12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849 |
- import numpy as np
- # See also: https://github.com/NeuralEnsemble/NeuroTools/blob/master/src/signals/spikes.py
- def mean_firing_rate(spiketrain):
- """
- spiketrain - an array of spike times in seconds
- """
- if len(spiketrain) < 5:
- return 0
- return np.mean(np.diff(spiketrain)) ** (-1)
- def isi_cv(spiketrain, outliers=3):
- """
- ISI Coeff of variation
-
- spiketrain - an array of spike times in seconds
- """
- if len(spiketrain) < 5:
- return 0
- isi = np.diff(spiketrain)
- #isi = isi[abs(isi - np.mean(isi)) < outliers * np.std(isi)]
- return np.std(isi)/np.mean(isi)
- def isi_fano(spiketrain, outliers=3):
- """
- The Fano Factor is defined as the variance of the isi divided by the mean of the isi
-
- http://en.wikipedia.org/wiki/Fano_factor
- From https://github.com/NeuralEnsemble/NeuroTools/blob/master/src/signals/spikes.py
-
- spiketrain - an array of spike times in seconds
- """
- if len(spiketrain) < 5:
- return 0
- isi = np.diff(spiketrain)
- #isi_filt = isi[abs(isi - np.mean(isi)) < outliers * np.std(isi)]
- return np.var(isi)/np.mean(isi)
- def burstiness(spiketrain, threshold=0.02):
- """
- spiketrain - an array of spike times in seconds
- threshold -
- """
- pass # Not implemented
|