123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272 |
- %%
- clear all; clc;
- global Dura Baseline Tm Tbase BSIZE Tbin DuraITI TmITI
- tic
- path='E:\Youna\Post-doc\MATLAB\Youna Matlab\DT Nex Files\RESULTdt.xls'; %excel file with windows etc
- %Main settings
- SAVE_FLAG=1;
- BSIZE=0.01; %Do not change
- Dura=[-25 20]; Tm=Dura(1):BSIZE:Dura(2);
- DuraITI=[-50 20]; TmITI=DuraITI(1):BSIZE:DuraITI(2);
- %Baseline=[-22 0]; Tbase=Baseline(1):BSIZE:Baseline(2); %now defined line 98
- PStat=0.01; %for comparing pre versus post windows, or event A versus event B
- MinNumTrials=10;
- R=[];R.Ninfo={};NN=0;
- Nneurons=[];
- Neur=0;
- BinSize=0.05;
- load('RAW_DT5.mat');
- RAW=RAW;
- %Smoothing
- Smoothing=1; %0 for raw and 1 for smoothing
- SmoothTYPE='lowess';
- SmoothSPAN=5;
- if Smoothing~=1, SmoothTYPE='NoSmoothing';SmoothSPAN=NaN; end
- % List of events to analyze and analysis windows EXTRACTED from excel file
- [~,Erefnames]=xlsread(path,'Windows','a3:a9'); % cell that contains the event names
- prewin = [-1 0];
- EventWin = xlsread(path,'Windows','l3:m9'); %to compute MeanZ in relevant window
- PreEventWin = xlsread(path,'Windows','d3:e9');
- PostEventWin = xlsread(path,'Windows','f3:g9');
- [~,Session] = xlsread(path,'Windows','c21:c30');
- %%
- R.Erefnames= Erefnames;
- R.Session= Session;
- SessionName = {RAW.SessionName};
- Ncum=0;
- %Finds the total number of neurons accross all sessions
- for i=1:length(Session) %loops through sessions
- Ses=strcmp(Session(i),SessionName);
- SesIndex=find(Ses==1);
- NN=0; Neur=0;
- R.Ses(i).Ninfo=[];
-
- for y=1:length(SesIndex)
- R.Ses(i).Ninfo=cat(1,R.Ses(i).Ninfo,RAW(SesIndex(y)).Ninfo);
- Neur=Neur+size(RAW(SesIndex(y)).Nrast,1);
- Nneurons(i)=Neur;
- end
-
- load('Coord_DT5.mat');
- R.Ses(i).Coord=part(i+3).Coord;
- R.Ses(i).Structure=part(i+3).Coord(:,4);
- R.Ses(i).Ninfo=cat(2, R.Ses(i).Ninfo, mat2cell([1:Nneurons(i)]',ones(1,Nneurons(i)),1));
-
- for k=1:length(Erefnames)
- R.Ses(i).Ev(k).PSTHraw(1:Nneurons(i),1:length(Tm))=NaN(Nneurons(i),length(Tm));
- R.Ses(i).Ev(k).PSTHrawBL(1:Nneurons(i),1:501)=NaN(Nneurons(i),501);
- R.Ses(i).Ev(k).PSTHz(1:Nneurons(i),1:length(Tm))=NaN(Nneurons(i),length(Tm));
- R.Ses(i).Ev(k).rawMeanz(1:Nneurons(i),1)=NaN;
- R.Ses(i).Ev(k).rawMeanzPre(1:Nneurons(i),1)=NaN;
- R.Ses(i).Ev(k).Meanraw(1:Nneurons(i),1)=NaN;
- R.Ses(i).Ev(k).Meanz(1:Nneurons(i),1)=NaN;
- R.Ses(i).Ev(k).MeanzPRE(1:Nneurons(i),1)=NaN;
- R.Ses(i).Ev(k).ttestPreEvent(1:Nneurons(i),1)=NaN;
- R.Ses(i).Ev(k).ttestPostEvent(1:Nneurons(i),1)=NaN;
- R.Ses(i).Ev(k).RespDirPre(1:Nneurons(i),1)=NaN;
- R.Ses(i).Ev(k).RespDirPost(1:Nneurons(i),1)=NaN;
- R.Ses(i).Ev(k).lowBL_marker(1:Nneurons(i),1)=NaN;
- R.Ses(i).Ev(k).NumberTrials(1:Nneurons(i),1)=NaN;
- end
- end
- % preallocating
- R.Param.Tm=Tm;
- R.Param.Tbin=Tbin;
- R.Param.Dura=Dura;
- R.Param.Baseline=Baseline;
- R.Param.PStat=PStat;
- R.Param.MinNumTrials=MinNumTrials;
- R.Param.path=path;
- R.Param.prewin=prewin;
- R.Param.postwinPreEvent=PreEventWin;
- R.Param.postwinPostEvent=PostEventWin;
- R.Param.SmoothTYPE=SmoothTYPE;
- R.Param.SmoothSPAN=SmoothSPAN;
- NS=0;
- TNN=0;
- %% runs the main routine
- for i=1:length(Session) %loops through sessions
- Ses=strcmp(Session(i),SessionName);
- SesIndex=find(Ses==1);
- NN=0;
- NS=NS+1;
-
- for y=1:length(SesIndex)
- for j= 1:size(RAW(SesIndex(y)).Nrast,1) %Number of neurons per session
- NN=NN+1; %neuron counter
- TNN=TNN+1; %neuron counter across all session
-
- if R.Ses(i).Structure(NN)~=0 %to avoid analyzing excluded neurons
- ev2=length(RAW(SesIndex(y)).Nrast{j})/RAW(SesIndex(y)).Nrast{j}(end);% FR computed across whole session.
- R.WF(TNN,:)=RAW(SesIndex(y)).waveforms(j,:);
- R.WFanalysis(TNN,1)=ev2; % mean FR computed across whole session.
- proportionISI=0;
- for k=3:1:size(RAW(SesIndex(y)).Nrast{j,1},1) % loop thru timestamps waveform
- ISIn=RAW(SesIndex(y)).Nrast{j,1}(k)-RAW(SesIndex(y)).Nrast{j,1}(k-1);
- ISIo=RAW(SesIndex(y)).Nrast{j,1}(k-1)-RAW(SesIndex(y)).Nrast{j,1}(k-2);
- calcul(k-2)=2*abs(ISIn-ISIo)/(ISIn+ISIo);
- if ISIo>0.5
- proportionISI=proportionISI+1;
- end
- end
- R.CV2(TNN,1)=mean(calcul);%CV2
- R.CV2(TNN,2)=100*proportionISI/(size(RAW(SesIndex(y)).Nrast{j,1},1)-1);% of ISI>0.5s
- R.SESSION(TNN,1)=NS;
-
- LeverInsertionInd=strcmp('LeverInsertion',RAW(SesIndex(y)).Einfo(:,2)); %Ref event for BL is lever insertion
- for k=1:length(Erefnames) %loops thorough the events
- EvInd=strcmp(Erefnames(k),RAW(SesIndex(y)).Einfo(:,2)); %find the event id number from RAW
-
- clear PreEventLeverIns
- EventTimestamp=RAW(SesIndex(y)).Erast{EvInd};
- LI=RAW(SesIndex(y)).Erast{LeverInsertionInd};
-
- if k<7 && ~isempty(EventTimestamp) %lever press or PE event
- for l=1:length(EventTimestamp) %loop thru trial
- PreEventLeverIns(l,1)=LI(find(LI(:,1)<EventTimestamp(l),1,'last'));
- end
- CellLevIns{1,1}=PreEventLeverIns;
- else
- CellLevIns{1,1}=RAW(SesIndex(y)).Erast{LeverInsertionInd};
- end
-
- if sum(EvInd)==0
- fprintf('HOWDY, CANT FIND EVENTS FOR ''%s''\n',Erefnames{k});
- end
-
- R.Ses(i).Ev(k).NumberTrials(NN,1)=length(RAW(SesIndex(y)).Erast{EvInd});
- if ~isempty(EvInd) && R.Ses(i).Ev(k).NumberTrials(NN,1)>= MinNumTrials
-
- Tbase=prewin(1,1):BSIZE:prewin(1,2);
- [PSR0,N0]=MakePSR04(RAW(SesIndex(y)).Nrast(j),RAW(SesIndex(y)).Erast{LeverInsertionInd},prewin(1,:),{1});% makes collapsed rasters for baseline. BL=[-1 0] compared to LI
- [PSR1,N1]=MakePSR04(RAW(SesIndex(y)).Nrast(j),RAW(SesIndex(y)).Erast{EvInd},Dura,{1});% makes collpased rasters. PSR1 is a cell(neurons)
- [PSR2,N2]=MakePSR04(RAW(SesIndex(y)).Nrast(j),RAW(SesIndex(y)).Erast{EvInd},Dura,{2});% makes trial by trail rasters. PSR1 is a cell(neurons, trials)
- BLcell=MakePSR04(CellLevIns,RAW(SesIndex(y)).Erast{EvInd},[-1800 1],{2,'Last'});
- if ~isempty(PSR0{1}) || ~isempty(PSR1{1}) %to avoid errors, added on 12/28 2011
-
- %Fixed bin size
- [PTH1,BW1,~]=MakePTH07(PSR1,repmat(N1, size(RAW(SesIndex(y)).Nrast{j},1),1),{2,0,BinSize});%-----DP used here
- [PTH0,~,~]=MakePTH07(PSR0,repmat(N0, size(RAW(SesIndex(y)).Nrast{j},1),1),{1,0,BinSize});%BW1 reinjected here to make sure PTH0 & PTH1 have the same BW
- % calculate MeanZ from PSTH before smoothing
- if sum(PTH0,2)~=0
- unsmoothPSTHz(1,1:length(Tm))=normalize(PTH1,PTH0,0);
- R.Ses(i).Ev(k).rawMeanz(NN,1)=nanmean(unsmoothPSTHz(1,Tm>EventWin(k,1) & Tm<EventWin(k,2)),2);
- R.Ses(i).Ev(k).rawMeanzPre(NN,1)=nanmean(unsmoothPSTHz(1,Tm>PreEventWin(k,1) & Tm<PreEventWin(k,2)),2);
- else
- R.Ses(i).Ev(k).rawMeanz(NN,1)=NaN;
- R.Ses(i).Ev(k).rawMeanzPre(NN,1)=NaN;
- end
-
- PTH1=smooth(PTH1,SmoothSPAN,SmoothTYPE)';
- PTH0=smooth(PTH0,SmoothSPAN,SmoothTYPE)';
-
- %------------- Fills the R.Ses(i).Ev(k) fields --------------
-
- R.Ses(i).Ev(k).PSTHraw(NN,1:length(Tm))=PTH1;
- R.Ses(i).Ev(k).PSTHrawBL(NN,1:length(PTH0))=PTH0;
- R.Ses(i).Ev(k).Meanraw(NN,1)=nanmean(R.Ses(i).Ev(k).PSTHraw(NN,Tm>PostEventWin(k,1) & Tm<PostEventWin(k,2)),2);
- if sum(PTH0,2)~=0
- R.Ses(i).Ev(k).PSTHz(NN,1:length(Tm))=normalize(PTH1,PTH0,0);
- R.Ses(i).Ev(k).Meanz(NN,1)=nanmean(R.Ses(i).Ev(k).PSTHz(NN,Tm>EventWin(k,1) & Tm<EventWin(k,2)),2);
- R.Ses(i).Ev(k).MeanzPRE(NN,1)=nanmean(R.Ses(i).Ev(k).PSTHz(NN,Tm>PreEventWin(k,1) & Tm<PreEventWin(k,2)),2);
- else
- R.Ses(i).Ev(k).PSTHz(NN,1:length(Tm))=NaN(1,length(Tm));
- R.Ses(i).Ev(k).Meanz(NN,1)=NaN;
- R.Ses(i).Ev(k).MeanzPRE(NN,1)=NaN;
- end
-
- %------------------ firing (in Hz) per trial in pre/post windows ------------------
- %used to make the between events comparisons and Response detection in a single window----
- ev(k).pre=NaN(size(RAW(SesIndex(y)).Erast{EvInd},1),1);
- ev(k).PreEvent=NaN(size(RAW(SesIndex(y)).Erast{EvInd},1),1);
- ev(k).PostEvent=NaN(size(RAW(SesIndex(y)).Erast{EvInd},1),1);
- for m=1:size(RAW(SesIndex(y)).Erast{EvInd},1) %loops through trials
- ev(k).pre(m)=sum(PSR2{m}<(BLcell{1,m}+prewin(1,2)) & PSR2{m}>(BLcell{1,m}+prewin(1,1)))/(prewin(1,2)-prewin(1,1));
- ev(k).PreEvent(m)=sum(PSR2{m}<PreEventWin(k,2) & PSR2{m}>PreEventWin(k,1))/(PreEventWin(k,2)-PreEventWin(k,1));
- ev(k).PostEvent(m)=sum(PSR2{m}<PostEventWin(k,2) & PSR2{m}>PostEventWin(k,1))/(PostEventWin(k,2)-PostEventWin(k,1));
- end
- %---------------------------Response detection w/ SignRank on pre/post windows---------------------------
-
- if ~isempty(EvInd) && R.Ses(i).Ev(k).NumberTrials(NN,1)>= MinNumTrials && nanmean(ev(k).pre(:,1),1)>0.5 %avoid analyzing sessions where that do not have enough trials
-
- [~,R.Ses(i).Ev(k).ttestPreEvent(NN,1)]=signrank(ev(k).pre, ev(k).PreEvent); %Signrank used here because it is a dependant sample test
- if R.Ses(i).Ev(k).ttestPreEvent(NN,1)<PStat
- R.Ses(i).Ev(k).RespDirPre(NN,1)=sign(mean(ev(k).PreEvent)-mean(ev(k).pre));
- else R.Ses(i).Ev(k).RespDirPre(NN,1)=0;
- end
-
- [~,R.Ses(i).Ev(k).ttestPostEvent(NN,1)]=signrank(ev(k).pre, ev(k).PostEvent); %Signrank used here because it is a dependant sample test
- if R.Ses(i).Ev(k).ttestPostEvent(NN,1)<PStat
- R.Ses(i).Ev(k).RespDirPost(NN,1)=sign(mean(ev(k).PostEvent)-mean(ev(k).pre));
- else R.Ses(i).Ev(k).RespDirPost(NN,1)=0;
- end
-
-
- if R.Ses(i).Ev(k).RespDirPre(NN,1)>0 || R.Ses(i).Ev(k).RespDirPost(NN,1) >0
- Search=find(Tm>=PreEventWin(k,1) & Tm<=PostEventWin(k,2));
- [R.Ses(i).Ev(k).MaxVal(NN,1),MaxInd]=max(R.Ses(i).Ev(k).PSTHz(NN,Search));
- R.Ses(i).Ev(k).MaxTime(NN,1)=Tm(Search(1)+MaxInd-1);
- end
- else R.Ses(i).Ev(k).lowBL_marker(NN,1)=1;
- end
-
-
- end %if ~isempty(PSR0{1}) || ~isempty(PSR1{1})
- end %if EvInd=0 OR n(trials) < MinNumTrials fills with NaN
- end %Events
-
- fprintf('Neuron ID # %d\n',NN);
- elseif R.Ses(i).Structure(NN)~=0
- end %exclusion: IF R.Structure(NN)~=0 to avoid analyzing excluded neurons
- end %neurons: FOR j= 1:size(RAW(SesIndex(y)).Nrast,1)
- end %SesIndex
- end %sessions: FOR i=1:length(RAW)
- for k=1:size(R.Ses,2)
- tableTRN=[];
- for i=1:length(Erefnames)-1
- tableTRN(:,i)=R.Ses(k).Ev(i).RespDirPre(:,1);
- tableTRN(:,i+length(Erefnames)-1)=R.Ses(k).Ev(i).RespDirPost(:,1);
- end
- R.Ses(k).TRN(:,1)=nansum(abs(tableTRN),2);
- end
- save('R_DT5.mat','R');
- toc
|