1234567891011121314151617181920212223242526272829303132333435363738 |
- % Local Regression and Likelihood, Figure 8.3.
- %
- % Discrimination/Classification, iris data for different
- % smooting paramters.
- %
- % Note that the iris.mat file contains the full iris dataset;
- % only Versicolor and Virginica are used in this example.
- %
- % The `Species' variable contains species names. `Specn' has
- % them numerically, Setosa=1, Versicolor=2, Virginica=3.
- %
- % Author: Catherine Loader
- %
- % Need: get contour plot correct.
- % Need: distinguish colors in plot.
- load iris;
- a = (2:9)/10;
- z = zeros(size(a));
- u = find(Specn >= 2);
- pw = PetalWid(u);
- pl = PetalLen(u);
- y = (Specn(u)==3);
- for i = 1:length(a)
- fit = locfit([pw pl],y,'deg',1,'alpha',a(i),'ev','cros','scale',0,'family','binomial');
- fv = fitted(fit);
- tb = tabulate(10*y+(fv>=0.5))
- z(i) = sum(y == (fv<=0.5));
- end;
- [a; z]
- fit = locfit([pw pl],y,'deg',1,'scale',0,'family','binomial');
- figure('Name','fig8_3: iris classification');
- lfplot(fit,'contour');
|