period]]
- # set the period variable in the sequence data table accordingly:
- dt_pred_seq$period[
- dt_pred_seq$tITI %in% cspeed & dt_pred_seq$seq_tr %in% trs_period] = period
- for (zone in c("early", "late")) {
- trs_zone = get_zones(trs_period)[[zone]]
- dt_pred_seq$zone[
- dt_pred_seq$tITI %in% cspeed & dt_pred_seq$seq_tr %in% trs_zone] = zone
- }
- }
- }
- # assign the excluded label to all trs that are not in the forward or backward period:
- dt_pred_seq$period[is.na(dt_pred_seq$period)] = "excluded"
- ```
- We exclude all participants with below-chance performance from the analyses:
- ```{r}
- # exclude participants with below-chance performance:
- dt_pred_seq = dt_pred_seq %>%
- filter(!(id %in% sub_exclude)) %>%
- verify(length(unique(id)) == 36) %>%
- setDT(.)
- ```
- We calculate the number of correct and incorrect sequence trials:
- ```{r}
- dt_num_correct <- dt_pred_seq %>%
- # calculate the number of trials for each accuracy level for each participant:
- .[, by = .(classification, id, accuracy), .(
- num_trials = length(unique(trial))
- )] %>%
- # select only the one-versus-rest decoding approach:
- filter(classification == "ovr") %>%
- setDT(.) %>%
- # verify that the sum of all trials equals 75 for all participants:
- verify(.[, by = .(classification, id), .(
- sum_trials = sum(num_trials))]$sum_trials == 75) %>%
- # complete missing values for number of trials for each accuracy level:
- complete(classification, id, accuracy, fill = list(num_trials = 0)) %>%
- setDT(.) %>%
- # verify that there are two accuracy levels per participant:
- verify(.[, by = .(classification, id), .(
- num_acc_levels = .N)]$num_acc_levels == 2) %>%
- # calculate the mean number of (in)accurate trials per participant:
- .[, by = .(classification, accuracy), .(
- num_subs = .N,
- mean_num_trials = mean(num_trials),
- percent_trials = mean(num_trials)/75
- )]
- # print formatted table:
- rmarkdown::paged_table(dt_num_correct)
- ```
- ### Probability time courses
- We calculate the decoding probability time-courses:
- ```{r}
- # select the variable of interest:
- variable = "probability_norm"
- dt_pred_seq_prob = dt_pred_seq %>%
- # average across trials separately for each position, TR, and participant
- .[, by = .(id, classification, tITI, period, seq_tr, position), .(
- num_trials = .N,
- mean_prob = mean(get(variable)) * 100
- )] %>%
- # check if the averaged data consists of 15 sequence trial per participant:
- verify(all(num_trials == 15)) %>%
- # average across participants and calculate standard error of the mean:
- .[, by = .(classification, tITI, period, seq_tr, position), .(
- num_subs = .N,
- mean_prob = mean(mean_prob),
- sem_upper = mean(mean_prob) + (sd(mean_prob)/sqrt(.N)),
- sem_lower = mean(mean_prob) - (sd(mean_prob)/sqrt(.N))
- )] %>%
- # check if averaged data is consistent with expected number of participants:
- verify(all(num_subs == 36)) %>%
- # create a new variable that expresses TRs as time from stimulus onset:
- mutate(time = (seq_tr - 1) * 1.25) %>%
- setDT(.)
- ```
- We plot the decoding probability time-courses:
- ```{r}
- plot_raw_probas = function(dt1){
- dt_reduced = dt1 %>%
- setDT(.) %>%
- .[, by = .(classification, tITI, period), .(
- xmin = min(seq_tr) - 0.5,
- xmax = max(seq_tr) + 0.5
- )] %>%
- filter(period != "excluded") %>%
- mutate(fill = ifelse(period == "forward", "dodgerblue", "red"))
- plot = ggplot(data = dt1, mapping = aes(
- x = as.factor(seq_tr), y = as.numeric(mean_prob),
- group = as.factor(position)), environment = environment()) +
- geom_rect(data = dt_reduced, aes(
- xmin = xmin, xmax = xmax, ymin = 0, ymax = 40),
- alpha = 0.05, inherit.aes = FALSE, show.legend = FALSE, fill = dt_reduced$fill) +
- facet_wrap(facets = ~ as.factor(tITI), labeller = get_labeller(array = dt1$tITI), nrow = 1) +
- geom_ribbon(aes(ymin = sem_lower, ymax = sem_upper,
- fill = as.factor(position)), alpha = 0.5) +
- geom_line(mapping = aes(color = as.factor(position))) +
- theme(legend.position = "top", legend.direction = "horizontal",
- legend.justification = "center", legend.margin = margin(0, 0, 0, 0),
- legend.box.margin = margin(t = 0, r = 0, b = -5, l = 0)) +
- xlab("Time from sequence onset (TRs; 1 TR = 1.25 s)") +
- ylab("Probability (%)") +
- scale_color_manual(values = color_events, name = "Serial event") +
- scale_fill_manual(values = color_events, name = "Serial event") +
- scale_x_discrete(labels = label_fill(seq(1, 13, 1), mod = 4), breaks = seq(1, 13, 1)) +
- coord_capped_cart(left = "both", bottom = "both", expand = TRUE, ylim = c(0, 25)) +
- theme(panel.border = element_blank(), axis.line = element_line()) +
- theme(axis.line = element_line(colour = "black"),
- panel.grid.major = element_blank(),
- panel.grid.minor = element_blank(),
- panel.border = element_blank(),
- panel.background = element_blank()) +
- theme(strip.text.x = element_text(margin = margin(b = 2, t = 2))) +
- guides(color = guide_legend(nrow = 1))
- return(plot)
- }
- fig_seq_probas = plot_raw_probas(dt1 = subset(dt_pred_seq_prob, classification == "ovr"))
- fig_seq_probas
- ```
- We plot the decoding probabilities as a heat-map:
- ```{r, echo=FALSE}
- plot_data = subset(dt_pred_seq_prob, classification == "ovr" & !(tITI %in% c(2.048)))
- ggplot(plot_data, aes(x = as.factor(position), y = as.factor(seq_tr), fill = as.numeric(mean_prob))) +
- facet_wrap(facets = ~ as.factor(tITI),
- labeller = get_labeller(array = plot_data$tITI), nrow = 1) +
- geom_tile() +
- xlab("Serial event position") + ylab("Time from sequence onset (TRs)") +
- scale_fill_viridis(option = "inferno", name = "Probability (%)") +
- scale_y_discrete(labels = label_fill(seq(1, 13, 1), mod = 4), breaks = seq(1, 13, 1)) +
- lemon::coord_capped_cart(left = "both", bottom = "both", expand = TRUE) +
- theme(panel.border = element_blank(), axis.line = element_line()) +
- theme(strip.text.x = element_text(margin = margin(b = 2, t = 2))) +
- theme(legend.position = "top", legend.direction = "horizontal",
- legend.justification = "center", legend.margin = margin(0, 0, 0, 0),
- legend.box.margin = margin(t = 0, r = 0, b = -5, l = 0)) +
- guides(color = guide_legend(nrow = 1)) +
- theme(panel.border = element_blank(), axis.line = element_line())
- ```
- ### Influence of target cue position
- We analyze the probabilities by target cue position:
- ```{r}
- # select the variable of interest:
- variable = "probability_norm"
- dt_pred_seq_prob_cue = dt_pred_seq %>%
- # average across trials separately for each position, TR, and participant
- .[, by = .(id, classification, tITI, period, seq_tr, position, cue_pos_label), .(
- num_trials = .N,
- mean_prob = mean(get(variable)) * 100
- )] %>%
- # average across participants and calculate standard error of the mean:
- .[, by = .(classification, tITI, period, seq_tr, position,cue_pos_label), .(
- num_subs = .N,
- mean_num_trials = mean(num_trials),
- sd_num_trials = sd(num_trials),
- mean_prob = mean(mean_prob),
- sem_upper = mean(mean_prob) + (sd(mean_prob)/sqrt(.N)),
- sem_lower = mean(mean_prob) - (sd(mean_prob)/sqrt(.N))
- )] %>%
- # check if averaged data is consistent with expected number of participants:
- verify(all(num_subs == 36)) %>%
- # check that the SD of the number of trials per cue position is 0
- # which means that each participant has the same number of trials per cue position:
- verify(all(sd_num_trials == 0)) %>%
- verify(all(mean_num_trials == 5)) %>%
- # create a new variable that expresses TRs as time from stimulus onset:
- mutate(time = (seq_tr - 1) * 1.25) %>%
- transform(tITI = paste0(as.numeric(tITI) * 1000, " ms")) %>%
- transform(tITI = factor(tITI, levels = c(
- "32 ms", "64 ms", "128 ms", "512 ms", "2048 ms"))) %>%
- setDT(.)
- ```
- We plot the probabilities by target cue position:
- ```{r}
- plot_raw_probas_cue = function(dt1){
- plot = ggplot(data = dt1, mapping = aes(
- x = as.factor(seq_tr), y = as.numeric(mean_prob),
- group = as.factor(position))) +
- facet_grid(rows = vars(cue_pos_label), cols = vars(tITI)) +
- geom_ribbon(aes(ymin = sem_lower, ymax = sem_upper,
- fill = as.factor(position)), alpha = 0.5) +
- geom_line(mapping = aes(color = as.factor(position))) +
- theme(legend.position = "top", legend.direction = "horizontal",
- legend.justification = "center", legend.margin = margin(0, 0, 0, 0),
- legend.box.margin = margin(t = 0, r = 0, b = -5, l = 0)) +
- xlab("Time from sequence onset (TRs)") + ylab("Probability (%)") +
- scale_color_manual(values = color_events, name = "Serial event") +
- scale_fill_manual(values = color_events, name = "Serial event") +
- scale_x_discrete(labels = label_fill(seq(1, 13, 1), mod = 4), breaks = seq(1, 13, 1)) +
- coord_capped_cart(left = "both", bottom = "both", expand = TRUE, ylim = c(0, 25)) +
- theme(panel.border = element_blank(), axis.line = element_line()) +
- theme(axis.line = element_line(colour = "black"),
- panel.grid.major = element_blank(),
- panel.grid.minor = element_blank(),
- panel.border = element_blank(),
- panel.background = element_blank())
- theme(strip.text.x = element_text(margin = margin(b = 2, t = 2))) +
- guides(color = guide_legend(nrow = 1))
- return(plot)
- }
- fig_seq_probas_cue = plot_raw_probas_cue(dt1 = subset(dt_pred_seq_prob_cue, classification == "ovr"))
- fig_seq_probas_cue
- ```
- ### Regression slopes
- ```{r, echo=FALSE, eval=FALSE}
- # select positions within every TR that should be selected:
- pos_sel = seq(1, 5)
- set.seed(4)
- probability = runif(5)
- # earlier events have higher probability:
- probability = c(0.6, 0.9, 0.1, 0.5, 0.2)
- position = seq(1, 5, 1)
- position = c(1, 3, 2, 4, 5)
- ordered_positions = probability[order(probability, decreasing = TRUE)]
- diff(ordered_positions)
- # order the probabilities in decreasing order (first = highest):
- prob_order_idx = order(probability, decreasing = TRUE)
- # order the positions by probability:
- pos_order = position[prob_order_idx]
- # order the probabilities:
- prob_order = probability[prob_order_idx]
- # select positions
- pos_order_sel = pos_order[pos_sel]
- prob_order_sel = prob_order[pos_sel]
- ```
- We compare the mean indices of association (regression slope, correlation,
- mean serial position) for every TR:
- ```{r}
- # select positions within every TR that should be selected:
- pos_sel = seq(1, 5)
- # define relevant variables:
- variable = "probability_norm"
- cor_method = "kendall"
- # calculate indices of association at every TR:
- dt_pred_seq_cor = dt_pred_seq %>%
- # here, we can filter for specific sequence events:
- filter(position %in% seq(1, 5, by = 1)) %>%
- setDT(.) %>%
- # order positions by decreasing probability and calculate step size
- # calculate correlation and slope between position and probability
- # verify that there are five probabilities (one for each class) per volume
- # verify that all correlations range between -1 and 1
- .[, by = .(id, classification, tITI, period, trial_tITI, seq_tr), {
- # order the probabilities in decreasing order (first = highest):
- prob_order_idx = order(get(variable), decreasing = TRUE)
- # order the positions by probability:
- pos_order = position[prob_order_idx]
- # order the probabilities:
- prob_order = get(variable)[prob_order_idx]
- # select positions
- pos_order_sel = pos_order[pos_sel]
- prob_order_sel = prob_order[pos_sel]
- list(
- # calculate the number of events:
- num_events = length(pos_order_sel[!is.na(pos_order_sel)]),
- # calculate the mean step size between probability-ordered events:
- mean_step = mean(diff(pos_order_sel)),
- # calculate the mean correlation between positions and their probabilities:
- cor = cor.test(pos_order_sel, prob_order_sel, method = cor_method)$estimate,
- # calculate the slope of a linear regression between position and probabilities:
- slope = coef(lm(prob_order_sel ~ pos_order_sel))[2]
- # verify that the number of events matches selection and correlations -1 < r < 1
- )}] %>% verify(all(num_events == length(pos_sel))) %>% #verify(between(cor, -1, 1)) %>%
- # average across trials for each participant (flip values by multiplying with -1):
- # verify that the number of trials per participant is correct:
- .[, by = .(id, classification, tITI, period, seq_tr), .(
- num_trials = .N,
- mean_cor = mean(cor) * (-1),
- mean_step = mean(mean_step),
- mean_slope = mean(slope) * (-1)
- )] %>%
- verify(all(num_trials == 15)) %>%
- # shorten the period name:
- mutate(period_short = ifelse(period == "forward", "fwd", period)) %>%
- transform(period_short = ifelse(period == "backward", "bwd", period_short)) %>%
- mutate(color = ifelse(period_short == "fwd", "dodgerblue", "red")) %>% setDT(.)
- ```
- ```{r, echo=FALSE, eval=FALSE, include=FALSE}
- cfg = list(variable = "mean_cor", threshold = 2.021, baseline = 0,
- grouping = c("classification", "tITI"), n_perms = 10000, n_trs = 13)
- dt_pred_seq_cor_cluster = cluster_permutation(dt_pred_seq_cor, cfg)
- ```
- We compare the mean indices of association (regression slope, correlation,
- mean serial position) against zero (the expectation of no association)
- for every TR:
- ```{r}
- seq_test_time <- function(data, variable){
- data_out = data %>%
- # average across participants for every speed at every TR:
- # check if the number of participants matches:
- .[, by = .(classification, tITI, period, seq_tr), {
- # perform a two-sided one-sample t-test against zero (baseline):
- ttest_results = t.test(get(variable), alternative = "two.sided", mu = 0);
- list(
- num_subs = .N,
- mean_variable = mean(get(variable)),
- pvalue = ttest_results$p.value,
- tvalue = ttest_results$statistic,
- df = ttest_results$parameter,
- cohens_d = round(abs(mean(mean(get(variable)) - 0)/sd(get(variable))), 2),
- sem_upper = mean(get(variable)) + (sd(get(variable))/sqrt(.N)),
- sem_lower = mean(get(variable)) - (sd(get(variable))/sqrt(.N))
- )}] %>% verify(all(num_subs == 36)) %>% verify(all((num_subs - df) == 1)) %>%
- # adjust p-values for multiple comparisons (filter for forward and backward period):
- # check if the number of comparisons matches expectations:
- .[period %in% c("forward", "backward"), by = .(classification), ":=" (
- num_comp = .N,
- pvalue_adjust = p.adjust(pvalue, method = "fdr", n = .N)
- )] %>% verify(all(num_comp == 39, na.rm = TRUE)) %>%
- # round the original p-values according to the apa standard:
- mutate(pvalue_round = round_pvalues(pvalue)) %>%
- # round the adjusted p-value:
- mutate(pvalue_adjust_round = round_pvalues(pvalue_adjust)) %>%
- # sort data table:
- setorder(., classification, period, tITI, seq_tr) %>%
- # create new variable indicating significance below 0.05
- mutate(significance = ifelse(pvalue_adjust < 0.05, "*", ""))
- return(data_out)
- }
- ```
- ```{r}
- # filter for significant p-values to make reporting easier:
- rmarkdown::paged_table(seq_test_time(data = dt_pred_seq_cor, variable = "mean_cor") %>%
- filter(pvalue_adjust < 0.05, classification == "ovr"))
- rmarkdown::paged_table(seq_test_time(data = dt_pred_seq_cor, variable = "mean_step") %>%
- filter(pvalue_adjust < 0.05, classification == "ovr"))
- rmarkdown::paged_table(seq_test_time(data = dt_pred_seq_cor, variable = "mean_slope") %>%
- filter(pvalue_adjust < 0.05, classification == "ovr"))
- ```
- ```{r}
- plot_seq_cor_time = function(dt, variable){
- # select the variable of interest, determine y-axis label and adjust axis:
- if (variable == "mean_slope") {
- ylabel = "Regression slope"
- adjust_axis = 0.1
- } else if (variable == "mean_cor") {
- ylabel = expression("Correlation ("*tau*")")
- adjust_axis = 1
- } else if (variable == "mean_step") {
- ylabel = "Mean step size"
- adjust_axis = 1
- }
- plot = ggplot(data = dt, mapping = aes(
- x = seq_tr, y = mean_variable, group = as.factor(as.numeric(tITI) * 1000),
- fill = as.factor(as.numeric(tITI) * 1000))) +
- geom_hline(aes(yintercept = 0), linetype = "solid", color = "gray") +
- geom_ribbon(aes(ymin = sem_lower, ymax = sem_upper), alpha = 0.5, color = NA) +
- geom_line(mapping = aes(color = as.factor(as.numeric(tITI) * 1000))) +
- xlab("Time from sequence onset (TRs)") + ylab(ylabel) +
- scale_colour_viridis(name = "Speed (ms)", discrete = TRUE, option = "cividis") +
- scale_fill_viridis(name = "Speed (ms)", discrete = TRUE, option = "cividis") +
- scale_x_continuous(labels = label_fill(seq(1, 13, 1), mod = 4), breaks = seq(1, 13, 1)) +
- guides(color = guide_legend(nrow = 1)) +
- annotate("text", x = 1, y = -0.4 * adjust_axis, label = "1 TR = 1.25 s",
- hjust = 0, size = rel(2)) +
- coord_capped_cart(left = "both", bottom = "both", expand = TRUE,
- ylim = c(-0.4 * adjust_axis, 0.4 * adjust_axis)) +
- theme(panel.border = element_blank(), axis.line = element_line()) +
- theme(axis.line = element_line(colour = "black"),
- panel.grid.major = element_blank(),
- panel.grid.minor = element_blank(),
- panel.border = element_blank(),
- panel.background = element_blank()) +
- theme(legend.position = "top", legend.direction = "horizontal",
- legend.justification = "center", legend.margin = margin(t = 0, r = 0, b = 0, l = 0),
- legend.box.margin = margin(t = 0, r = 0, b = 0, l = 0)) +
- geom_segment(aes(x = 0.05, xend = 0.05, y = 0.01 * adjust_axis, yend = 0.4 * adjust_axis),
- arrow = arrow(length = unit(5, "pt")), color = "darkgray") +
- geom_segment(aes(x = 0.05, xend = 0.05, y = -0.01 * adjust_axis, yend = -0.4 * adjust_axis),
- arrow = arrow(length = unit(5, "pt")), color = "darkgray") +
- annotate(geom = "text", x = 0.4, y = 0.2 * adjust_axis, label = "Forward order",
- color = "darkgray", angle = 90, size = 3) +
- annotate(geom = "text", x = 0.4, y = -0.2 * adjust_axis, label = "Backward order",
- color = "darkgray", angle = 90, size = 3)
- return(plot)
- }
- ```
- ```{r}
- fig_seq_cor_time = plot_seq_cor_time(dt = subset(
- seq_test_time(data = dt_pred_seq_cor, variable = "mean_cor"),
- classification == "ovr"), variable = "mean_cor")
- fig_seq_slope_time = plot_seq_cor_time(dt = subset(
- seq_test_time(data = dt_pred_seq_cor, variable = "mean_slope"),
- classification == "ovr"), variable = "mean_slope")
- fig_seq_step_time = plot_seq_cor_time(dt = subset(
- seq_test_time(data = dt_pred_seq_cor, variable = "mean_step"),
- classification == "ovr"), variable = "mean_step")
- fig_seq_cor_time; fig_seq_slope_time; fig_seq_step_time
- ```
- ```{r, eval=FALSE, echo=FALSE, include=FALSE}
- ggsave(filename = "highsspeed_plot_decoding_sequence_timecourses_slopes.pdf",
- plot = fig_seq_slope_time, device = cairo_pdf, path = path_figures, scale = 1,
- dpi = "retina", width = 5.5, height = 3)
- ```
- We test depending on the target cue position:
- ```{r}
- # select positions within every TR that should be selected:
- pos_sel = seq(1, 5)
- # define relevant variables:
- variable = "probability_norm"
- cor_method = "kendall"
- # calculate indices of association at every TR:
- dt_pred_seq_cor_cue = dt_pred_seq %>%
- # here, we can filter for specific sequence events:
- filter(position %in% seq(1, 5, by = 1)) %>% setDT(.) %>%
- # order positions by decreasing probability and calculate step size
- # calculate correlation and slope between position and probability
- # verify that there are five probabilities (one for each class) per volume
- # verify that all correlations range between -1 and 1
- .[, by = .(id, classification, tITI, period, trial_tITI, seq_tr, cue_pos_label), {
- # order the probabilities in decreasing order (first = highest):
- prob_order_idx = order(get(variable), decreasing = TRUE)
- # order the positions by probability:
- pos_order = position[prob_order_idx]
- # order the probabilities:
- prob_order = get(variable)[prob_order_idx]
- # select positions
- pos_order_sel = pos_order[pos_sel]
- prob_order_sel = prob_order[pos_sel]
- list(
- # calculate the number of events:
- num_events = length(pos_order_sel[!is.na(pos_order_sel)]),
- # calculate the mean step size between probability-ordered events:
- mean_step = mean(diff(pos_order_sel)),
- # calculate the mean correlation between positions and their probabilities:
- cor = cor.test(pos_order_sel, prob_order_sel, method = cor_method)$estimate,
- # calculate the slope of a linear regression between position and probabilities:
- slope = coef(lm(prob_order_sel ~ pos_order_sel))[2]
- # verify that the number of events matches selection and correlations -1 < r < 1
- )}] %>% verify(all(num_events == length(pos_sel))) %>% #verify(between(cor, -1, 1)) %>%
- # average across trials for each participant (flip values by multiplying with -1):
- # verify that the number of trials per participant is correct:
- .[, by = .(id, classification, tITI, period, seq_tr, cue_pos_label), .(
- num_trials = .N,
- mean_cor = mean(cor) * (-1),
- mean_step = mean(mean_step),
- mean_slope = mean(slope) * (-1)
- )] %>%
- verify(all(num_trials == 5)) %>%
- # shorten the period name:
- mutate(period_short = ifelse(period == "forward", "fwd", period)) %>%
- transform(period_short = ifelse(period == "backward", "bwd", period_short)) %>%
- mutate(color = ifelse(period_short == "fwd", "dodgerblue", "red")) %>% setDT(.)
- ```
- ```{r}
- seq_test_time_cue <- function(data, variable){
- data_out = data %>%
- # average across participants for every speed at every TR:
- # check if the number of participants matches:
- .[, by = .(classification, tITI, period, seq_tr, cue_pos_label), {
- # perform a two-sided one-sample t-test against zero (baseline):
- ttest_results = t.test(get(variable), alternative = "two.sided", mu = 0);
- list(
- num_subs = .N,
- mean_variable = mean(get(variable)),
- pvalue = ttest_results$p.value,
- tvalue = ttest_results$statistic,
- df = ttest_results$parameter,
- cohens_d = round(abs(mean(mean(get(variable)) - 0)/sd(get(variable))), 2),
- sem_upper = mean(get(variable)) + (sd(get(variable))/sqrt(.N)),
- sem_lower = mean(get(variable)) - (sd(get(variable))/sqrt(.N))
- )}] %>% verify(all(num_subs == 36)) %>% verify(all((num_subs - df) == 1)) %>%
- # adjust p-values for multiple comparisons (filter for forward and backward period):
- # check if the number of comparisons matches expectations:
- .[period %in% c("forward", "backward"), by = .(classification), ":=" (
- num_comp = .N,
- pvalue_adjust = p.adjust(pvalue, method = "fdr", n = .N)
- )] %>% #verify(all(num_comp == 39, na.rm = TRUE)) %>%
- # round the original p-values according to the apa standard:
- mutate(pvalue_round = round_pvalues(pvalue)) %>%
- # round the adjusted p-value:
- mutate(pvalue_adjust_round = round_pvalues(pvalue_adjust)) %>%
- # sort data table:
- setorder(., classification, period, tITI, seq_tr) %>%
- # create new variable indicating significance below 0.05
- mutate(significance = ifelse(pvalue_adjust < 0.05, "*", ""))
- return(data_out)
- }
- ```
- ```{r, echo=FALSE}
- plot_seq_cor_time_cue = function(dt, variable){
- # select the variable of interest, determine y-axis label and adjust axis:
- if (variable == "mean_slope") {
- ylabel = "Regression slope"
- adjust_axis = 0.1
- } else if (variable == "mean_cor") {
- ylabel = expression("Correlation ("*tau*")")
- adjust_axis = 1
- } else if (variable == "mean_step") {
- ylabel = "Mean step size"
- adjust_axis = 1
- }
- plot = ggplot(data = dt, mapping = aes(
- x = seq_tr, y = mean_variable, group = as.factor(as.numeric(tITI) * 1000),
- fill = as.factor(as.numeric(tITI) * 1000))) +
- geom_hline(aes(yintercept = 0), linetype = "solid", color = "gray") +
- geom_ribbon(aes(ymin = sem_lower, ymax = sem_upper), alpha = 0.5, color = NA) +
- geom_line(mapping = aes(color = as.factor(as.numeric(tITI) * 1000))) +
- facet_wrap(~ cue_pos_label) +
- xlab("Time from sequence onset (TRs)") + ylab(ylabel) +
- scale_colour_viridis(name = "Speed (ms)", discrete = TRUE, option = "cividis") +
- scale_fill_viridis(name = "Speed (ms)", discrete = TRUE, option = "cividis") +
- scale_x_continuous(labels = label_fill(seq(1, 13, 1), mod = 4), breaks = seq(1, 13, 1)) +
- guides(color = guide_legend(nrow = 1)) +
- annotate("text", x = 1, y = -0.4 * adjust_axis, label = "1 TR = 1.25 s",
- hjust = 0, size = rel(2)) +
- coord_capped_cart(left = "both", bottom = "both", expand = TRUE,
- ylim = c(-0.4 * adjust_axis, 0.4 * adjust_axis)) +
- theme(panel.border = element_blank(), axis.line = element_line()) +
- theme(axis.line = element_line(colour = "black"),
- panel.grid.major = element_blank(),
- panel.grid.minor = element_blank(),
- panel.border = element_blank(),
- panel.background = element_blank()) +
- theme(legend.position = "top", legend.direction = "horizontal",
- legend.justification = "center", legend.margin = margin(t = 0, r = 0, b = 0, l = 0),
- legend.box.margin = margin(t = 0, r = 0, b = 0, l = 0)) +
- geom_segment(aes(x = 0.05, xend = 0.05, y = 0.01 * adjust_axis, yend = 0.4 * adjust_axis),
- arrow = arrow(length = unit(5, "pt")), color = "darkgray") +
- geom_segment(aes(x = 0.05, xend = 0.05, y = -0.01 * adjust_axis, yend = -0.4 * adjust_axis),
- arrow = arrow(length = unit(5, "pt")), color = "darkgray") +
- annotate(geom = "text", x = 0.6, y = 0.2 * adjust_axis, label = "Forward",
- color = "darkgray", angle = 90, size = 2) +
- annotate(geom = "text", x = 0.6, y = -0.2 * adjust_axis, label = "Backward",
- color = "darkgray", angle = 90, size = 2)
- return(plot)
- }
- ```
- ```{r}
- fig_seq_slope_time_cue = plot_seq_cor_time_cue(dt = subset(
- seq_test_time_cue(data = dt_pred_seq_cor_cue, variable = "mean_slope"),
- classification == "ovr"), variable = "mean_slope")
- fig_seq_slope_time_cue
- ```
- ### Correlation of regression time courses
- #### Correlation between participants
- We calculate the correlations between the predicted and the observed time courses *between* participants for each of the five speed conditions (inter-stimulus intervals):
- ```{r, echo=TRUE}
- # observed time courses:
- dt_data_between = seq_test_time(
- data = dt_pred_seq_cor, variable = "mean_slope") %>%
- filter(classification == "ovr") %>%
- transform(tITI = as.factor(as.numeric(tITI) * 1000)) %>%
- setorder(classification, tITI, seq_tr)
- # predicted time courses:
- dt_model_between = dt_odd_seq_sim_diff %>%
- transform(time = time + 1) %>%
- filter(time %in% seq(1, 13, 1)) %>%
- setorder(classification, speed, time)
- # combine in one data table:
- dt_between = data.table(
- speed = dt_data_between$tITI,
- tr = dt_data_between$seq_tr,
- empirical = dt_data_between$mean_variable,
- prediction = dt_model_between$mean_difference)
- # calculate the correlation between
- dt_between_results = dt_between %>%
- .[, by = .(speed), {
- cor = cor.test(empirical, prediction, method = "pearson")
- list(
- num_trs = .N,
- pvalue = cor$p.value,
- pvalue_round = round_pvalues(cor$p.value),
- correlation = round(cor$estimate, 2)
- )
- }] %>%
- verify(num_trs == 13) %>%
- select(-num_trs)
- # show the table with the correlations:
- rmarkdown::paged_table(dt_between_results)
- ```
- We plot the correlations between the regression slope time courses predicted by the model vs. the observed data *between* participants:
- ```{r, echo=TRUE, warning=FALSE, message=FALSE}
- fig_seq_cor_between = ggplot(
- data = dt_between,
- mapping = aes(
- x = prediction, y = empirical, color = speed, fill = speed)) +
- geom_point(alpha = 1) +
- geom_smooth(method = lm, se = FALSE, alpha = 0.5, fullrange = TRUE) +
- scale_colour_viridis(
- name = "Speed (ms)", discrete = TRUE,
- option = "cividis", guide = FALSE) +
- scale_fill_viridis(
- name = "Speed (ms)", discrete = TRUE,
- option = "cividis", guide = FALSE) +
- xlab("Predicted slope") +
- ylab("Observed slope") +
- # guides(color = guide_legend(nrow = 1)) +
- coord_capped_cart(
- left = "both", bottom = "both", expand = TRUE,
- xlim = c(-0.4, 0.4), ylim = c(-0.05, 0.05)) +
- theme(legend.position = "top",
- legend.direction = "horizontal",
- legend.justification = "center",
- legend.margin = margin(t = 0, r = 0, b = 0, l = 0),
- legend.box.margin = margin(t = 0, r = 0, b = 0, l = 0)) +
- theme(axis.line = element_line(colour = "black"),
- panel.grid.major = element_blank(),
- panel.grid.minor = element_blank(),
- panel.border = element_blank(),
- panel.background = element_blank())
- # show the plot:
- fig_seq_cor_between
- ```
- #### Correlation within participants
- We calculate the correlations between the predicted and the observed time courses *within* participants for each of the five speed conditions (inter-stimulus intervals):
- ```{r}
- # observed regression slope time courses
- dt_data_within = dt_pred_seq_cor %>%
- filter(classification == "ovr") %>%
- transform(tITI = as.factor(as.numeric(tITI) * 1000)) %>%
- setorder(classification, id, tITI, seq_tr)
- # predicted regression slope time courses
- dt_model_within = dt_odd_seq_sim %>%
- transform(time = time + 1) %>%
- filter(time %in% seq(1, 13, 1)) %>%
- setorder(classification, id, speed, time)
- # combine in one data table:
- dt_within = data.table(
- id = dt_data_within$id,
- speed = dt_data_within$tITI,
- time = dt_data_within$seq_tr,
- empirical = dt_data_within$mean_slope,
- prediction = dt_model_within$probability)
- # run correlations:
- dt_within_cor = dt_within %>%
- .[, by = .(id, speed), {
- cor = cor.test(empirical, prediction, method = "pearson")
- list(
- num_trs = .N,
- pvalue = cor$p.value,
- estimate = as.numeric(cor$estimate)
- )}] %>%
- verify(num_trs == 13)
- # run t-tests over correlation coefficients for each speed level:
- dt_within_cor_results = setDT(dt_within_cor) %>%
- .[, by = .(speed), {
- ttest_results = t.test(
- estimate, mu = 0, alternative = "two.sided", paired = FALSE)
- list(
- num_subs = .N,
- mean_estimate = round(mean(estimate), 2),
- pvalue = ttest_results$p.value,
- tvalue = round(ttest_results$statistic, 2),
- df = ttest_results$parameter,
- cohens_d = round((mean(estimate) - 0)/sd(estimate), 2)
- )}] %>%
- verify(num_subs == 36) %>%
- verify((num_subs - df) == 1) %>%
- # adjust p-values for multiple comparisons:
- # check if the number of comparisons matches expectations:
- .[, ":=" (
- num_comp = .N,
- pvalue_adjust = p.adjust(pvalue, method = "fdr", n = .N)
- )] %>%
- # round the original p-values according to the apa standard:
- mutate(pvalue_round = round_pvalues(pvalue)) %>%
- # round the adjusted p-value:
- mutate(pvalue_adjust_round = round_pvalues(pvalue_adjust)) %>%
- # create new variable indicating significance below 0.05
- mutate(significance = ifelse(pvalue_adjust < 0.05, "*", ""))
- # show the table with the t-test results:
- rmarkdown::paged_table(dt_within_cor_results)
- ```
- We plot the correlations between the predicted and the observed time courses *within* participants for each of the five speed conditions (inter-stimulus intervals):
- ```{r, echo=TRUE}
- fig_seq_cor_within = ggplot(
- data = dt_within_cor,
- mapping = aes(
- x = speed, y = estimate, color = speed, fill = speed, group = speed)) +
- stat_summary(geom = "bar", fun = "mean") +
- geom_dotplot(binaxis = "y", stackdir = "center", stackratio = 0.5,
- color = "white", alpha = 0.5,
- inherit.aes = TRUE, binwidth = 0.05) +
- stat_summary(geom = "errorbar", fun.data = "mean_se", width = 0, color = "black") +
- scale_colour_viridis(
- name = "Speed (ms)", discrete = TRUE, option = "cividis", guide = FALSE) +
- scale_fill_viridis(
- name = "Speed (ms)", discrete = TRUE, option = "cividis", guide = FALSE) +
- xlab("Speed (in ms)") +
- ylab("Correlation (r)") +
- #guides(color = guide_legend(nrow = 1)) +
- coord_capped_cart(left = "both", bottom = "both", expand = TRUE) +
- theme(legend.position = "top", legend.direction = "horizontal",
- legend.justification = "center", legend.margin = margin(t = 0, r = 0, b = 0, l = 0),
- legend.box.margin = margin(t = 0, r = 0, b = 0, l = 0)) +
- theme(axis.ticks.x = element_line(colour = "white"),
- axis.line.x = element_line(colour = "white")) +
- theme(axis.title.x = element_blank(), axis.text.x = element_blank()) +
- theme(axis.line = element_line(colour = "black"),
- panel.grid.major = element_blank(),
- panel.grid.minor = element_blank(),
- panel.border = element_blank(),
- panel.background = element_blank())
- # show figure:
- fig_seq_cor_within
- ```
- Calculate the average correlation or average regression slope
- for each time period (forward versus backward) for all five speed conditions:
- ```{r, echo=TRUE}
- seq_test_period <- function(data, variable){
- data_out = data %>%
- # filter out the excluded time period (select only forward and backward period):
- filter(period != "excluded") %>%
- setDT(.) %>%
- # average for each time period and speed condition for every participant:
- .[, by = .(classification, id, tITI, period), .(
- mean_variable = mean(get(variable)))] %>%
- # average across participants for every speed at every TR:
- # check if the number of participants matches:
- .[, by = .(classification, tITI, period), {
- # perform a two-sided one-sample t-test against zero (baseline):
- ttest_results = t.test(mean_variable, alternative = "two.sided", mu = 0);
- list(
- num_subs = .N,
- mean_variable = mean(mean_variable),
- pvalue = ttest_results$p.value,
- tvalue = round(abs(ttest_results$statistic), 2),
- df = ttest_results$parameter,
- cohens_d = abs(round((mean(mean_variable) - 0) / sd(mean_variable), 2)),
- sem_upper = mean(mean_variable) + (sd(mean_variable)/sqrt(.N)),
- sem_lower = mean(mean_variable) - (sd(mean_variable)/sqrt(.N))
- )
- }] %>%
- verify(all(num_subs == 36)) %>%
- verify(all((num_subs - df) == 1)) %>%
- # adjust p-values for multiple comparisons:
- # check if the number of comparisons matches expectations:
- .[period %in% c("forward", "backward"), by = .(classification), ":=" (
- num_comp = .N,
- pvalue_adjust = p.adjust(pvalue, method = "fdr", n = .N)
- )] %>%
- verify(num_comp == 10) %>%
- # add variable that indicates significance with stupid significance stars:
- mutate(significance = ifelse(pvalue < 0.05, "*", "")) %>%
- # round the original p-values according to APA manual:
- mutate(pvalue_round = round_pvalues(pvalue)) %>%
- # round the adjusted p-value:
- mutate(pvalue_adjust_round = round_pvalues(pvalue_adjust)) %>%
- # sort data table:
- setorder(classification, period, tITI) %>%
- # shorten the period name:
- mutate(period_short = ifelse(period == "forward", "fwd", period)) %>%
- transform(period_short = ifelse(period == "backward", "bwd", period_short)) %>%
- mutate(color = ifelse(period_short == "fwd", "dodgerblue", "red")) %>% setDT(.)
- return(data_out)
- }
- ```
- ```{r}
- rmarkdown::paged_table(
- seq_test_period(data = dt_pred_seq_cor, variable = "mean_cor") %>%
- filter(pvalue_adjust < 0.05, classification == "ovr"))
- rmarkdown::paged_table(
- seq_test_period(data = dt_pred_seq_cor, variable = "mean_step") %>%
- filter(pvalue_adjust < 0.05, classification == "ovr"))
- rmarkdown::paged_table(
- seq_test_period(data = dt_pred_seq_cor, variable = "mean_slope") %>%
- filter(pvalue_adjust < 0.05, classification == "ovr"))
- ```
- ```{r, echo=TRUE}
- plot_seq_cor_period = function(data, variable){
- # select the variable of interest, determine y-axis label and adjust axis:
- if (variable == "mean_slope") {
- ylabel = "Regression slope"
- adjust_axis = 0.1
- } else if (variable == "mean_cor") {
- ylabel = expression("Correlation ("*tau*")")
- adjust_axis = 1
- } else if (variable == "mean_step") {
- ylabel = "Mean step size"
- adjust_axis = 1
- }
- dt_forward = data.table(xmin = 0, xmax = 5.5, ymin = 0, ymax = 0.4 * adjust_axis)
- dt_backward = data.table(xmin = 0, xmax = 5.5, ymin = 0, ymax = -0.4 * adjust_axis)
- # average across participants for every speed at every TR:
- plot_data = data %>% setDT(.) %>%
- .[, by = .(classification, id, tITI, period_short), .(
- mean_variable = mean(get(variable))
- )] %>% filter(classification == "ovr" & period_short != "excluded")
- plot_stat = seq_test_period(data = data, variable = variable)
- # plot average correlation or betas for each speed condition and time period:
- plot = ggplot(data = plot_data, aes(
- x = fct_rev(as.factor(period_short)), y = as.numeric(mean_variable),
- fill = as.factor(as.numeric(tITI) * 1000))) +
- geom_bar(stat = "summary", fun = "mean", width = 0.9, show.legend = TRUE) +
- geom_dotplot(binaxis = "y", stackdir = "center", stackratio = 0.5, alpha = 0.2,
- binwidth = 0.01 * adjust_axis, show.legend = FALSE) +
- #geom_point(position = position_jitterdodge(jitter.height = 0, seed = 4, jitter.width = 0.2),
- # pch = 21, alpha = 0.2, show.legend = FALSE) +
- geom_errorbar(stat = "summary", fun.data = "mean_se", width = 0.0, color = "black") +
- geom_text(data = subset(plot_stat, classification == "ovr"), aes(
- x = fct_rev(as.factor(period_short)), y = round_updown(as.numeric(mean_variable), 0.6 * adjust_axis),
- label = paste0("d=", sprintf("%.2f", cohens_d), significance)), size = 3.3, show.legend = FALSE,
- color = subset(plot_stat, classification == "ovr")$color) +
- facet_wrap(~ as.factor(as.numeric(tITI) * 1000), strip.position = "bottom", nrow = 1) +
- xlab("Period") + ylab(ylabel) +
- scale_fill_viridis(name = "Speed (ms)", discrete = TRUE, option = "cividis") +
- coord_capped_cart(left = "both", bottom = "both", expand = TRUE, ylim = c(-0.6, 0.6) * adjust_axis) +
- theme(panel.border = element_blank(), axis.line = element_line()) +
- theme(axis.line = element_line(colour = "black"),
- panel.grid.major = element_blank(),
- panel.grid.minor = element_blank(),
- panel.border = element_blank(),
- panel.background = element_blank()) +
- theme(axis.ticks.x = element_line(color = "white"),
- axis.line.x = element_line(color = "white")) +
- theme(legend.position = "top", legend.direction = "horizontal", legend.box = "vertical",
- legend.justification = "center", legend.margin = margin(t = 0, r = 0, b = 0, l = 0),
- legend.box.margin = margin(t = 0, r = 0, b = -5, l = 0)) +
- theme(panel.spacing = unit(0, "lines"), strip.background = element_blank(),
- strip.placement = "outside", strip.text = element_blank())
- return(plot)
- }
- fig_seq_cor_period = plot_seq_cor_period(data = dt_pred_seq_cor, variable = "mean_cor")
- fig_seq_slope_period = plot_seq_cor_period(data = dt_pred_seq_cor, variable = "mean_slope")
- fig_seq_step_period = plot_seq_cor_period(data = dt_pred_seq_cor, variable = "mean_step")
- fig_seq_cor_period; fig_seq_step_period; fig_seq_slope_period;
- ```
- ```{r, echo = FALSE}
- plot_seq_cor_facet = function(dt, variable){
- # create separate datatable to plot rectangles indicating forward / backward period:
- dt_reduced = dt %>% setDT(.) %>%
- .[, by = .(classification, tITI, period), .(
- xmin = min(seq_tr) - 0.5,
- xmax = max(seq_tr) + 0.5
- )] %>%
- filter(period != "excluded") %>%
- mutate(fill = ifelse(period == "forward", "dodgerblue", "red"))
- # select the variable of interest, determine y-axis label and adjust axis:
- if (variable == "mean_slope") {
- ylabel = "Regression slope"
- adjust_axis = 0.1
- } else if (variable == "mean_cor") {
- ylabel = expression("Correlation ("*tau*")")
- adjust_axis = 1
- } else if (variable == "mean_step") {
- ylabel = "Mean step size"
- adjust_axis = 1
- }
- plot = ggplot(data = dt, mapping = aes(
- x = as.factor(seq_tr), y = as.numeric(mean_variable),
- group = as.factor(tITI), fill = as.factor(tITI), color = as.factor(tITI))) +
- # add background rectangles to indicate the forward and backward period:
- geom_rect(data = dt_reduced, aes(
- xmin = xmin, xmax = xmax, ymin = -0.4 * adjust_axis, ymax = 0.4 * adjust_axis),
- alpha = 0.05, inherit.aes = FALSE, show.legend = FALSE, fill = dt_reduced$fill) +
- geom_hline(aes(yintercept = 0), linetype = "solid", color = "gray") +
- facet_wrap(facets = ~ as.factor(tITI), labeller = get_labeller(dt$tITI), nrow = 1) +
- geom_ribbon(aes(ymin = sem_lower, ymax = sem_upper), alpha = 0.5, color = NA) +
- geom_line() +
- geom_point(data = subset(dt, pvalue_adjust < 0.05), pch = 21, fill = "red",
- color = "black", show.legend = FALSE) +
- xlab("Time from sequence onset (TRs)") + ylab(ylabel) +
- theme(legend.position = "top", legend.direction = "horizontal",
- legend.justification = "center", legend.margin = margin(0, 0, 0, 0),
- legend.box.margin = margin(t = 0, r = 0, b = -5, l = 0)) +
- scale_colour_viridis(name = "Speed (ms)", discrete = TRUE, option = "cividis", guide = FALSE) +
- scale_fill_viridis(name = "Speed (ms)", discrete = TRUE, option = "cividis", guide = FALSE) +
- scale_x_discrete(labels = label_fill(seq(1, 13, 1), mod = 4), breaks = seq(1, 13, 1)) +
- theme(strip.text.x = element_text(margin = margin(b = 2, t = 2))) +
- coord_capped_cart(left = "both", bottom = "both", expand = TRUE, ylim = c(-0.4, 0.4) * adjust_axis) +
- theme(axis.line = element_line(colour = "black"),
- panel.grid.major = element_blank(),
- panel.grid.minor = element_blank(),
- panel.border = element_blank(),
- panel.background = element_blank())
- return(plot)
- }
- ```
- We repeat the same calculations, just splitting up the data by the serial position of the cued image:
- ```{r}
- seq_test_period_cue <- function(data, variable){
- data_out = data %>%
- # filter out the excluded time period (select only forward and backward period):
- filter(period != "excluded") %>% setDT(.) %>%
- # average for each time period and speed condition for every participant:
- .[, by = .(classification, id, tITI, period, cue_pos_label), .(
- mean_variable = mean(get(variable)))] %>%
- # average across participants for every speed at every TR:
- # check if the number of participants matches:
- .[, by = .(classification, tITI, period, cue_pos_label), {
- # perform a two-sided one-sample t-test against zero (baseline):
- ttest_results = t.test(mean_variable, alternative = "two.sided", mu = 0);
- list(
- num_subs = .N,
- mean_variable = mean(mean_variable),
- pvalue = ttest_results$p.value,
- tvalue = round(abs(ttest_results$statistic), 2),
- df = ttest_results$parameter,
- cohens_d = abs(round((mean(mean_variable) - 0) / sd(mean_variable), 2)),
- sem_upper = mean(mean_variable) + (sd(mean_variable)/sqrt(.N)),
- sem_lower = mean(mean_variable) - (sd(mean_variable)/sqrt(.N))
- )
- }] %>% verify(all(num_subs == 36)) %>% verify(all((num_subs - df) == 1)) %>%
- # adjust p-values for multiple comparisons:
- # check if the number of comparisons matches expectations:
- .[period %in% c("forward", "backward"), by = .(classification), ":=" (
- num_comp = .N,
- pvalue_adjust = p.adjust(pvalue, method = "fdr", n = .N)
- )] %>% #verify(num_comp == 10) %>%
- # add variable that indicates significance with stupid significance stars:
- mutate(significance = ifelse(pvalue < 0.05, "*", "")) %>%
- # round the original p-values according to APA manual:
- mutate(pvalue_round = round_pvalues(pvalue)) %>%
- # round the adjusted p-value:
- mutate(pvalue_adjust_round = round_pvalues(pvalue_adjust)) %>%
- # sort data table:
- setorder(classification, period, tITI) %>%
- # shorten the period name:
- mutate(period_short = ifelse(period == "forward", "fwd", period)) %>%
- transform(period_short = ifelse(period == "backward", "bwd", period_short)) %>%
- mutate(color = ifelse(period_short == "fwd", "dodgerblue", "red")) %>% setDT(.)
- return(data_out)
- }
- ```
- ```{r}
- rmarkdown::paged_table(
- seq_test_period_cue(data = dt_pred_seq_cor_cue, variable = "mean_cor") %>%
- filter(pvalue_adjust < 0.05, classification == "ovr"))
- rmarkdown::paged_table(
- seq_test_period_cue(data = dt_pred_seq_cor_cue, variable = "mean_step") %>%
- filter(pvalue_adjust < 0.05, classification == "ovr"))
- rmarkdown::paged_table(
- seq_test_period_cue(data = dt_pred_seq_cor_cue, variable = "mean_slope") %>%
- filter(pvalue_adjust < 0.05, classification == "ovr"))
- ```
- We plot the same data, just splitting up the data by the serial position of the cued image:
- ```{r}
- plot_seq_cor_period_cue = function(data, variable){
- # select the variable of interest, determine y-axis label and adjust axis:
- if (variable == "mean_slope") {
- ylabel = "Regression slope"
- adjust_axis = 0.1
- } else if (variable == "mean_cor") {
- ylabel = expression("Correlation ("*tau*")")
- adjust_axis = 1
- } else if (variable == "mean_step") {
- ylabel = "Mean step size"
- adjust_axis = 1
- }
- dt_forward = data.table(xmin = 0, xmax = 5.5, ymin = 0, ymax = 0.4 * adjust_axis)
- dt_backward = data.table(xmin = 0, xmax = 5.5, ymin = 0, ymax = -0.4 * adjust_axis)
- # average across participants for every speed at every TR:
- plot_data = data %>% setDT(.) %>%
- .[, by = .(classification, id, tITI, period_short, cue_pos_label), .(
- mean_variable = mean(get(variable))
- )] %>% filter(classification == "ovr" & period_short != "excluded")
- plot_stat = seq_test_period_cue(data = data, variable = variable)
- # plot average correlation or betas for each speed condition and time period:
- plot = ggplot(data = plot_data, aes(
- x = fct_rev(as.factor(period_short)), y = as.numeric(mean_variable),
- fill = as.factor(as.numeric(tITI) * 1000))) +
- geom_bar(stat = "summary", fun = "mean", width = 0.9, show.legend = TRUE) +
- geom_dotplot(binaxis = "y", stackdir = "center", stackratio = 0.5, alpha = 0.2,
- binwidth = 0.01 * adjust_axis, show.legend = FALSE) +
- geom_errorbar(stat = "summary", fun.data = "mean_se", width = 0.0, color = "black") +
- geom_text(data = subset(plot_stat, classification == "ovr"), aes(
- x = fct_rev(as.factor(period_short)), y = round_updown(as.numeric(mean_variable), 0.5 * adjust_axis),
- label = paste0("d=", cohens_d, significance)), size = 3.0, show.legend = FALSE,
- color = subset(plot_stat, classification == "ovr")$color) +
- facet_grid(rows = vars(cue_pos_label),
- cols = vars(as.factor(as.numeric(tITI) * 1000))) +
- xlab("Period") + ylab(ylabel) +
- scale_fill_viridis(name = "Speed (ms)", discrete = TRUE, option = "cividis") +
- coord_capped_cart(left = "both", bottom = "both", expand = TRUE, ylim = c(-0.6, 0.6) * adjust_axis) +
- theme(panel.border = element_blank(), axis.line = element_line()) +
- theme(axis.line = element_line(colour = "black"),
- panel.grid.major = element_blank(),
- panel.grid.minor = element_blank(),
- panel.border = element_blank(),
- panel.background = element_blank()) +
- #theme(axis.ticks.x = element_blank(), axis.line.x = element_blank()) +
- theme(legend.position = "top", legend.direction = "horizontal", legend.box = "vertical",
- legend.justification = "center", legend.margin = margin(t = 0, r = 0, b = 0, l = 0),
- legend.box.margin = margin(t = 0, r = 0, b = -5, l = 0))
- #theme(panel.spacing = unit(0, "lines"), strip.background = element_blank(),
- # strip.placement = "outside", strip.text = element_blank())
- return(plot)
- }
- fig_seq_cor_period_cue = plot_seq_cor_period_cue(data = dt_pred_seq_cor_cue, variable = "mean_cor")
- fig_seq_slope_period_cue = plot_seq_cor_period_cue(data = dt_pred_seq_cor_cue, variable = "mean_slope")
- fig_seq_step_period_cue = plot_seq_cor_period_cue(data = dt_pred_seq_cor_cue, variable = "mean_step")
- fig_seq_cor_period_cue; fig_seq_step_period_cue; fig_seq_slope_period_cue;
- ```
- Combine plots for cue period:
- ```{r, echo=FALSE}
- plot_grid(fig_seq_probas_cue, fig_seq_slope_time_cue, fig_seq_slope_period_cue,
- labels = c("a", "b", "c"), nrow = 3, rel_heights = c(5, 4, 6))
- ```
- ```{r, echo=FALSE, eval=FALSE, include=FALSE}
- ggsave(filename = "highspeed_plot_decoding_sequence_cue_effects.pdf",
- plot = last_plot(), device = cairo_pdf, path = path_figures, scale = 1,
- dpi = "retina", width = 6, height = 10)
- ```
- ```{r}
- # create a data frame with the relevant data to run the LME:
- lme_seq_cor_data = dt_pred_seq_cor %>%
- filter(classification == "ovr" & period != "excluded") %>%
- transform(tITI = as.factor(tITI))
- # define linear mixed effects model with by-participant random intercepts:
- lme_seq_cor = lmer(mean_slope ~ tITI * period + (1|id),
- data = lme_seq_cor_data, na.action = na.omit, control = lcctrl)
- summary(lme_seq_cor)
- anova(lme_seq_cor)
- emmeans_results = emmeans(lme_seq_cor, list(pairwise ~ period | tITI))
- emmeans_pvalues = round_pvalues(summary(emmeans_results[[2]])$p.value)
- ```
- ### Serial target position
- We calculate the average serial position at each TR:
- ```{r}
- dt_pred_seq_pos = dt_pred_seq %>%
- # get the position with the highest probability at every TR:
- .[, by = .(classification, id, period, tITI, trial_tITI, seq_tr), .(
- num_positions = .N,
- max_position = position[which.max(probability_norm)]
- )] %>%
- # verify that the number of position per TR matches:
- verify(all(num_positions == 5)) %>%
- # average the maximum position across trials for each speed condition:
- .[, by = .(classification, id, period, tITI, seq_tr), .(
- num_trials = .N,
- mean_position = mean(max_position)
- )] %>%
- # verify that the number of trials per participant is correct:
- verify(all(num_trials == 15)) %>%
- # calculate the difference of the mean position from baseline (which is 3)
- mutate(position_diff = mean_position - 3) %>%
- setDT(.) %>%
- # set the speed condition and period variable to a factorial variable:
- transform(tTII = as.factor(tITI)) %>%
- transform(period = as.factor(period))
- ```
- We calculate whether the average serial position is significantly different
- from baseline separately for every speed and period (forward vs. backward):
- ```{r}
- dt_pred_seq_pos_period = dt_pred_seq_pos %>%
- # focus on the forward and backward period only:
- filter(period != "excluded") %>% setDT(.) %>%
- # average the mean position across trs for each period and speed condition:
- .[, by = .(classification, id, period, tITI), .(
- position_diff = mean(position_diff)
- )] %>%
- # average across participants for each speed condition and volume:
- .[, by = .(classification, period, tITI), {
- ttest_results = t.test(position_diff, alternative = "two.sided", mu = 0)
- list(
- num_subs = .N,
- tvalue = round(ttest_results$statistic, 2),
- pvalue = ttest_results$p.value,
- df = ttest_results$parameter,
- cohens_d = abs(round((mean(position_diff) - 0) / sd(position_diff), 2)),
- position_diff = mean(position_diff),
- conf_lb = round(ttest_results$conf.int[1], 2),
- conf_ub = round(ttest_results$conf.int[2], 2),
- sd_position = sd(position_diff),
- sem_upper = mean(position_diff) + (sd(position_diff)/sqrt(.N)),
- sem_lower = mean(position_diff) - (sd(position_diff)/sqrt(.N))
- )
- }] %>% verify(all(num_subs == 36)) %>%
- # adjust p-values for multiple comparisons:
- .[, by = .(classification), ":=" (
- num_comp = .N,
- pvalue_adjust = p.adjust(pvalue, method = "fdr", n = .N)
- )] %>%
- verify(all(num_comp == 10)) %>%
- # add variable that indicates significance with stupid significance stars:
- mutate(significance = ifelse(pvalue_adjust < 0.05, "*", "")) %>%
- # round the original p-values:
- mutate(pvalue_round = round_pvalues(pvalue)) %>%
- # round the p-values adjusted for multiple comparisons:
- mutate(pvalue_adjust_round = round_pvalues(pvalue_adjust)) %>%
- # sort the datatable for each speed and TR:
- setorder(., classification, period, tITI) %>%
- # shorten the period name:
- mutate(period_short = ifelse(period == "forward", "fwd", period)) %>%
- transform(period_short = ifelse(period == "backward", "bwd", period_short)) %>%
- mutate(color = ifelse(period_short == "fwd", "dodgerblue", "red")) %>% setDT(.)
- dt_pred_seq_pos_period %>%
- filter(classification == "ovr", pvalue_adjust < 0.05) %>%
- rmarkdown::paged_table(.)
- ```
- We calculate the mean serial position at every TR and compare it against baseline:
- ```{r}
- dt_pred_seq_pos_tr = dt_pred_seq_pos %>%
- # average across participants for each speed condition and volume:
- .[, by = .(classification, period, tITI, seq_tr), {
- ttest_results = t.test(mean_position, alternative = "two.sided", mu = 3)
- list(
- num_subs = .N,
- tvalue = ttest_results$statistic,
- pvalue = ttest_results$p.value,
- df = ttest_results$parameter,
- mean_position = mean(mean_position),
- sd_position = sd(mean_position),
- sem_upper = mean(mean_position) + (sd(mean_position)/sqrt(.N)),
- sem_lower = mean(mean_position) - (sd(mean_position)/sqrt(.N))
- )
- }] %>% verify(all(num_subs == 36)) %>%
- # adjust p-values for multiple comparisons:
- .[period %in% c("forward", "backward"), by = .(classification), ":=" (
- num_comp = .N,
- pvalue_adjust = p.adjust(pvalue, method = "fdr", n = .N)
- )] %>% verify(all(num_comp == 39, na.rm = TRUE)) %>%
- # round the original p-values:
- mutate(pvalue_rounded = round_pvalues(pvalue)) %>%
- # round the p-values adjusted for multiple comparisons:
- mutate(pvalue_adjust_rounded = round_pvalues(pvalue_adjust)) %>%
- #
- mutate(significance = ifelse(pvalue_adjust < 0.05, "***", "")) %>%
- # sort the datatable for each speed and TR:
- setorder(., classification, period, tITI, seq_tr)
- dt_pred_seq_pos_tr %>%
- filter(classification == "ovr", pvalue_adjust < 0.05)
- ```
- ```{r, eval = FALSE}
- cfg = list(variable = "mean_position", threshold = 2.021, baseline = 3,
- grouping = c("classification", "tITI"), n_perms = 10000, n_trs = 13)
- dt_pred_seq_pos_cluster = cluster_permutation(dt_pred_seq_pos_sub, cfg)
- ```
- ```{r}
- # define linear mixed effects model with by-participant random intercepts:
- lme_seq_pos = lmer(position_diff ~ tITI * period + (1 + tITI + period |id),
- data = subset(dt_pred_seq_pos, classification == "ovr" & period != "excluded"),
- na.action = na.omit, control = lcctrl)
- summary(lme_seq_pos)
- anova(lme_seq_pos)
- emmeans_results = emmeans(lme_seq_pos, list(pairwise ~ period | tITI))
- emmeans_pvalues = round_pvalues(summary(emmeans_results[[2]])$p.value)
- ```
- ```{r, echo=TRUE}
- variable = "position_diff"
- plot_data = dt_pred_seq_pos %>%
- # average across participants for every speed at every TR:
- .[, by = .(classification, id, tITI, period), .(
- mean_variable = mean(get(variable))
- )] %>%
- filter(classification == "ovr" & period != "excluded") %>%
- # shorten the period name:
- mutate(period_short = ifelse(period == "forward", "fwd", period)) %>%
- transform(period_short = ifelse(period == "backward", "bwd", period_short)) %>%
- mutate(color = ifelse(period_short == "fwd", "dodgerblue", "red")) %>%
- setDT(.)
- # plot average correlation or betas for each speed condition and time period:
- fig_seq_pos_period = ggplot(data = plot_data, aes(
- x = fct_rev(as.factor(period_short)), y = as.numeric(mean_variable),
- fill = as.factor(as.numeric(tITI) * 1000))) +
- geom_bar(stat = "summary", fun = "mean", width = 0.9, show.legend = TRUE) +
- geom_dotplot(binaxis = "y", stackdir = "center", stackratio = 0.5, alpha = 0.2,
- binwidth = 0.05, show.legend = FALSE) +
- geom_errorbar(stat = "summary", fun.data = "mean_se", width = 0.0, color = "black") +
- geom_text(data = subset(dt_pred_seq_pos_period, classification == "ovr"), aes(
- x = fct_rev(as.factor(period_short)), y = round_updown(as.numeric(get(variable)), 1.2),
- label = paste0("d=", sprintf("%.2f", cohens_d), significance)), show.legend = FALSE, size = 3.2,
- color = subset(dt_pred_seq_pos_period, classification == "ovr")$color) +
- facet_wrap(~ as.factor(as.numeric(tITI) * 1000), strip.position = "bottom", nrow = 1) +
- xlab("Period") + ylab("Event position\ncompared to baseline") +
- scale_colour_viridis(name = "Speed (ms)", discrete = TRUE, option = "cividis") +
- scale_fill_viridis(name = "Speed (ms)", discrete = TRUE, option = "cividis") +
- coord_capped_cart(left = "both", bottom = "both", expand = TRUE, ylim = c(-1.5, 1.5)) +
- theme(legend.position = "top", legend.direction = "horizontal",
- legend.justification = "center", legend.margin = margin(t = 0, r = 0, b = 0, l = 0),
- legend.box.margin = margin(t = 0, r = 0, b = 0, l = 0)) +
- theme(panel.spacing = unit(0, "lines"), strip.background = element_blank(),
- strip.placement = "outside", strip.text = element_blank()) +
- theme(axis.ticks.x = element_line(colour = "white"),
- axis.line.x = element_line(colour = "white")) +
- theme(axis.line.y = element_line(colour = "black"),
- panel.grid.major = element_blank(),
- panel.grid.minor = element_blank(),
- panel.border = element_blank(),
- panel.background = element_blank())
- fig_seq_pos_period
- ```
- ```{r, echo=FALSE, eval=FALSE, include=FALSE}
- ggsave(filename = "highspeed_plot_decoding_sequence_position_period.pdf",
- plot = last_plot(), device = cairo_pdf, path = path_figures, scale = 1,
- dpi = "retina", width = 5, height = 3)
- ```
- ```{r, echo = FALSE}
- plot_seq_pos <- function(dt){
- # create separate datatable to plot rectangles indicating forward / backward period:
- dt_reduced = dt %>% setDT(.) %>%
- .[, by = .(classification, tITI, period), .(
- xmin = min(seq_tr) - 0.5,
- xmax = max(seq_tr) + 0.5
- )] %>%
- filter(period != "excluded") %>%
- mutate(fill = ifelse(period == "forward", "dodgerblue", "red"))
- ggplot(data = dt, mapping = aes(
- x = as.factor(seq_tr), y = as.numeric(mean_position),
- group = as.factor(as.numeric(tITI)*1000), fill = as.factor(as.numeric(tITI)*1000))) +
- #geom_rect(data = dt_reduced, aes(xmin = xmin, xmax = xmax, ymin = 2, ymax = 4),
- # alpha = 0.05, inherit.aes = FALSE, show.legend = FALSE, fill = dt_reduced$fill) +
- geom_hline(aes(yintercept = 3), linetype = "solid", color = "gray") +
- #facet_wrap(facets = ~ as.factor(tITI), labeller = get_labeller(dt$tITI), nrow = 1) +
- geom_ribbon(aes(ymin = sem_lower, ymax = sem_upper), alpha = 0.5, color = NA) +
- geom_line(mapping = aes(color = as.factor(as.numeric(tITI)*1000))) +
- xlab("Time from sequence onset (TRs)") +
- ylab("Event position") +
- scale_colour_viridis(discrete = TRUE, option = "cividis", name = "Speed (ms)", guide = FALSE) +
- scale_fill_viridis(discrete = TRUE, option = "cividis", name = "Speed (ms)", guide = FALSE) +
- scale_x_discrete(labels = label_fill(seq(1, 13, 1), mod = 4), breaks = seq(1, 13, 1)) +
- coord_capped_cart(left = "both", bottom = "both", expand = TRUE, ylim = c(2,4)) +
- theme(strip.text.x = element_text(margin = margin(b = 2, t = 2))) +
- theme(legend.position = "top", legend.direction = "horizontal",
- legend.justification = "center", legend.margin = margin(t = 0, r = 0, b = 0, l = 0),
- legend.box.margin = margin(t = 0, r = 0, b = 0, l = 0)) +
- geom_segment(aes(x = 0.9, xend = 0.9, y = 3.01, yend = 4),
- arrow = arrow(length = unit(5, "pt")), color = "darkgray") +
- geom_segment(aes(x = 0.9, xend = 0.9, y = 3.01, yend = 2),
- arrow = arrow(length = unit(5, "pt")), color = "darkgray") +
- annotate(geom = "text", x = 1.4, y = 3.5, label = "Later",
- color = "darkgray", angle = 90, size = 3) +
- annotate(geom = "text", x = 1.4, y = 2.5, label = "Earlier",
- color = "darkgray", angle = 90, size = 3) +
- annotate("text", x = 13, y = 2, label = "1 TR = 1.25 s",
- hjust = 1, size = rel(2)) +
- theme(axis.line = element_line(colour = "black"),
- panel.grid.major = element_blank(),
- panel.grid.minor = element_blank(),
- panel.border = element_blank(),
- panel.background = element_blank())
- }
- fig_seq_pos_time = plot_seq_pos(dt = subset(dt_pred_seq_pos_tr, classification == "ovr"))
- fig_seq_pos_time
- ```
- ```{r, echo = FALSE}
- plot_seq_pos_facet <- function(dt){
- # create separate datatable to plot rectangles indicating forward / backward period:
- dt_reduced = dt %>% setDT(.) %>%
- .[, by = .(classification, tITI, period), .(
- xmin = min(seq_tr) - 0.5,
- xmax = max(seq_tr) + 0.5
- )] %>%
- filter(period != "excluded") %>%
- mutate(fill = ifelse(period == "forward", "dodgerblue", "red"))
- ggplot(data = dt, mapping = aes(
- x = as.factor(seq_tr), y = as.numeric(mean_position),
- group = as.factor(as.numeric(tITI)*1000), fill = as.factor(as.numeric(tITI)*1000))) +
- geom_rect(data = dt_reduced, aes(xmin = xmin, xmax = xmax, ymin = 2, ymax = 4),
- alpha = 0.05, inherit.aes = FALSE, show.legend = FALSE, fill = dt_reduced$fill) +
- geom_hline(aes(yintercept = 3), linetype = "solid", color = "gray") +
- facet_wrap(facets = ~ as.factor(tITI), labeller = get_labeller(dt$tITI), nrow = 1) +
- geom_ribbon(aes(ymin = sem_lower, ymax = sem_upper), alpha = 0.5, color = NA) +
- geom_line(mapping = aes(color = as.factor(as.numeric(tITI)*1000))) +
- geom_point(data = subset(dt, pvalue_adjust < 0.05), pch = 21, fill = "red",
- color = "black", show.legend = FALSE) +
- xlab("Time from sequence onset (TRs)") +
- ylab("Event position") +
- scale_colour_viridis(discrete = TRUE, option = "cividis", name = "Speed (ms)", guide = FALSE) +
- scale_fill_viridis(discrete = TRUE, option = "cividis", name = "Speed (ms)", guide = FALSE) +
- scale_x_discrete(labels = label_fill(seq(1, 13, 1), mod = 4), breaks = seq(1, 13, 1)) +
- coord_capped_cart(left = "both", bottom = "both", expand = TRUE, ylim = c(2,4)) +
- theme(strip.text.x = element_text(margin = margin(b = 2, t = 2))) +
- theme(legend.position = "top", legend.direction = "horizontal",
- legend.justification = "center", legend.margin = margin(t = 0, r = 0, b = 0, l = 0),
- legend.box.margin = margin(t = 0, r = 0, b = 0, l = 0)) +
- theme(axis.line = element_line(colour = "black"),
- panel.grid.major = element_blank(),
- panel.grid.minor = element_blank(),
- panel.border = element_blank(),
- panel.background = element_blank())
- }
- fig_seq_pos_time_facet = plot_seq_pos_facet(dt = subset(dt_pred_seq_pos_tr, classification == "ovr"))
- fig_seq_pos_time_facet
- ```
- ```{r, echo=FALSE, eval=FALSE, include=FALSE}
- ggsave(filename = "highspeed_plot_decoding_sequence_timecourse_position.pdf",
- plot = last_plot(), device = cairo_pdf, path = path_figures, scale = 1,
- dpi = "retina", width = 6, height = 3)
- ```
- ### Transititons
- We calculate the step size between consecutively decoded (highest probability) events:
- ```{r}
- dt_pred_seq_step = dt_pred_seq %>%
- # get the position with the highest probability for every TR:
- .[, by = .(classification, id, tITI, trial_tITI, seq_tr), ":=" (
- num_classes = .N,
- rank_order = rank(-probability),
- max_prob = as.numeric(probability == max(probability))
- )] %>%
- # verify that there are five classes per TR:
- verify(all(num_classes == 5)) %>%
- # sort the data table:
- setorder(., classification, id, tITI, trial_tITI, seq_tr) %>%
- # select only classes with the highest probability for every TR:
- filter(max_prob == 1) %>%
- setDT(.) %>%
- # check if the rank order of the event with highest probability match:
- verify(all(rank_order == max_prob)) %>%
- # group by classification, id, speed and trial and calculate step sizes:
- .[, by = .(classification, id, tITI, trial_tITI),
- step := position - shift(position)]
- ```
- We calculate the mean step size for early and late period in the forward and backward phase:
- ```{r}
- dt_pred_seq_step_mean = dt_pred_seq_step %>%
- filter(period != "excluded") %>%
- filter(!(is.na(zone))) %>% setDT(.) %>%
- # shorten the period name:
- mutate(period_short = ifelse(period == "forward", "fwd", period)) %>%
- transform(period_short = ifelse(period == "backward", "bwd", period_short)) %>%
- setDT(.) %>%
- .[, by = .(classification, id, tITI, period_short, zone), .(
- mean_step = mean(step, na.rm = TRUE))]
- ```
- We compare the forward and the backward period using t-tests:
- ```{r}
- dt_pred_seq_step_stat = dt_pred_seq_step_mean %>%
- spread(key = period_short, value = mean_step, drop = TRUE) %>%
- mutate(difference = fwd - bwd) %>% setDT(.) %>%
- # average across participants for each speed condition and volume:
- .[, by = .(classification, tITI, zone), {
- ttest_results = t.test(fwd, bwd, alternative = "two.sided", paired = TRUE)
- list(
- num_subs = .N,
- tvalue = round(ttest_results$statistic, 2),
- pvalue = ttest_results$p.value,
- df = ttest_results$parameter,
- cohens_d = abs(round((mean(fwd) - mean(bwd)) / sd(fwd - bwd), 2)),
- mean_step = mean(difference),
- sd_step = sd(difference),
- sem_upper = mean(difference) + (sd(difference)/sqrt(.N)),
- sem_lower = mean(difference) - (sd(difference)/sqrt(.N))
- )
- }] %>% verify(all(num_subs == 36)) %>%
- # adjust p-values for multiple comparisons:
- .[, by = .(classification), ":=" (
- num_comp = .N,
- pvalue_adjust = p.adjust(pvalue, method = "fdr", n = .N)
- )] %>%
- verify(all(num_comp == 10)) %>%
- # add variable that indicates significance with stupid significance stars:
- mutate(significance = ifelse(pvalue < 0.05, "*", "")) %>%
- # round the original p-values:
- mutate(pvalue_round = round_pvalues(pvalue)) %>%
- # round the p-values adjusted for multiple comparisons:
- mutate(pvalue_adjust_round = round_pvalues(pvalue_adjust)) %>%
- # sort the datatable for each speed and TR:
- setorder(., classification, zone, tITI)
- dt_pred_seq_step_stat %>%
- filter(classification == "ovr", pvalue_adjust < 0.05)
- ```
- We compare each period to the baseline:
- ```{r}
- dt_pred_seq_step_stat_baseline = dt_pred_seq_step_mean %>%
- # average across participants for each speed condition and volume:
- .[, by = .(classification, tITI, period_short, zone), {
- ttest_results = t.test(mean_step, mu = 0, alternative = "two.sided")
- list(
- num_subs = .N,
- tvalue = round(ttest_results$statistic, 2),
- pvalue = ttest_results$p.value,
- df = ttest_results$parameter,
- cohens_d = abs(round((mean(mean_step) - 0) / sd(mean_step), 2)),
- mean_step = mean(mean_step),
- sd_step = sd(mean_step),
- sem_upper = mean(mean_step) + (sd(mean_step)/sqrt(.N)),
- sem_lower = mean(mean_step) - (sd(mean_step)/sqrt(.N))
- )
- }] %>% verify(all(num_subs == 36)) %>%
- # adjust p-values for multiple comparisons:
- .[, by = .(classification), ":=" (
- num_comp = .N,
- pvalue_adjust = p.adjust(pvalue, method = "fdr", n = .N)
- )] %>%
- # verf
- verify(all(num_comp == 20)) %>%
- # add variable that indicates significance with stupid significance stars:
- mutate(significance = ifelse(pvalue_adjust < 0.05, "*", "")) %>%
- # round the original p-values:
- mutate(pvalue_round = round_pvalues(pvalue)) %>%
- # round the p-values adjusted for multiple comparisons:
- mutate(pvalue_adjust_round = round_pvalues(pvalue_adjust)) %>%
- # sort the datatable for each speed and TR:
- setorder(., classification, period_short, zone, tITI)
- dt_pred_seq_step_stat_baseline %>%
- filter(classification == "ovr", pvalue < 0.05)
- ```
- ```{r}
- # plot average correlation or betas for each speed condition and time period:
- fig_seq_step = ggplot(data = subset(dt_pred_seq_step_mean, classification == "ovr"), aes(
- x = fct_rev(as.factor(period_short)), y = as.numeric(mean_step),
- fill = as.factor(as.numeric(tITI) * 1000)), color = as.factor(as.numeric(tITI) * 1000)) +
- facet_grid(vars(as.factor(zone)), vars(as.factor(as.numeric(tITI) * 1000)), switch = "x") +
- geom_bar(stat = "summary", fun = "mean", width = 0.9) +
- geom_point(position = position_jitterdodge(jitter.height = 0, seed = 4, jitter.width = 0.2),
- pch = 21, alpha = 0.05, color = "black", show.legend = FALSE) +
- geom_errorbar(stat = "summary", fun.data = "mean_se", width = 0.0, color = "black") +
- geom_text(data = subset(dt_pred_seq_step_stat, classification == "ovr"), aes(
- y = 2, label = paste0("d=", sprintf("%.2f", cohens_d), significance), x = 1.5),
- inherit.aes = FALSE, color = "black", size = 3.3) +
- xlab("Period") + ylab("Step size") +
- scale_colour_viridis(discrete = TRUE, option = "cividis", name = "Speed (ms)") +
- scale_fill_viridis(discrete = TRUE, option = "cividis", name = "Speed (ms)") +
- coord_capped_cart(left = "both", bottom = "both", expand = TRUE, ylim = c(-2, 2)) +
- theme(legend.position = "top", legend.direction = "horizontal",
- legend.justification = "center", legend.margin = margin(t = 0, r = 0, b = -5, l = 0),
- legend.box.margin = margin(t = 0, r = 0, b = 0, l = 0)) +
- theme(panel.spacing.x = unit(0, "lines"), strip.background.x = element_blank(),
- strip.placement.x = "outside", strip.text.x = element_blank()) +
- theme(axis.ticks.x = element_line(colour = "white"),
- axis.line.x = element_line(colour = "white")) +
- #theme(axis.title.x = element_blank()) +
- theme(strip.text = element_text(margin = margin(b = 2, t = 2, r = 2, l = 2))) +
- theme(axis.line.y = element_line(colour = "black"),
- panel.grid.major = element_blank(),
- panel.grid.minor = element_blank(),
- panel.border = element_blank(),
- panel.background = element_blank())
- fig_seq_step
- ```
- ```{r, echo=FALSE, eval=FALSE, include=FALSE}
- ggsave(filename = "highspeed_plot_decoding_sequence_step_size.pdf",
- plot = last_plot(), device = cairo_pdf, path = path_figures, scale = 1,
- dpi = "retina", width = 5, height = 3)
- ```
- ```{r, fig.width = 10, fig.height = 4}
- plot_grid(fig_seq_pos_period, fig_seq_step, labels = "auto",
- ncol = 2, label_fontface = "bold", rel_widths = c(5, 6))
- ```
- ```{r, echo=FALSE, eval=FALSE, include=FALSE}
- ggsave(filename = "highspeed_plot_decoding_sequence_between_tr.pdf",
- plot = last_plot(), device = cairo_pdf, path = path_figures, scale = 1,
- dpi = "retina", width = 10, height = 4)
- ```
- Plot Figure 3 in the main text:
- ```{r}
- plot_grid(
- plot_grid(fig_seq_probas, labels = c("a"), nrow = 1),
- plot_grid(fig_seq_slope_time, fig_seq_slope_period, labels = c("b", "c"),
- ncol = 2, nrow = 1, label_fontface = "bold", rel_widths = c(4.9, 5)),
- plot_grid(fig_seq_cor_between, fig_seq_cor_within, fig_seq_pos_time,
- labels = c("d", "e", "f"), ncol = 3, rel_widths = c(0.325, 0.325, 0.35)),
- plot_grid(fig_seq_pos_period, fig_seq_step, labels = c("g", "h"),
- ncol = 2, label_fontface = "bold", nrow = 1),
- nrow = 4, label_fontface = "bold", rel_heights = c(2, 3)
- )
- ```
- ```{r, echo=FALSE, eval=FALSE, include=FALSE}
- ggsave(filename = "highspeed_plot_decoding_sequence_data.pdf",
- plot = last_plot(), device = cairo_pdf, path = path_figures, scale = 1,
- dpi = "retina", width = 10, height = 12)
- ggsave(filename = "wittkuhn_schuck_figure_3.pdf",
- plot = last_plot(), device = cairo_pdf, path = path_figures, scale = 1,
- dpi = "retina", width = 10, height = 12)
- ```
- ```{r, include=FALSE, echo=TRUE, eval=FALSE, warning=FALSE, message=FALSE}
- title_nomax = ggdraw() + draw_label("Sequence item with highest probability removed", fontface = "plain")
- title_nofirst = ggdraw() + draw_label("First sequence item removed", fontface = "plain")
- title_nolast = ggdraw() + draw_label("Last sequence item removed", fontface = "plain")
- # create a common legend used for the entire figure panel:
- common_legend <- get_legend(fig_seq_slope_time + theme(legend.position = "top"))
- # create the plot of sequence data with the maximum probability removed:
- plot_nomax = plot_grid(fig_seq_slope_time + theme(legend.position = "none"),
- fig_seq_slope_period + theme(legend.position = "none"),
- rel_widths = c(4, 5), labels = "auto", ncol = 2, nrow = 1,
- label_fontface = "bold")
- plot_nofirst = plot_grid(fig_seq_slope_time + theme(legend.position = "none"),
- fig_seq_slope_period + theme(legend.position = "none"),
- rel_widths = c(4, 5), labels = c("c", "d"), ncol = 2, nrow = 1,
- label_fontface = "bold")
- plot_nolast = plot_grid(fig_seq_slope_time + theme(legend.position = "none"),
- fig_seq_slope_period + theme(legend.position = "none"),
- rel_widths = c(4, 5), labels = c("e", "f"), ncol = 2, nrow = 1,
- label_fontface = "bold")
- plot_all = plot_grid(
- common_legend, title_nomax, plot_nomax,
- title_nofirst, plot_nofirst,
- title_nolast, plot_nolast,
- ncol = 1, rel_heights=c(0.1, 0.1, 1, 0.1, 1, 0.1, 1))
- plot_all
- ```
- ```{r, echo=FALSE, eval=FALSE, include=FALSE}
- ggsave(filename = "highspeed_plot_decoding_sequence_slope_remove_items.pdf",
- plot = last_plot(), device = cairo_pdf, path = path_figures, scale = 1,
- dpi = "retina", width = 10, height = 10)
- ggsave(filename = "wittkuhn_schuck_figure_s7.pdf",
- plot = last_plot(), device = cairo_pdf, path = path_figures, scale = 1,
- dpi = "retina", width = 10, height = 10)
- ```
- ```{r}
- plot_grid(fig_seq_cor_time, fig_seq_cor_period, fig_seq_step_time, fig_seq_step_period,
- labels = "auto", ncol = 2, nrow = 2, label_fontface = "bold")
- ```
- ```{r, echo=FALSE, eval=FALSE, include=FALSE}
- ggsave(filename = "highspeed_plot_decoding_sequence_correlation_step.pdf",
- plot = last_plot(), device = cairo_pdf, path = path_figures, scale = 1,
- dpi = "retina", width = 10, height = 7)
- ggsave(filename = "wittkuhn_schuck_figure_s5.pdf",
- plot = last_plot(), device = cairo_pdf, path = path_figures, scale = 1,
- dpi = "retina", width = 10, height = 7)
- ```
- ```{r}
- seq_test_time(data = dt_pred_seq_cor, variable = "mean_slope") %>%
- filter(pvalue_adjust < 0.05 & classification == "ovr") %>%
- rmarkdown::paged_table(.)
- seq_test_time(data = dt_pred_seq_cor, variable = "mean_cor") %>%
- filter(pvalue_adjust < 0.05 & classification == "ovr") %>%
- rmarkdown::paged_table(.)
- seq_test_time(data = dt_pred_seq_cor, variable = "mean_step") %>%
- filter(pvalue_adjust < 0.05 & classification == "ovr") %>%
- rmarkdown::paged_table(.)
- ```
- ```{r}
- fig_seq_slope_time_facet = plot_seq_cor_facet(dt = subset(
- seq_test_time(data = dt_pred_seq_cor, variable = "mean_slope"),
- classification == "ovr"), variable = "mean_slope")
- fig_seq_cor_time_facet = plot_seq_cor_facet(dt = subset(
- seq_test_time(data = dt_pred_seq_cor, variable = "mean_cor"),
- classification == "ovr"), variable = "mean_cor")
- fig_seq_step_time_facet = plot_seq_cor_facet(dt = subset(
- seq_test_time(data = dt_pred_seq_cor, variable = "mean_step"),
- classification == "ovr"), variable = "mean_step")
- remove_xaxis = theme(axis.title.x = element_blank())
- remove_facets = theme(strip.background = element_blank(), strip.text.x = element_blank())
- plot_grid(fig_seq_slope_time_facet + remove_xaxis,
- fig_seq_pos_time_facet + remove_xaxis + theme(legend.position = "none") + remove_facets,
- fig_seq_cor_time_facet + remove_xaxis + theme(legend.position = "none") + remove_facets,
- fig_seq_step_time_facet + theme(legend.position = "none") + remove_facets,
- labels = "auto", ncol = 1, label_fontface = "bold")
- ```
- ```{r, echo=FALSE, eval=FALSE, include=FALSE}
- ggsave(filename = "highspeed_plot_decoding_sequence_timecourse_slope_correlation_step.pdf",
- plot = last_plot(), device = cairo_pdf, path = path_figures, scale = 1,
- dpi = "retina", width = 7, height = 9)
- ggsave(filename = "wittkuhn_schuck_figure_s6.pdf",
- plot = last_plot(), device = cairo_pdf, path = path_figures, scale = 1,
- dpi = "retina", width = 7, height = 9)
- ```
|