123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554 |
- % Using 2D or 3D affine matrix to rotate, translate, scale, reflect and
- % shear a 2D image or 3D volume. 2D image is represented by a 2D matrix,
- % 3D volume is represented by a 3D matrix, and data type can be real
- % integer or floating-point.
- %
- % You may notice that MATLAB has a function called 'imtransform.m' for
- % 2D spatial transformation. However, keep in mind that 'imtransform.m'
- % assumes y for the 1st dimension, and x for the 2nd dimension. They are
- % equivalent otherwise.
- %
- % In addition, if you adjust the 'new_elem_size' parameter, this 'affine.m'
- % is equivalent to 'interp2.m' for 2D image, and equivalent to 'interp3.m'
- % for 3D volume.
- %
- % Usage: [new_img new_M] = ...
- % affine(old_img, old_M, [new_elem_size], [verbose], [bg], [method]);
- %
- % old_img - original 2D image or 3D volume. We assume x for the 1st
- % dimension, y for the 2nd dimension, and z for the 3rd
- % dimension.
- %
- % old_M - a 3x3 2D affine matrix for 2D image, or a 4x4 3D affine
- % matrix for 3D volume. We assume x for the 1st dimension,
- % y for the 2nd dimension, and z for the 3rd dimension.
- %
- % new_elem_size (optional) - size of voxel along x y z direction for
- % a transformed 3D volume, or size of pixel along x y for
- % a transformed 2D image. We assume x for the 1st dimension
- % y for the 2nd dimension, and z for the 3rd dimension.
- % 'new_elem_size' is 1 if it is default or empty.
- %
- % You can increase its value to decrease the resampling rate,
- % and make the 2D image or 3D volume more coarse. It works
- % just like 'interp3'.
- %
- % verbose (optional) - 1, 0
- % 1: show transforming progress in percentage
- % 2: progress will not be displayed
- % 'verbose' is 1 if it is default or empty.
- %
- % bg (optional) - background voxel intensity in any extra corner that
- % is caused by the interpolation. 0 in most cases. If it is
- % default or empty, 'bg' will be the average of two corner
- % voxel intensities in original data.
- %
- % method (optional) - 1, 2, or 3
- % 1: for Trilinear interpolation
- % 2: for Nearest Neighbor interpolation
- % 3: for Fischer's Bresenham interpolation
- % 'method' is 1 if it is default or empty.
- %
- % new_img - transformed 2D image or 3D volume
- %
- % new_M - transformed affine matrix
- %
- % Example 1 (3D rotation):
- % load mri.mat; old_img = double(squeeze(D));
- % old_M = [0.88 0.5 3 -90; -0.5 0.88 3 -126; 0 0 2 -72; 0 0 0 1];
- % new_img = affine(old_img, old_M, 2);
- % [x y z] = meshgrid(1:128,1:128,1:27);
- % sz = size(new_img);
- % [x1 y1 z1] = meshgrid(1:sz(2),1:sz(1),1:sz(3));
- % figure; slice(x, y, z, old_img, 64, 64, 13.5);
- % shading flat; colormap(map); view(-66, 66);
- % figure; slice(x1, y1, z1, new_img, sz(1)/2, sz(2)/2, sz(3)/2);
- % shading flat; colormap(map); view(-66, 66);
- %
- % Example 2 (2D interpolation):
- % load mri.mat; old_img=D(:,:,1,13)';
- % old_M = [1 0 0; 0 1 0; 0 0 1];
- % new_img = affine(old_img, old_M, [.2 .4]);
- % figure; image(old_img); colormap(map);
- % figure; image(new_img); colormap(map);
- %
- % This program is inspired by:
- % SPM5 Software from Wellcome Trust Centre for Neuroimaging
- % http://www.fil.ion.ucl.ac.uk/spm/software
- % Fischer, J., A. del Rio (2004). A Fast Method for Applying Rigid
- % Transformations to Volume Data, WSCG2004 Conference.
- % http://wscg.zcu.cz/wscg2004/Papers_2004_Short/M19.pdf
- %
- % - Jimmy Shen (jimmy@rotman-baycrest.on.ca)
- %
- function [new_img, new_M] = affine(old_img, old_M, new_elem_size, verbose, bg, method)
- if ~exist('old_img','var') | ~exist('old_M','var')
- error('Usage: [new_img new_M] = affine(old_img, old_M, [new_elem_size], [verbose], [bg], [method]);');
- end
- if ndims(old_img) == 3
- if ~isequal(size(old_M),[4 4])
- error('old_M should be a 4x4 affine matrix for 3D volume.');
- end
- elseif ndims(old_img) == 2
- if ~isequal(size(old_M),[3 3])
- error('old_M should be a 3x3 affine matrix for 2D image.');
- end
- else
- error('old_img should be either 2D image or 3D volume.');
- end
- if ~exist('new_elem_size','var') | isempty(new_elem_size)
- new_elem_size = [1 1 1];
- elseif length(new_elem_size) < 2
- new_elem_size = new_elem_size(1)*ones(1,3);
- elseif length(new_elem_size) < 3
- new_elem_size = [new_elem_size(:); 1]';
- end
- if ~exist('method','var') | isempty(method)
- method = 1;
- elseif ~exist('bresenham_line3d.m','file') & method == 3
- error([char(10) char(10) 'Please download 3D Bresenham''s line generation program from:' char(10) char(10) 'http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=21057' char(10) char(10) 'to test Fischer''s Bresenham interpolation method.' char(10) char(10)]);
- end
- % Make compatible to MATLAB earlier than version 7 (R14), which
- % can only perform arithmetic on double data type
- %
- old_img = double(old_img);
- old_dim = size(old_img);
- if ~exist('bg','var') | isempty(bg)
- bg = mean([old_img(1) old_img(end)]);
- end
- if ~exist('verbose','var') | isempty(verbose)
- verbose = 1;
- end
- if ndims(old_img) == 2
- old_dim(3) = 1;
- old_M = old_M(:, [1 2 3 3]);
- old_M = old_M([1 2 3 3], :);
- old_M(3,:) = [0 0 1 0];
- old_M(:,3) = [0 0 1 0]';
- end
- % Vertices of img in voxel
- %
- XYZvox = [ 1 1 1
- 1 1 old_dim(3)
- 1 old_dim(2) 1
- 1 old_dim(2) old_dim(3)
- old_dim(1) 1 1
- old_dim(1) 1 old_dim(3)
- old_dim(1) old_dim(2) 1
- old_dim(1) old_dim(2) old_dim(3) ]';
- old_R = old_M(1:3,1:3);
- old_T = old_M(1:3,4);
- % Vertices of img in millimeter
- %
- XYZmm = old_R*(XYZvox-1) + repmat(old_T, [1, 8]);
- % Make scale of new_M according to new_elem_size
- %
- new_M = diag([new_elem_size 1]);
- % Make translation so minimum vertex is moved to [1,1,1]
- %
- new_M(1:3,4) = round( min(XYZmm,[],2) );
- % New dimensions will be the maximum vertices in XYZ direction (dim_vox)
- % i.e. compute dim_vox via dim_mm = R*(dim_vox-1)+T
- % where, dim_mm = round(max(XYZmm,[],2));
- %
- new_dim = ceil(new_M(1:3,1:3) \ ( round(max(XYZmm,[],2))-new_M(1:3,4) )+1)';
- % Initialize new_img with new_dim
- %
- new_img = zeros(new_dim(1:3));
- % Mask out any changes from Z axis of transformed volume, since we
- % will traverse it voxel by voxel below. We will only apply unit
- % increment of mask_Z(3,4) to simulate the cursor movement
- %
- % i.e. we will use mask_Z * new_XYZvox to replace new_XYZvox
- %
- mask_Z = diag(ones(1,4));
- mask_Z(3,3) = 0;
- % It will be easier to do the interpolation if we invert the process
- % by not traversing the original volume. Instead, we traverse the
- % transformed volume, and backproject each voxel in the transformed
- % volume back into the original volume. If the backprojected voxel
- % in original volume is within its boundary, the intensity of that
- % voxel can be used by the cursor location in the transformed volume.
- %
- % First, we traverse along Z axis of transformed volume voxel by voxel
- %
- for z = 1:new_dim(3)
- if verbose & ~mod(z,10)
- fprintf('%.2f percent is done.\n', 100*z/new_dim(3));
- end
- % We need to find out the mapping from voxel in the transformed
- % volume (new_XYZvox) to voxel in the original volume (old_XYZvox)
- %
- % The following equation works, because they all equal to XYZmm:
- % new_R*(new_XYZvox-1) + new_T == old_R*(old_XYZvox-1) + old_T
- %
- % We can use modified new_M1 & old_M1 to substitute new_M & old_M
- % new_M1 * new_XYZvox == old_M1 * old_XYZvox
- %
- % where: M1 = M; M1(:,4) = M(:,4) - sum(M(:,1:3),2);
- % and: M(:,4) == [T; 1] == sum(M1,2)
- %
- % Therefore: old_XYZvox = old_M1 \ new_M1 * new_XYZvox;
- %
- % Since we are traverse Z axis, and new_XYZvox is replaced
- % by mask_Z * new_XYZvox, the above formula can be rewritten
- % as: old_XYZvox = old_M1 \ new_M1 * mask_Z * new_XYZvox;
- %
- % i.e. we find the mapping from new_XYZvox to old_XYZvox:
- % M = old_M1 \ new_M1 * mask_Z;
- %
- % First, compute modified old_M1 & new_M1
- %
- old_M1 = old_M; old_M1(:,4) = old_M(:,4) - sum(old_M(:,1:3),2);
- new_M1 = new_M; new_M1(:,4) = new_M(:,4) - sum(new_M(:,1:3),2);
- % Then, apply unit increment of mask_Z(3,4) to simulate the
- % cursor movement
- %
- mask_Z(3,4) = z;
- % Here is the mapping from new_XYZvox to old_XYZvox
- %
- M = old_M1 \ new_M1 * mask_Z;
- switch method
- case 1
- new_img(:,:,z) = trilinear(old_img, new_dim, old_dim, M, bg);
- case 2
- new_img(:,:,z) = nearest_neighbor(old_img, new_dim, old_dim, M, bg);
- case 3
- new_img(:,:,z) = bresenham(old_img, new_dim, old_dim, M, bg);
- end
- end; % for z
- if ndims(old_img) == 2
- new_M(3,:) = [];
- new_M(:,3) = [];
- end
- return; % affine
- %--------------------------------------------------------------------
- function img_slice = trilinear(img, dim1, dim2, M, bg)
- img_slice = zeros(dim1(1:2));
- TINY = 5e-2; % tolerance
- % Dimension of transformed 3D volume
- %
- xdim1 = dim1(1);
- ydim1 = dim1(2);
- % Dimension of original 3D volume
- %
- xdim2 = dim2(1);
- ydim2 = dim2(2);
- zdim2 = dim2(3);
- % initialize new_Y accumulation
- %
- Y2X = 0;
- Y2Y = 0;
- Y2Z = 0;
- for y = 1:ydim1
- % increment of new_Y accumulation
- %
- Y2X = Y2X + M(1,2); % new_Y to old_X
- Y2Y = Y2Y + M(2,2); % new_Y to old_Y
- Y2Z = Y2Z + M(3,2); % new_Y to old_Z
- % backproject new_Y accumulation and translation to old_XYZ
- %
- old_X = Y2X + M(1,4);
- old_Y = Y2Y + M(2,4);
- old_Z = Y2Z + M(3,4);
- for x = 1:xdim1
- % accumulate the increment of new_X, and apply it
- % to the backprojected old_XYZ
- %
- old_X = M(1,1) + old_X ;
- old_Y = M(2,1) + old_Y ;
- old_Z = M(3,1) + old_Z ;
- % within boundary of original image
- %
- if ( old_X > 1-TINY & old_X < xdim2+TINY & ...
- old_Y > 1-TINY & old_Y < ydim2+TINY & ...
- old_Z > 1-TINY & old_Z < zdim2+TINY )
- % Calculate distance of old_XYZ to its neighbors for
- % weighted intensity average
- %
- dx = old_X - floor(old_X);
- dy = old_Y - floor(old_Y);
- dz = old_Z - floor(old_Z);
- x000 = floor(old_X);
- x100 = x000 + 1;
- if floor(old_X) < 1
- x000 = 1;
- x100 = x000;
- elseif floor(old_X) > xdim2-1
- x000 = xdim2;
- x100 = x000;
- end
- x010 = x000;
- x001 = x000;
- x011 = x000;
- x110 = x100;
- x101 = x100;
- x111 = x100;
- y000 = floor(old_Y);
- y010 = y000 + 1;
- if floor(old_Y) < 1
- y000 = 1;
- y100 = y000;
- elseif floor(old_Y) > ydim2-1
- y000 = ydim2;
- y010 = y000;
- end
- y100 = y000;
- y001 = y000;
- y101 = y000;
- y110 = y010;
- y011 = y010;
- y111 = y010;
- z000 = floor(old_Z);
- z001 = z000 + 1;
- if floor(old_Z) < 1
- z000 = 1;
- z001 = z000;
- elseif floor(old_Z) > zdim2-1
- z000 = zdim2;
- z001 = z000;
- end
- z100 = z000;
- z010 = z000;
- z110 = z000;
- z101 = z001;
- z011 = z001;
- z111 = z001;
- x010 = x000;
- x001 = x000;
- x011 = x000;
- x110 = x100;
- x101 = x100;
- x111 = x100;
- v000 = double(img(x000, y000, z000));
- v010 = double(img(x010, y010, z010));
- v001 = double(img(x001, y001, z001));
- v011 = double(img(x011, y011, z011));
- v100 = double(img(x100, y100, z100));
- v110 = double(img(x110, y110, z110));
- v101 = double(img(x101, y101, z101));
- v111 = double(img(x111, y111, z111));
- img_slice(x,y) = v000*(1-dx)*(1-dy)*(1-dz) + ...
- v010*(1-dx)*dy*(1-dz) + ...
- v001*(1-dx)*(1-dy)*dz + ...
- v011*(1-dx)*dy*dz + ...
- v100*dx*(1-dy)*(1-dz) + ...
- v110*dx*dy*(1-dz) + ...
- v101*dx*(1-dy)*dz + ...
- v111*dx*dy*dz;
- else
- img_slice(x,y) = bg;
- end % if boundary
- end % for x
- end % for y
- return; % trilinear
- %--------------------------------------------------------------------
- function img_slice = nearest_neighbor(img, dim1, dim2, M, bg)
- img_slice = zeros(dim1(1:2));
- % Dimension of transformed 3D volume
- %
- xdim1 = dim1(1);
- ydim1 = dim1(2);
- % Dimension of original 3D volume
- %
- xdim2 = dim2(1);
- ydim2 = dim2(2);
- zdim2 = dim2(3);
- % initialize new_Y accumulation
- %
- Y2X = 0;
- Y2Y = 0;
- Y2Z = 0;
- for y = 1:ydim1
- % increment of new_Y accumulation
- %
- Y2X = Y2X + M(1,2); % new_Y to old_X
- Y2Y = Y2Y + M(2,2); % new_Y to old_Y
- Y2Z = Y2Z + M(3,2); % new_Y to old_Z
- % backproject new_Y accumulation and translation to old_XYZ
- %
- old_X = Y2X + M(1,4);
- old_Y = Y2Y + M(2,4);
- old_Z = Y2Z + M(3,4);
- for x = 1:xdim1
- % accumulate the increment of new_X and apply it
- % to the backprojected old_XYZ
- %
- old_X = M(1,1) + old_X ;
- old_Y = M(2,1) + old_Y ;
- old_Z = M(3,1) + old_Z ;
- xi = round(old_X);
- yi = round(old_Y);
- zi = round(old_Z);
- % within boundary of original image
- %
- if ( xi >= 1 & xi <= xdim2 & ...
- yi >= 1 & yi <= ydim2 & ...
- zi >= 1 & zi <= zdim2 )
- img_slice(x,y) = img(xi,yi,zi);
- else
- img_slice(x,y) = bg;
- end % if boundary
- end % for x
- end % for y
- return; % nearest_neighbor
- %--------------------------------------------------------------------
- function img_slice = bresenham(img, dim1, dim2, M, bg)
- img_slice = zeros(dim1(1:2));
- % Dimension of transformed 3D volume
- %
- xdim1 = dim1(1);
- ydim1 = dim1(2);
- % Dimension of original 3D volume
- %
- xdim2 = dim2(1);
- ydim2 = dim2(2);
- zdim2 = dim2(3);
- for y = 1:ydim1
- start_old_XYZ = round(M*[0 y 0 1]');
- end_old_XYZ = round(M*[xdim1 y 0 1]');
- [X Y Z] = bresenham_line3d(start_old_XYZ, end_old_XYZ);
- % line error correction
- %
- % del = end_old_XYZ - start_old_XYZ;
- % del_dom = max(del);
- % idx_dom = find(del==del_dom);
- % idx_dom = idx_dom(1);
- % idx_other = [1 2 3];
- % idx_other(idx_dom) = [];
- %del_x1 = del(idx_other(1));
- % del_x2 = del(idx_other(2));
- % line_slope = sqrt((del_x1/del_dom)^2 + (del_x2/del_dom)^2 + 1);
- % line_error = line_slope - 1;
- % line error correction removed because it is too slow
- for x = 1:xdim1
- % rescale ratio
- %
- i = round(x * length(X) / xdim1);
- if i < 1
- i = 1;
- elseif i > length(X)
- i = length(X);
- end
- xi = X(i);
- yi = Y(i);
- zi = Z(i);
- % within boundary of the old XYZ space
- %
- if ( xi >= 1 & xi <= xdim2 & ...
- yi >= 1 & yi <= ydim2 & ...
- zi >= 1 & zi <= zdim2 )
- img_slice(x,y) = img(xi,yi,zi);
- % if line_error > 1
- % x = x + 1;
- % if x <= xdim1
- % img_slice(x,y) = img(xi,yi,zi);
- % line_error = line_slope - 1;
- % end
- % end % if line_error
- % line error correction removed because it is too slow
- else
- img_slice(x,y) = bg;
- end % if boundary
- end % for x
- end % for y
- return; % bresenham
|