A_DataProcessing_FR5.m 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263
  1. %%
  2. clear all; clc;
  3. global Dura Baseline Tm Tbase BSIZE Tbin DuraITI TmITI
  4. tic
  5. path='E:\Youna\Post-doc\MATLAB\Youna Matlab\DT Nex Files\RESULTfr5.xls'; %excel file with windows etc
  6. %Main settings
  7. BSIZE=0.01; %Do not change
  8. Dura=[-25 20]; Tm=Dura(1):BSIZE:Dura(2);
  9. DuraITI=[-50 20]; TmITI=DuraITI(1):BSIZE:DuraITI(2);
  10. %Baseline=[-22 0]; Tbase=Baseline(1):BSIZE:Baseline(2); %now defined line 98
  11. Tbin=-0.5:0.005:0.5; %window used to determine the optimal binsize
  12. PStat=0.01; %for comparing pre versus post windows, or event A versus event B
  13. MinNumTrials=10;
  14. R=[];R.Ninfo={};NN=0;
  15. Nneurons=[];
  16. Neur=0;
  17. BinSize=0.05;
  18. load('RAW_FR5.mat');
  19. RAW=RAW;
  20. %Smoothing
  21. Smoothing=1; %0 for raw and 1 for smoothing
  22. SmoothTYPE='lowess';
  23. SmoothSPAN=5;
  24. if Smoothing~=1, SmoothTYPE='NoSmoothing';SmoothSPAN=NaN; end
  25. % List of events to analyze and analysis windows EXTRACTED from excel file
  26. [~,Erefnames]=xlsread(path,'Windows','a3:a8'); % cell that contains the event names
  27. prewin = [-1 0];
  28. EventWin = xlsread(path,'Windows','b3:c8'); %for FR5
  29. PreEventWin = xlsread(path,'Windows','d3:e8');
  30. PostEventWin = xlsread(path,'Windows','f3:g8');
  31. [~,Session] = xlsread(path,'Windows','c20:c29');
  32. %% Pre-Allocate
  33. R.Erefnames= Erefnames;
  34. R.Session= Session;
  35. SessionName = {RAW.SessionName};
  36. Ncum=0;
  37. %Finds the total number of neurons accross all sessions
  38. for i=1:length(Session) %loops through sessions
  39. Ses=strcmp(Session(i),SessionName);
  40. SesIndex=find(Ses==1);
  41. NN=0; Neur=0;
  42. R.Ses(i).Ninfo=[];
  43. for y=1:length(SesIndex)
  44. R.Ses(i).Ninfo=cat(1,R.Ses(i).Ninfo,RAW(SesIndex(y)).Ninfo);
  45. Neur=Neur+size(RAW(SesIndex(y)).Nrast,1);
  46. Nneurons(i)=Neur;
  47. end
  48. load('Coord_FR5.mat');
  49. R.Ses(i).Coord=part(i).Coord;
  50. R.Ses(i).Structure=part(i).Coord(:,4);
  51. R.Ses(i).Ninfo=cat(2, R.Ses(i).Ninfo, mat2cell([1:Nneurons(i)]',ones(1,Nneurons(i)),1));
  52. for k=1:length(Erefnames)
  53. R.Ses(i).Ev(k).PSTHraw(1:Nneurons(i),1:length(Tm))=NaN(Nneurons(i),length(Tm));
  54. R.Ses(i).Ev(k).PSTHz(1:Nneurons(i),1:length(Tm))=NaN(Nneurons(i),length(Tm));
  55. R.Ses(i).Ev(k).PSTHrawBL(1:Nneurons(i),1:length(Tbase))=NaN(Nneurons(i),length(Tbase));
  56. R.Ses(i).Ev(k).Meanraw(1:Nneurons(i),1)=NaN;
  57. R.Ses(i).Ev(k).rawMeanz(1:Nneurons(i),1)=NaN;
  58. R.Ses(i).Ev(k).rawMeanzPre(1:Nneurons(i),1)=NaN;
  59. R.Ses(i).Ev(k).Meanz(1:Nneurons(i),1)=NaN;
  60. R.Ses(i).Ev(k).ttestPreEvent(1:Nneurons(i),1)=NaN;
  61. R.Ses(i).Ev(k).ttestPostEvent(1:Nneurons(i),1)=NaN;
  62. R.Ses(i).Ev(k).RespDirPre(1:Nneurons(i),1)=NaN;
  63. R.Ses(i).Ev(k).RespDirPost(1:Nneurons(i),1)=NaN;
  64. R.Ses(i).Ev(k).NumberTrials(1:Nneurons(i),1)=NaN;
  65. end
  66. end
  67. % preallocating
  68. R.Param.Tm=Tm;
  69. R.Param.Tbin=Tbin;
  70. R.Param.Dura=Dura;
  71. R.Param.Baseline=Baseline;
  72. R.Param.PStat=PStat;
  73. R.Param.MinNumTrials=MinNumTrials;
  74. R.Param.path=path;
  75. R.Param.prewin=prewin;
  76. R.Param.postwinPreEvent=PreEventWin;
  77. R.Param.postwinPostEvent=PostEventWin;
  78. R.Param.SmoothTYPE=SmoothTYPE;
  79. R.Param.SmoothSPAN=SmoothSPAN;
  80. %% runs the main routine
  81. NS=0;
  82. TNN=0;
  83. for i=1:length(Session) %loops through sessions
  84. Ses=strcmp(Session(i),SessionName);
  85. SesIndex=find(Ses==1);
  86. NN=0;
  87. NS=NS+1;
  88. for y=1:length(SesIndex)
  89. for j= 1:size(RAW(SesIndex(y)).Nrast,1) %Number of neurons per session
  90. NN=NN+1; %neuron counter
  91. TNN=TNN+1; %neuron counter across all session
  92. if R.Ses(i).Structure(NN)~=0 %to avoid analyzing excluded neurons
  93. ev2=length(RAW(SesIndex(y)).Nrast{j})/RAW(SesIndex(y)).Nrast{j}(end);% FR computed across whole session.
  94. R.WF(TNN,:)=RAW(SesIndex(y)).waveforms(j,:);
  95. R.WFanalysis(TNN,1)=ev2;
  96. proportionISI=0;
  97. for k=3:1:size(RAW(SesIndex(y)).Nrast{j,1},1) % loop thru timestamps waveform
  98. ISIn=RAW(SesIndex(y)).Nrast{j,1}(k)-RAW(SesIndex(y)).Nrast{j,1}(k-1);
  99. ISIo=RAW(SesIndex(y)).Nrast{j,1}(k-1)-RAW(SesIndex(y)).Nrast{j,1}(k-2);
  100. calcul(k-2)=2*abs(ISIn-ISIo)/(ISIn+ISIo);
  101. if ISIo>0.5
  102. proportionISI=proportionISI+1;
  103. end
  104. end
  105. R.CV2(TNN,1)=mean(calcul);%CV2
  106. R.CV2(TNN,2)=100*proportionISI/(size(RAW(SesIndex(y)).Nrast{j,1},1)-1);% of ISI>0.5s
  107. R.SESSION(TNN,1)=NS;
  108. LP1Ind=strcmp('First_LP',RAW(SesIndex(y)).Einfo(:,2)); %find the event id number from RAW
  109. for k=1:length(Erefnames) %loops thorough the events
  110. EvInd=strcmp(Erefnames(k),RAW(SesIndex(y)).Einfo(:,2)); %find the event id number from RAW
  111. if sum(EvInd)==0
  112. fprintf('HOWDY, CANT FIND EVENTS FOR ''%s''\n',Erefnames{k});
  113. end
  114. if k==1
  115. FirstPressInd=EvInd;
  116. end
  117. R.Ses(i).Ev(k).NumberTrials(NN,1)=length(RAW(SesIndex(y)).Erast{EvInd});
  118. Tbase=prewin(1,1):BSIZE:prewin(1,2); % for FR5
  119. [PSR0,N0]=MakePSR04(RAW(SesIndex(y)).Nrast(j),RAW(SesIndex(y)).Erast{LP1Ind},prewin(1,:),{1});
  120. [PSR1,N1]=MakePSR04(RAW(SesIndex(y)).Nrast(j),RAW(SesIndex(y)).Erast{EvInd},Dura,{1});% makes collpased rasters. PSR1 is a cell(neurons)
  121. [PSR2,N2]=MakePSR04(RAW(SesIndex(y)).Nrast(j),RAW(SesIndex(y)).Erast{EvInd},Dura,{2});% makes trial by trail rasters. PSR1 is a cell(neurons, trials)
  122. BLcell=MakePSR04(RAW(SesIndex(y)).Erast(FirstPressInd),RAW(SesIndex(y)).Erast{EvInd},[-1800 1],{2,'Last'});
  123. if ~isempty(PSR0{1}) || ~isempty(PSR1{1}) %to avoid errors, added on 12/28 2011
  124. %Fixed bin size
  125. [PTH1,BW1,~]=MakePTH07(PSR1,repmat(N1, size(RAW(SesIndex(y)).Nrast{j},1),1),{2,0,BinSize});%-----DP used here
  126. [PTH0,~,~]=MakePTH07(PSR0,repmat(N0, size(RAW(SesIndex(y)).Nrast{j},1),1),{1,0,BinSize});%BW1 reinjected here to make sure PTH0 & PTH1 have the same BW
  127. % calculate MeanZ from PSTH before smoothing
  128. if sum(PTH0,2)~=0
  129. unsmoothPSTHz(1,1:length(Tm))=normalize(PTH1,PTH0,0);
  130. R.Ses(i).Ev(k).rawMeanz(NN,1)=nanmean(unsmoothPSTHz(1,Tm>EventWin(k,1) & Tm<EventWin(k,2)),2);
  131. R.Ses(i).Ev(k).rawMeanzPre(NN,1)=nanmean(unsmoothPSTHz(1,Tm>PreEventWin(k,1) & Tm<PreEventWin(k,2)),2);
  132. else
  133. R.Ses(i).Ev(k).rawMeanz(NN,1)=NaN;
  134. R.Ses(i).Ev(k).rawMeanzPre(NN,1)=NaN;
  135. end
  136. PTH1=smooth(PTH1,SmoothSPAN,SmoothTYPE)';
  137. PTH0=smooth(PTH0,SmoothSPAN,SmoothTYPE)';
  138. %------------- Fills the R.Ses(i).Ev(k) fields --------------
  139. R.Ses(i).Ev(k).PSTHraw(NN,1:length(Tm))=PTH1;
  140. R.Ses(i).Ev(k).PSTHrawBL(NN,1:length(Tbase))=PTH0;
  141. R.Ses(i).Ev(k).Meanraw(NN,1)=nanmean(R.Ses(i).Ev(k).PSTHraw(NN,Tm>PostEventWin(k,1) & Tm<PostEventWin(k,2)),2);
  142. if sum(PTH0,2)~=0
  143. R.Ses(i).Ev(k).PSTHz(NN,1:length(Tm))=normalize(PTH1,PTH0,0);
  144. R.Ses(i).Ev(k).Meanz(NN,1)=nanmean(R.Ses(i).Ev(k).PSTHz(NN,Tm>EventWin(k,1) & Tm<EventWin(k,2)),2);
  145. else
  146. R.Ses(i).Ev(k).PSTHz(NN,1:length(Tm))=NaN(1,length(Tm));
  147. R.Ses(i).Ev(k).Meanz(NN,1)=NaN;
  148. end
  149. %------------------ firing (in Hz) per trial in pre/post windows ------------------
  150. %used to make the between events comparisons and Response detection in a single window----
  151. ev(k).pre=NaN(size(RAW(SesIndex(y)).Erast{EvInd},1),1);
  152. ev(k).PreEvent=NaN(size(RAW(SesIndex(y)).Erast{EvInd},1),1);
  153. ev(k).PostEvent=NaN(size(RAW(SesIndex(y)).Erast{EvInd},1),1);
  154. for m=1:size(RAW(SesIndex(y)).Erast{EvInd},1) %loops through trials
  155. % ev(k).pre(m)=sum(PSR2{m}<prewin(k,2) & PSR2{m}>prewin(k,1))/(prewin(k,2)-prewin(k,1));
  156. ev(k).pre(m)=sum(PSR2{m}<(BLcell{1,m}+prewin(1,2)) & PSR2{m}>(BLcell{1,m}+prewin(1,1)))/(prewin(1,2)-prewin(1,1));
  157. ev(k).PreEvent(m)=sum(PSR2{m}<PreEventWin(k,2) & PSR2{m}>PreEventWin(k,1))/(PreEventWin(k,2)-PreEventWin(k,1));
  158. ev(k).PostEvent(m)=sum(PSR2{m}<PostEventWin(k,2) & PSR2{m}>PostEventWin(k,1))/(PostEventWin(k,2)-PostEventWin(k,1));
  159. end
  160. %---------------------------Response detection w/ SignRank on pre/post windows---------------------------
  161. if ~isempty(EvInd) && R.Ses(i).Ev(k).NumberTrials(NN,1)>= MinNumTrials && nanmean(ev(k).pre(:,1),1)>0.5 %avoid analyzing sessions where that do not have enough trials%avoid analyzing sessions where that do not have enough trials
  162. [~,R.Ses(i).Ev(k).ttestPreEvent(NN,1)]=signrank(ev(k).pre, ev(k).PreEvent); %Signrank used here because it is a dependant sample test
  163. if R.Ses(i).Ev(k).ttestPreEvent(NN,1)<PStat
  164. R.Ses(i).Ev(k).RespDirPre(NN,1)=sign(mean(ev(k).PreEvent)-mean(ev(k).pre));
  165. else R.Ses(i).Ev(k).RespDirPre(NN,1)=0;
  166. end
  167. [~,R.Ses(i).Ev(k).ttestPostEvent(NN,1)]=signrank(ev(k).pre, ev(k).PostEvent); %Signrank used here because it is a dependant sample test
  168. if R.Ses(i).Ev(k).ttestPostEvent(NN,1)<PStat
  169. R.Ses(i).Ev(k).RespDirPost(NN,1)=sign(mean(ev(k).PostEvent)-mean(ev(k).pre));
  170. else R.Ses(i).Ev(k).RespDirPost(NN,1)=0;
  171. end
  172. if R.Ses(i).Ev(k).RespDirPre(NN,1)>0 || R.Ses(i).Ev(k).RespDirPost(NN,1) >0
  173. Search=find(Tm>=PreEventWin(k,1) & Tm<=PostEventWin(k,2));
  174. [R.Ses(i).Ev(k).MaxVal(NN,1),MaxInd]=max(R.Ses(i).Ev(k).PSTHraw(NN,Search));
  175. R.Ses(i).Ev(k).MaxTime(NN,1)=Tm(Search(1)+MaxInd-1);
  176. else
  177. Search=find(Tm>=PreEventWin(k,1) & Tm<PostEventWin(k,2));
  178. [R.Ses(i).Ev(k).MaxVal(NN,1),MaxInd]=min(R.Ses(i).Ev(k).PSTHraw(NN,Search));
  179. R.Ses(i).Ev(k).MaxTime(NN,1)=Tm(Search(1)+MaxInd-1);
  180. end
  181. else R.Ses(i).Ev(k).RespDirEvent(NN,1)=0;
  182. end
  183. end %if ~isempty(PSR0{1}) || ~isempty(PSR1{1})
  184. end %if EvInd=0 OR n(trials) < MinNumTrials fills with NaN
  185. %Events
  186. fprintf('Neuron ID # %d\n',NN);
  187. elseif R.Ses(i).Structure(NN)~=0
  188. end %exclusion: IF R.Structure(NN)~=0 to avoid analyzing excluded neurons
  189. end %neurons: FOR j= 1:size(RAW(SesIndex(y)).Nrast,1)
  190. end %SesIndex
  191. end %sessions: FOR i=1:length(RAW)
  192. for k=1:size(R.Ses,2)
  193. tableTRN=[];
  194. for i=1:length(Erefnames)
  195. tableTRN(:,i)=R.Ses(k).Ev(i).RespDirPre(:,1);
  196. tableTRN(:,i+length(Erefnames))=R.Ses(k).Ev(i).RespDirPost(:,1);
  197. end
  198. R.Ses(k).TRN(:,1)=nansum(abs(tableTRN),2);
  199. end
  200. save('R_FR5.mat','R')
  201. toc