nets_examples.m 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596
  1. %%% FSLNets - simple network matrix estimation and applications
  2. %%% FMRIB Analysis Group
  3. %%% Copyright (C) 2012-2014 University of Oxford
  4. %%% See documentation at www.fmrib.ox.ac.uk/fsl
  5. %%% change the following paths according to your local setup
  6. addpath /home/fs0/steve/NETWORKS/FSLNets % wherever you've put this package
  7. addpath /home/fs0/steve/matlab/L1precision % L1precision toolbox
  8. addpath /home/fs0/steve/matlab/pwling % pairwise causality toolbox
  9. addpath(sprintf('%s/etc/matlab',getenv('FSLDIR'))) % you don't need to edit this if FSL is setup already
  10. %%% setup the names of the directories containing your group-ICA and dualreg outputs
  11. group_maps='your-group-ICA.ica/melodic_IC'; % spatial maps 4D NIFTI file, e.g. from group-ICA
  12. %%% you must have already run the following (outside MATLAB), to create summary pictures of the maps in the NIFTI file:
  13. %%% slices_summary <group_maps> 4 $FSLDIR/data/standard/MNI152_T1_2mm <group_maps>.sum
  14. ts_dir='groupICA.dr'; % dual regression output directory, containing all subjects' timeseries
  15. %%% load timeseries data from the dual regression output directory
  16. ts=nets_load(ts_dir,3,1);
  17. %%% arg2 is the TR (in seconds)
  18. %%% arg3 controls variance normalisation: 0=none, 1=normalise whole subject stddev, 2=normalise each separate timeseries from each subject
  19. ts_spectra=nets_spectra(ts); % have a look at mean timeseries spectra
  20. %%% cleanup and remove bad nodes' timeseries (whichever is not listed in ts.DD is *BAD*).
  21. ts.DD=[1 2 3 4 5 6 7 9 11 14 15 17 18]; % list the good nodes in your group-ICA output (counting starts at 1, not 0)
  22. % ts.UNK=[10]; optionally setup a list of unknown components (where you're unsure of good vs bad)
  23. ts=nets_tsclean(ts,1); % regress the bad nodes out of the good, and then remove the bad nodes' timeseries (1=aggressive, 0=unaggressive (just delete bad)).
  24. % For partial-correlation netmats, if you are going to do nets_tsclean, then it *probably* makes sense to:
  25. % a) do the cleanup aggressively,
  26. % b) denote any "unknown" nodes as bad nodes - i.e. list them in ts.DD and not in ts.UNK
  27. % (for discussion on this, see Griffanti NeuroImage 2014.)
  28. nets_nodepics(ts,group_maps); % quick views of the good and bad components
  29. ts_spectra=nets_spectra(ts); % have a look at mean spectra after this cleanup
  30. %%% create various kinds of network matrices and optionally convert correlations to z-stats.
  31. %%% here's various examples - you might only generate/use one of these.
  32. %%% the output has one row per subject; within each row, the net matrix is unwrapped into 1D.
  33. %%% the r2z transformation estimates an empirical correction for autocorrelation in the data.
  34. netmats0= nets_netmats(ts,0,'cov'); % covariance (with variances on diagonal)
  35. netmats0a= nets_netmats(ts,0,'amp'); % amplitudes only - no correlations (just the diagonal)
  36. netmats1= nets_netmats(ts,1,'corr'); % full correlation (normalised covariances)
  37. netmats2= nets_netmats(ts,1,'icov'); % partial correlation
  38. netmats3= nets_netmats(ts,1,'icov',10); % L1-regularised partial, with lambda=10
  39. netmats5= nets_netmats(ts,1,'ridgep'); % Ridge Regression partial, with rho=0.1
  40. netmats11= nets_netmats(ts,0,'pwling'); % Hyvarinen's pairwise causality measure
  41. %%% view of consistency of netmats across subjects; returns t-test Z values as a network matrix
  42. %%% second argument (0 or 1) determines whether to display the Z matrix and a consistency scatter plot
  43. %%% third argument (optional) groups runs together; e.g. setting this to 4 means each group of 4 runs were from the same subject
  44. [Znet1,Mnet1]=nets_groupmean(netmats1,1); % test whichever netmat you're interested in; returns Z values from one-group t-test and group-mean netmat
  45. [Znet5,Mnet5]=nets_groupmean(netmats5,1); % test whichever netmat you're interested in; returns Z values from one-group t-test and group-mean netmat
  46. %%% view hierarchical clustering of nodes
  47. %%% arg1 is shown below the diagonal (and drives the clustering/hierarchy); arg2 is shown above diagonal
  48. nets_hierarchy(Znet1,Znet5,ts.DD,group_maps);
  49. %%% view interactive netmat web-based display
  50. nets_netweb(Znet1,Znet5,ts.DD,group_maps,'netweb');
  51. %%% cross-subject GLM, with inference in randomise (assuming you already have the GLM design.mat and design.con files).
  52. %%% arg4 determines whether to view the corrected-p-values, with non-significant entries removed above the diagonal.
  53. [p_uncorrected,p_corrected]=nets_glm(netmats1,'design.mat','design.con',1); % returns matrices of 1-p
  54. %%% OR - GLM, but with pre-masking that tests only the connections that are strong on average across all subjects.
  55. %%% change the "8" to a different tstat threshold to make this sparser or less sparse.
  56. %netmats=netmats3; [grotH,grotP,grotCI,grotSTATS]=ttest(netmats); netmats(:,abs(grotSTATS.tstat)<8)=0;
  57. %[p_uncorrected,p_corrected]=nets_glm(netmats,'design.mat','design.con',1);
  58. %%% view 6 most significant edges from this GLM
  59. nets_edgepics(ts,group_maps,Znet1,reshape(p_corrected(1,:),ts.Nnodes,ts.Nnodes),6);
  60. %%% simple cross-subject multivariate discriminant analyses, for just two-group cases.
  61. %%% arg1 is whichever netmats you want to test.
  62. %%% arg2 is the size of first group of subjects; set to 0 if you have two groups with paired subjects.
  63. %%% arg3 determines which LDA method to use (help nets_lda to see list of options)
  64. [lda_percentages]=nets_lda(netmats3,36,1)
  65. %%% create boxplots for the two groups for a network-matrix-element of interest (e.g., selected from GLM output)
  66. %%% arg3 = matrix row number, i.e. the first component of interest (from the DD list)
  67. %%% arg4 = matrix column number, i.e. the second component of interest (from the DD list)
  68. %%% arg5 = size of the first group (set to -1 for paired groups)
  69. nets_boxplots(ts,netmats3,1,7,36);
  70. %print('-depsc',sprintf('boxplot-%d-%d.eps',IC1,IC2)); % example syntax for printing to file