123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458 |
- # -*- coding: utf-8 -*-
- """
- Created on Fri Oct 05 15:49:46 2018
- @author: aemdlabs
- """
- #!/usr/bin/env python2
- # -*- coding: utf-8 -*-
- """
- Created on Wed Sep 5 12:05:21 2018
- @author: aguimera
- """
- from PhyREC.NeoInterface import NeoSegment#, ReadMCSFile
- import PhyREC.SignalAnalysis as Ran
- import PhyREC.PlotWaves as Rplt
- import quantities as pq
- import matplotlib.pyplot as plt
- import numpy as np
- import neo
- import csv
- from datetime import datetime
- from scipy import integrate
- def ReadMCSFile(McsFile, OutSeg=None, SigNamePrefix=''):
- import McsPy.McsData as McsData
- Dat = McsData.RawData(McsFile)
- Rec = Dat.recordings[0]
- NSamps = Rec.duration
- if OutSeg is None:
- OutSeg = NeoSegment()
- for AnaStrn, AnaStr in Rec.analog_streams.iteritems():
- if len(AnaStr.channel_infos) == 1:
- continue
- for Chn, Chinfo in AnaStr.channel_infos.iteritems():
- print 'Analog Stream ', Chinfo.label, Chinfo.sampling_frequency
- ChName = str(SigNamePrefix + Chinfo.label)
- print ChName
- Fs = Chinfo.sampling_frequency
- Var, Unit = AnaStr.get_channel_in_range(Chn, 0, NSamps)
- sig = neo.AnalogSignal(pq.Quantity(Var, Chinfo.info['Unit']),
- t_start=0*pq.s,
- sampling_rate=Fs.magnitude*pq.Hz,
- name=ChName)
- OutSeg.AddSignal(sig)
- return OutSeg
- def ReadLogFile(File):
- Fin = open(File)
-
- reader = csv.reader(Fin, delimiter='\t')
-
- LogVals = {}
- ValsPos = {}
- for il, e in enumerate(reader):
- if il == 0:
- for ih, v in enumerate(e):
- ValsPos[ih] = v
- LogVals[v] = []
- else:
- for ih, v in enumerate(e):
- par = ValsPos[ih]
- if (par=='Vgs') or (par=='Vds') or (par=='Vref'):
- LogVals[par].append(float(v.replace(',','.')))
- elif par == 'Date/Time':
- LogVals[par].append(datetime.strptime(v, '%d/%m/%Y %H:%M:%S'))
- else:
- LogVals[par].append(v)
-
- deltas = np.array(LogVals['Date/Time'])[:]-LogVals['Date/Time'][0]
- LogVals['Time'] = []
- for d in deltas:
- LogVals['Time'].append(d.total_seconds())
-
- Fin.close()
-
- return LogVals
- def GetSwitchTimes(Sig, Thres=-1e-4, Plot=True):
- s = Sig.GetSignal(None)
- ds = np.abs(np.diff(np.array(s), axis=0))
- if Plot:
- plt.figure()
- plt.plot(s.times, s)
- plt.plot(s.times[1:], ds)
- ds = Sig.duplicate_with_new_array(signal=ds)
- Times = Ran.threshold_detection(ds,
- threshold=Thres,
- RelaxTime=5*pq.s)
- return Times
- def MeanStd(Data, var):
- Arr = np.zeros([len(Data.keys()),len(Data[Data.keys()[0]][var])])
- for iT,TrtName in enumerate(Data.keys()):
- Arr[iT,:] = Data[TrtName][var][:,0]
-
- return np.mean(Arr,0), np.std(Arr,0)
- def MeanStdGM(Data):
- Arr = np.zeros([len(Data.keys()),len(Data[Data.keys()[0]])])
- for iT,TrtName in enumerate(Data.keys()):
- Arr[iT,:] = Data[TrtName]
-
- return np.mean(Arr,0), np.std(Arr,0)
- def Integrate(PSD, Freqs, Fmin, Fmax):
- indices = np.where((Freqs >= Fmin) & (Freqs<=Fmax))
- print( Freqs[indices])
- Irms = np.sqrt(integrate.trapz(PSD[indices], Freqs[indices]))
- return Irms
- MCSMapI={'SE1':'Ch03',
- 'SE2':'Ch05',
- 'SE3':'Ch01',
- 'SE4':'Ch02',
- 'SE5':'Ch22',
- 'SE6':'Ch06',
- 'SE7':'Ch16',
- 'SE8':'Ch37',
- 'SE9':'Ch20',
- 'SE10':'Ch10',
- 'SE11':'Ch24',
- 'SE12':'Ch08',
- 'SE13':'Ch14',
- 'SE14':'Ch04',
- 'SE15':'Ch18',
- 'SE16':'Ch33',
- 'SE17':'Ch34',
- 'SE18':'Ch60',
- 'SE19':'Ch38',
- 'SE20':'Ch64',
- 'SE21':'Ch40',
- 'SE22':'Ch56',
- 'SE23':'Ch42',
- 'SE24':'Ch70',
- 'SE25':'Ch66',
- 'SE26':'Ch65',
- 'SE27':'Ch68',
- 'SE28':'Ch67',
- 'SE29':'Ch55',
- 'SE30':'Ch62',
- 'SE31':'Ch58',
- 'SE32':'Ch69',
- 'ME1':'Ch57',
- 'ME2':'Ch61',
- 'ME3':'Ch53',
- 'ME4':'Ch63',
- 'ME5':'Ch52',
- 'ME6':'Ch41',
- 'ME7':'Ch49',
- 'ME8':'Ch51',
- 'ME9':'Ch46',
- 'ME10':'Ch45',
- 'ME11':'Ch44',
- 'ME12':'Ch39',
- 'ME13':'Ch54',
- 'ME14':'Ch43',
- 'ME15':'Ch50',
- 'ME16':'Ch47',
- 'ME17':'Ch32',
- 'ME18':'Ch27',
- 'ME19':'Ch30',
- 'ME20':'Ch29',
- 'ME21':'Ch28',
- 'ME22':'Ch25',
- 'ME23':'Ch26',
- 'ME24':'Ch07',
- 'ME25':'Ch21',
- 'ME26':'Ch11',
- 'ME27':'Ch17',
- 'ME28':'Ch15',
- 'ME29':'Ch13',
- 'ME30':'Ch31',
- 'ME31':'Ch19',
- 'ME32':'Ch09'}
- #Col, Row
- MCSMapFacingDown={'Ch58':(0,1),
- 'Ch57':(0,2),
- 'Ch56':(0,3),
- 'Ch55':(0,4),
- 'Ch54':(0,5),
- 'Ch53':(0,6),
- 'Ch52':(0,7),
- 'Ch51':(0,8),
- 'Ch50':(0,9),
- 'Ch49':(0,10),
- 'Ch60':(1,0),
- 'Ch61':(1,1),
- 'Ch62':(1,2),
- 'Ch63':(1,3),
- 'Ch64':(1,4),
- 'Ch65':(1,5),
- 'Ch43':(1,6),
- 'Ch44':(1,7),
- 'Ch45':(1,8),
- 'Ch46':(1,9),
- 'Ch47':(1,10),
- 'Ch70':(2,0),
- 'Ch69':(2,1),
- 'Ch68':(2,2),
- 'Ch67':(2,3),
- 'Ch66':(2,4),
- 'Ch42':(2,5),
- 'Ch41':(2,6),
- 'Ch40':(2,7),
- 'Ch39':(2,8),
- 'Ch38':(2,9),
- 'Ch37':(2,10),
- 'Ch01':(3,0),
- 'Ch02':(3,1),
- 'Ch03':(3,2),
- 'Ch04':(3,3),
- 'Ch05':(3,4),
- 'Ch06':(3,5),
- 'Ch30':(3,6),
- 'Ch31':(3,7),
- 'Ch32':(3,8),
- 'Ch33':(3,9),
- 'Ch34':(3,10),
- 'Ch11':(4,0),
- 'Ch10':(4,1),
- 'Ch09':(4,2),
- 'Ch08':(4,3),
- 'Ch07':(4,4),
- 'Ch29':(4,5),
- 'Ch28':(4,6),
- 'Ch27':(4,7),
- 'Ch26':(4,8),
- 'Ch25':(4,9),
- 'Ch24':(4,10),
- 'Ch12':None,
- 'Ch59':None,
- 'Ch13':(5,1),
- 'Ch14':(5,2),
- 'Ch15':(5,3),
- 'Ch16':(5,4),
- 'Ch17':(5,5),
- 'Ch18':(5,6),
- 'Ch19':(5,7),
- 'Ch20':(5,8),
- 'Ch21':(5,9),
- 'Ch22':(5,10)}
- if __name__ == '__main__':
- Path = '23072019/B12784O18-T3/'
- InFileM = Path + '2019-07-23T18-55-56B12784O18-T3-ACDC-PostEth-PostLong.h5' ############
- InFileS = Path + '2019-07-23T18-55-56B12784O18-T3-ACDC-PostEth-PostLong_2.h5' ##########
- LogFile = Path + 'B12784O18-T3-ACDC-PostEth-PostLong.txt'
-
- StartCycle = -1
- LogVals = ReadLogFile(LogFile)
- delta = np.mean([t-LogVals['Time'][it] for it, t in enumerate(LogVals['Time'][1:])])*pq.s
- Delay = delta * StartCycle
-
- DCch = ('ME5', 'ME7', 'ME29', 'ME31', 'SE5', 'SE7', 'SE29', 'SE31')
- TrigChannel = 'SE31'
- TrigThres = 5e-5
- Vgs = np.array(LogVals['Vgs'])
- Vds = LogVals['Vds'][0]
-
- ivgain1 = 12e3*pq.V
- ivgain2 = 101
- ACgain = 10*1
- DCgain = 1*pq.V
- Fsig = 10
- StabTime = 10*pq.s
- GuardTime = 1*pq.s
- BW = 100
- ivgainDC = 118.8*pq.V
- ivgainAC = 1188*pq.V
- Rec = ReadMCSFile(InFileM,
- OutSeg=None,
- SigNamePrefix='M')
- Rec = ReadMCSFile(InFileS,
- OutSeg=Rec,
- SigNamePrefix='S')
- # %%
- plt.close('all')
- plt.ion()
-
- SwTimes = GetSwitchTimes(Sig=Rec.GetSignal(TrigChannel),
- Thres=TrigThres,
- Plot=True)
-
- SlotsDC = []
- for sig in Rec.Signals():
- if sig.name not in DCch:
- continue
- if sig.name.startswith('M'):
- col = 'r'
- else:
- col = 'g'
- SlotsDC.append(Rplt.WaveSlot(sig,
- Position=0,
- Color=col,
- Alpha=0.5))
-
- SwTimes = LogVals['Time']*pq.s+SwTimes[0]+Delay
- #%% calc IV DC
- DevDCVals = {}
-
- fig, Axt = plt.subplots()
- Ids = {}
- for sl in SlotsDC:
- Ids[sl.name] = []
- for isw, (t, vg) in enumerate(zip(SwTimes, Vgs)):
- ts = SwTimes[isw]+delta
- TWind = (t+StabTime, ts-GuardTime)
- s = sl.GetSignal(TWind, Units='V')
- Axt.plot(s)
- vio = np.mean(s).magnitude
- ids = (vio*101-(-vg+Vds))/12e3
- Ids[sl.name].append(ids)
-
-
- #%% Calc GM
- GM = {}
- Irms = {}
- Urms = {}
- fig, (AxPsd, Axt) = plt.subplots(2,1)
- fig2, (AxPs, Axt) = plt.subplots(2,1)
- for sig in Rec.Signals():
- if sig.name[0:3] == 'SEn':
- continue
- #
- GM[sig.name] = []
- Irms[sig.name] = []
- Urms[sig.name] = []
- for isw, (t, vg) in enumerate(zip(SwTimes, Vgs)):
- if isw == len(SwTimes)-1:
- ts = SwTimes[isw]-Delay
- else:
- ts = SwTimes[isw+1]
-
- TWind = (t+StabTime, ts-GuardTime)
- s = sig.GetSignal(TWind, Units ='V')
-
-
- if s.name in DCch:
- s = (s*ivgain2-(-vg+Vds)*pq.V)/ivgain1
- else:
- s = s/(ivgain1*ACgain/ivgain2)
-
-
- Axt.plot(s.times, s, label=vg, alpha=0.5)
- PS = Ran.PlotPSD((s,),
- Time = TWind,
- Ax=AxPs,
- FMin=1,
- Label=str(vg),
- scaling='spectrum')
-
- ps = PS[sig.name]['psd']
- Fps = PS[sig.name]['ff']
-
- indicesPeak = np.where( ((Fps >= Fsig-4) & (Fps<=Fsig+4)))
- IDSpeak = np.sqrt(ps[np.argmax(ps[indicesPeak])+indicesPeak[0][0]]+
- ps[np.argmax(ps[indicesPeak])+indicesPeak[0][0]+1]+
- ps[np.argmax(ps[indicesPeak])+indicesPeak[0][0]-1])
-
- gm = IDSpeak*1000/0.707
- GM[sig.name] = np.append(GM[sig.name],gm)
-
- PSD = Ran.PlotPSD((s,),
- Time = TWind,
- Ax=AxPsd,
- FMin=1,
- Label=str(vg),
- scaling='density')
- psd = PSD[sig.name]['psd'][:,0]
- Fpsd = PSD[sig.name]['ff']
-
- # irms = Integrate(psd, Fpsd, 1.9, 1.9*3.2)
- # Irms[sig.name] = np.append(Irms[sig.name],irms*np.sqrt(2))
- irms = Integrate(psd, Fpsd, 63, 200)
- Irms[sig.name] = np.append(Irms[sig.name],irms*np.sqrt(2))
-
- Irms[sig.name] = Irms[sig.name]
-
- Urms[sig.name] = Irms[sig.name]/GM[sig.name]
-
- plt.figure(12)
- GMmean, GMstd = MeanStdGM(GM)
- plt.plot(Vgs, GMmean*1000/0.1,'k',label = '1 metal layer')
- plt.fill_between(Vgs, GMmean*1000/0.1-GMstd*1000/0.1, GMmean*1000/0.1+GMstd*1000/0.1,color = 'k',alpha =0.3)
- plt.xlabel('V$_{gs}$ - V$_{CNP}$ (V)')
- plt.ylabel('G$_m$ (mS/V)')
- plt.legend()
-
- plt.figure(7)
- IrmsMean, IrmsStd = MeanStdGM(Irms)
- plt.semilogy(Vgs, IrmsMean,'k',label = 'rms')
- plt.fill_between(Vgs, IrmsMean-IrmsStd, IrmsMean+IrmsStd ,color = 'k',alpha =0.3)
- plt.xlabel('V$_{gs}$ - V$_{CNP}$ (V)')
- plt.ylabel('I$_{rms}$ (A)')
- plt.legend()
-
- plt.figure(8)
- UrmsMean, UrmsStd = MeanStdGM(Urms)
- plt.semilogy(Vgs, UrmsMean,'k',label = '1 metal layer')
- plt.fill_between(Vgs, UrmsMean-UrmsStd, UrmsMean+UrmsStd ,color = 'k',alpha =0.3)
- plt.xlabel('V$_{gs}$ - V$_{CNP}$ (V)')
- plt.ylabel('U$_{rms}$ (A)')
- plt.legend()
-
- #%% plot map Urms
-
- plt.figure()
- A=np.log10(np.ones((11,6))*5e-17)
- import matplotlib.colors as colors
- for Trt in Urms.keys():
- ch = MCSMapI[Trt]
- # if Trt in DCch:
- # continue
-
- A[MCSMapFacingDown[ch][1],MCSMapFacingDown[ch][0]] = (Urms[Trt][9])*1e6
- plt.imshow(A, interpolation='nearest', vmin=1, vmax=15, norm=colors.LogNorm(vmin=1, vmax=15))
- plt.grid(True)
- cbar=plt.colorbar()
- plt.xlabel('column',fontsize=12)
- plt.ylabel('row',fontsize=12)
- cbar.set_label('U$_{gs-rms}$ ($\mu$V)', rotation=270, labelpad=15,fontsize=13)
|