12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- import os
- import shutil
- import nibabel as nib
- from PIL import Image
- import numpy as np
- from sklearn.metrics import mutual_info_score
- from preprocess import mask_foreground
- from pprint import pprint
- def save_slice(template, filename, index, affine=np.eye(4), header=None):
- _slice = nib.load(str(template))
- _slice_data = _slice.get_data()
- newimg = nib.Nifti1Image(_slice_data[:, index, :], affine, header)
- newimg.header['pixdim'] = header['pixdim']
- if header is None:
- newimg.header['pixdim'][1:3] = _slice.header['pixdim'][1], _slice.header['pixdim'][3]
- newimg.to_filename(str(filename))
- return filename
- # Functions for temporary directory
- def create_dir(name):
- if not os.path.exists(name):
- os.mkdir(name)
- # Functions for calculating mutual info of two slices
- def remove_dir(loc):
- shutil.rmtree(loc)
- def remove_nan(input_array):
- output_list = input_array.ravel()
- output_list[np.isnan(output_list)] = 0
- return output_list
- def mutual_info(slice1, slice2, bins=32):
- slice1, slice2 = remove_nan(slice1), remove_nan(slice2)
- hist = np.histogram2d(slice1, slice2, bins=bins)[0]
- return mutual_info_score(None, None, contingency=hist)
- def mutual_info_mask(slice1,slice2, bins=32):
- slice1_masked = mask_foreground(slice1)
- slice2_masked = mask_foreground(slice2)
- common = np.logical_and(slice1_masked, slice2_masked)
- slice1, slice2 = np.where(common, slice1, 0), np.where(common, slice2, 0)
- hist = np.histogram2d(slice1.ravel(), slice2.ravel(), bins=bins)[0]
- return mutual_info_score(None, None, contingency=hist)
- def dice_coef(slice1, slice2):
- mask_1 = mask_foreground(slice1).astype(np.bool)
- mask_2 = mask_foreground(slice2).astype(np.bool)
- intersection = np.logical_and(mask_1, mask_2)
- return 2. * intersection.sum() / (mask_1.sum() + mask_2.sum())
- def resize_im(image_data, image_with_dimensions):
- dimensions = (image_with_dimensions.shape[1], image_with_dimensions.shape[0])
- resized = np.array(Image.fromarray(image_data).resize(dimensions))
- return resized
- def slice_num_to_index(slice_num):
- index_dict = {
- 1: 175,
- 2: 154,
- 3: 123,
- 4: 112,
- 5: 93,
- 6: 75,
- 7: 31,
- 8: 7,
- 9: 119,
- 10: 100,
- 11: 83,
- 12: 71
- }
- return index_dict[slice_num]
- def bregma_to_slice_index(bregma):
- return round(27.908*bregma + 116.831)
- def slice_index_to_bregma(slice_index):
- return round(0.03564*slice_index - 4.168)
|