loved_alien 394b5c981d 'imagenet scans/README.md' ändern před 2 roky
..
README.md 394b5c981d 'imagenet scans/README.md' ändern před 2 roky
static25311-10-26-ColorImageNet-104e446ed0128d89c639eef0abe4655b.zip 393bfe295d upload all imagenet scans před 2 roky
static25311-11-9-ColorImageNet-b23ac8521543becfd382e56c657ba29b.zip 393bfe295d upload all imagenet scans před 2 roky
static25311-4-6-ColorImageNet-104e446ed0128d89c639eef0abe4655b.zip 2dd96d276e Upload files to 'imagenet scans' před 2 roky
static25311-5-8-ColorImageNet-b23ac8521543becfd382e56c657ba29b.zip 393bfe295d upload all imagenet scans před 2 roky
static25311-7-34-ColorImageNet-104e446ed0128d89c639eef0abe4655b.zip 393bfe295d upload all imagenet scans před 2 roky
static25311-9-24-ColorImageNet-b23ac8521543becfd382e56c657ba29b.zip 393bfe295d upload all imagenet scans před 2 roky
static25340-3-19-ColorImageNet-104e446ed0128d89c639eef0abe4655b.zip 393bfe295d upload all imagenet scans před 2 roky
static25340-4-21-ColorImageNet-104e446ed0128d89c639eef0abe4655b.zip 393bfe295d upload all imagenet scans před 2 roky
static25704-2-12-ColorImageNet-b23ac8521543becfd382e56c657ba29b.zip 393bfe295d upload all imagenet scans před 2 roky
static25704-3-11-ColorImageNet-104e446ed0128d89c639eef0abe4655b.zip 393bfe295d upload all imagenet scans před 2 roky
static25830-10-4-ColorImageNet-104e446ed0128d89c639eef0abe4655b.zip 393bfe295d upload all imagenet scans před 2 roky
static25830-10-6-ColorImageNet-b23ac8521543becfd382e56c657ba29b.zip 393bfe295d upload all imagenet scans před 2 roky
static26085-6-3-ColorImageNet-104e446ed0128d89c639eef0abe4655b.zip 393bfe295d upload all imagenet scans před 2 roky
static26085-6-4-ColorImageNet-6a21297215f4dbb802554a60c0e72877.zip 393bfe295d upload all imagenet scans před 2 roky
static26142-2-11-ColorImageNet-6a21297215f4dbb802554a60c0e72877.zip 393bfe295d upload all imagenet scans před 2 roky
static26142-2-9-ColorImageNet-104e446ed0128d89c639eef0abe4655b.zip 393bfe295d upload all imagenet scans před 2 roky
static26426-18-13-ColorImageNet-b23ac8521543becfd382e56c657ba29b.zip 393bfe295d upload all imagenet scans před 2 roky
static26426-18-9-ColorImageNet-b23ac8521543becfd382e56c657ba29b.zip 393bfe295d upload all imagenet scans před 2 roky
static26470-4-5-ColorImageNet-104e446ed0128d89c639eef0abe4655b.zip 393bfe295d upload all imagenet scans před 2 roky
static26644-6-2-ColorImageNet-b23ac8521543becfd382e56c657ba29b.zip 393bfe295d upload all imagenet scans před 2 roky
static26644-6-3-ColorImageNet-b23ac8521543becfd382e56c657ba29b.zip 393bfe295d upload all imagenet scans před 2 roky
static26872-21-6-ColorImageNet-104e446ed0128d89c639eef0abe4655b.zip 393bfe295d upload all imagenet scans před 2 roky
static26872-24-3-ColorImageNet-6a21297215f4dbb802554a60c0e72877.zip 393bfe295d upload all imagenet scans před 2 roky
static26872-25-7-ColorImageNet-b23ac8521543becfd382e56c657ba29b.zip 393bfe295d upload all imagenet scans před 2 roky
static26872-26-8-ColorImageNet-b7d5a544978737ca47635aaa9307b73c.zip 393bfe295d upload all imagenet scans před 2 roky

README.md

Dataset Structure

We provide the imagenet scans in the .zip format. Unzipping them will create two folders data and meta.

  • data: Includes the variables that were recorded during the experiment. The experimental variables are saved as a collection of numpy arrays. Each numpy array contains the value of that variable for a specific image presentation (i.e. trial). Note that the name of the files does not contain any information about the order or time at which the trials took place in experimental time. They are randomly ordered.
    • images: This directory contains NumPy arrays where each single X.npy contains the image that was shown to the mouse in trial X.
    • responses: This directory contains NumPy arrays where each single X.npy contains the deconvolved calcium traces (i.e. responses) recorded from mouse V1 in trial X in response to the particular presented image.
    • behavior: Behavioral variables include pupil dilation, the derivative of the pupil size, and locomotion speed. The directory contains NumPy arrays (of size 1 x 3) where each single X.npy contains the behavioral variables (in the same order that was mentioned earlier) for trial X.
    • pupil_center: The eye position of the mouse, estimated as the center of the pupil. The directory contains NumPy arrays (of size 1 x 2) for horizontal and vertical eye positions.
  • meta: Includes meta data of the experiment

    • neurons: This directory contains neuron-specific information. Below are a list of important variables in this directory
      • area.npy: Contains the area of each neuron.
      • cell_motor_coordinates.npy: Contains the position (x, y, z) of each neuron in the recording field, given in microns.
      • layer.npy: Contains the cortical layer the neuron was recorded in.
      • unit_ids.npy: Contains a unique id for each neuron.
    • statistics: This directory contains statistics (i.e. mean, median, etc.) of the experimental variables (i.e. behavior, images, pupil_center, and responses).

    • trials: This directory contains trial-specific meta data. This includes single 1-d NumPy arrays for each trial variable.

      How to relate these meta data to the neuronal data (images, responses, ...)?

      The indices of these arrays correspond to the .npy files in data. For example:

      # get meta data array
      image_ids = np.load('./meta/trials/colorframeprojector_image_id.npy')
            
      # relate meta data with neuronal data
      trial_image_id = image_ids[0]
      corresponding_image = np.load('./data/images/0.npy')
      corresponding_neuronal_response = np.load('./data/responses/0.npy')
      

      Below are a list of important variables in this directory.

      • colorframeprojector_image_id.npy: Contains unique image id. If the image is presented multiple times (which is the case in the test set) this image ID will be present multiple times.
      • tiers.npy: Contains labels that are used to split the data into train, validation, and test set.
      • trial_idx.npy: Contains the index for each trial. It corresponds to the actual order of image presentations to the mouse.
datacite.yml
Title State-dependent pupil dilation rapidly shifts visual feature representations
Authors Franke,Katrin;Institute for Ophthalmic Research, Tuebingen University, Tuebingen, Germany.
Willeke,Konstantin F.;Institute for Bioinformatics and Medical Informatics, Tuebingen University, Tuebingen, Germany
Ponder,Kayla;Department of Neuroscience, Baylor College of Medicine, Houston, TX, US
Galdamez,Mario;Department of Neuroscience, Baylor College of Medicine, Houston, TX, US
Zhou,Na;Department of Neuroscience, Baylor College of Medicine, Houston, TX, US
Muhammad,Taliah;Department of Neuroscience, Baylor College of Medicine, Houston, TX, US
Patel,Saumil;Department of Neuroscience, Baylor College of Medicine, Houston, TX, US
Froudarakis,Emmanouil;Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
Reimer,Jacob;Department of Neuroscience, Baylor College of Medicine, Houston, TX, US
Sinz,Fabian;Department of Computer Science, Goettingen University, Goettingen, Germany
Tolias,Andreas;Department of Neuroscience, Baylor College of Medicine, Houston, TX, US
Description Complete dataset for the article "State-dependent pupil dilation rapidly shifts visual feature representations".
License CC-BY (http://creativecommons.org/licenses/by/4.0/)
References Franke, K., Willeke, K.F., Ponder, K., Galdamez, M., Muhammad, T., Patel, S., Froudarakis, E., Reimer, J., Sinz, F., & Tolias, A.S. (2021). Behavioral state tunes mouse vision to ethological features through pupil dilation. bioRxiv. [doi:10.1101/2021.09.03.458870] (IsSupplementTo)
Funding DFG, EXC 2064/1
IARPA, D16PC00003
NIH, R01 EY026927
NIH, T32-EY-002520-37
NSF, 1707400
Carl-Zeiss-Stiftung
Keywords Neuroscience
Systems Neuroscience
Primary visual cortex
Brain state
Behavioral state
Machine learning
Deep neural networks
Resource Type Dataset