Scheduled service maintenance on November 22


On Friday, November 22, 2024, between 06:00 CET and 18:00 CET, GIN services will undergo planned maintenance. Extended service interruptions should be expected. We will try to keep downtimes to a minimum, but recommend that users avoid critical tasks, large data uploads, or DOI requests during this time.

We apologize for any inconvenience.

C_generateLightDataFiles.m 2.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475
  1. %% generate light data_file for efficient processing
  2. Training=2; %1 for Overtraining, 2 for acquisition
  3. %% OT dataSet
  4. if Training==1
  5. load('Rextendedtraining.mat');
  6. Erefnames=R.Erefnames(1:7);
  7. Tm=R.Param.Tm;
  8. Ninfo=R.Ninfo;
  9. Coord=R.Coord;
  10. %Class=R.Class(:,1);
  11. for i=1:length(Erefnames)
  12. Ev(i).PSTHz(:,:)=R.Ev(i).PSTHz(:,:);
  13. Ev(i).PSTHraw(:,:)=R.Ev(i).PSTHraw(:,:);
  14. Ev(i).PSTHrawBL(:,:)=R.Ev(i).PSTHrawBL(:,:);
  15. Ev(i).Meanz(:,1)=R.Ev(i).Meanz(:,1);
  16. %Ev(i).BW(:,1)=R.Ev(i).BW(:,1);
  17. Ev(i).MeanzPRE(:,1)=R.Ev(i).MeanzPRE(:,1);
  18. A(:,i)=R.Ev(i).RespDirPost;
  19. B(:,i)=R.Ev(i).RespDirPre;
  20. if ~isempty(R.Ev(i).rawMeanz)
  21. Ev(i).rawMeanz(:,1)=R.Ev(i).rawMeanz(:,1);
  22. Ev(i).rawMeanzPre(:,1)=R.Ev(i).rawMeanzPre(:,1);
  23. else
  24. Ev(i).rawMeanz(length(Ev(i).Meanz(:,1)),1)=nan;
  25. Ev(i).rawMeanzPre(:,1)=R.Ev(i).rawMeanzPre(:,1);
  26. end
  27. end
  28. TRNevent=[B(:,1:6) A(:,1:5) A(:,7)];
  29. TRN(:,1)=nansum(abs(TRNevent),2);
  30. save('Rextendedtraining_light.mat','Coord','Erefnames','Ev','Ninfo','Tm','TRN')
  31. %% Acquisition data set
  32. else
  33. load('Rearlytraining.mat');
  34. path='C:\Users\yvandae1\Documents\MATLAB\DT Nex Files\RESULTdt.xls';
  35. [~,Session] = xlsread(path,'Windows','c18:c30');
  36. Erefnames=R.Erefnames(1:7);
  37. Tm=R.Param.Tm;
  38. for i=1:size(R.Ses,2) %include sessions DT and DT5
  39. A=[];B=[];
  40. A(1:length(R.Ses(i).Coord),1:length(Erefnames))=NaN(length(R.Ses(i).Coord),length(Erefnames));
  41. Ses(i).Coord=R.Ses(i).Coord;
  42. Ses(i).Ninfo=R.Ses(i).Ninfo;
  43. for j=1:length(Erefnames)
  44. Ses(i).Ev(j).PSTHz(:,:)=R.Ses(i).Ev(j).PSTHz(:,:);
  45. Ses(i).Ev(j).PSTHraw(:,:)=R.Ses(i).Ev(j).PSTHraw(:,:);
  46. Ses(i).Ev(j).PSTHrawBL(:,:)=R.Ses(i).Ev(j).PSTHrawBL(:,:);
  47. Ses(i).Ev(j).Meanz(:,1)=R.Ses(i).Ev(j).Meanz(:,1);
  48. if ~isempty(R.Ses(i).Ev(j).rawMeanz)
  49. Ses(i).Ev(j).rawMeanz(:,1)=R.Ses(i).Ev(j).rawMeanz(:,1);
  50. Ses(i).Ev(j).MeanzPRE(:,1)=R.Ses(i).Ev(j).MeanzPRE(:,1);
  51. else
  52. Ses(i).Ev(j).rawMeanz(length(Ses(i).Ev(j).Meanz(:,1)),1)=nan;
  53. Ses(i).Ev(j).rawMeanz(length(Ses(i).Ev(j).Meanz(:,1)),1)=nan;
  54. end
  55. A(:,j)=R.Ses(i).Ev(j).RespDirPost;
  56. B(:,j)=R.Ses(i).Ev(j).RespDirPre;
  57. end
  58. TRNevent=[B(:,1:6) A(:,1:5) A(:,7)];
  59. Ses(i).TRN(:,1)=nansum(abs(TRNevent),2);
  60. end
  61. save('Rearlytraining_light.mat','Erefnames','Ses','Tm')
  62. end