123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199 |
- # -*- coding: utf-8 -*-
- """
- Class for reading data from BrainVision product.
- This code was originally made by L. Pezard (2010), modified B. Burle and
- S. More.
- Author: Samuel Garcia
- """
- from __future__ import unicode_literals, print_function, division, absolute_import
- from .baserawio import (BaseRawIO, _signal_channel_dtype, _unit_channel_dtype,
- _event_channel_dtype)
- import numpy as np
- import datetime
- import os
- import re
- import io
- class BrainVisionRawIO(BaseRawIO):
- """
- """
- extensions = ['vhdr']
- rawmode = 'one-file'
- def __init__(self, filename=''):
- BaseRawIO.__init__(self)
- self.filename = filename
- def _parse_header(self):
- # Read header file (vhdr)
- vhdr_header = read_brainvsion_soup(self.filename)
- bname = os.path.basename(self.filename)
- marker_filename = self.filename.replace(bname, vhdr_header['Common Infos']['MarkerFile'])
- binary_filename = self.filename.replace(bname, vhdr_header['Common Infos']['DataFile'])
- assert vhdr_header['Common Infos'][
- 'DataFormat'] == 'BINARY', NotImplementedError
- assert vhdr_header['Common Infos'][
- 'DataOrientation'] == 'MULTIPLEXED', NotImplementedError
- nb_channel = int(vhdr_header['Common Infos']['NumberOfChannels'])
- sr = 1.e6 / float(vhdr_header['Common Infos']['SamplingInterval'])
- self._sampling_rate = sr
- fmt = vhdr_header['Binary Infos']['BinaryFormat']
- fmts = {'INT_16': np.int16, 'INT_32': np.int32, 'IEEE_FLOAT_32': np.float32, }
- assert fmt in fmts, NotImplementedError
- sig_dtype = fmts[fmt]
- # raw signals memmap
- sigs = np.memmap(binary_filename, dtype=sig_dtype, mode='r', offset=0)
- if sigs.size % nb_channel != 0:
- sigs = sigs[:-sigs.size % nb_channel]
- self._raw_signals = sigs.reshape(-1, nb_channel)
- sig_channels = []
- for c in range(nb_channel):
- name, ref, res, units = vhdr_header['Channel Infos'][
- 'Ch%d' % (c + 1,)].split(',')
- units = units.replace('µ', 'u')
- chan_id = c + 1
- if sig_dtype == np.int16 or sig_dtype == np.int32:
- gain = float(res)
- else:
- gain = 1
- offset = 0
- group_id = 0
- sig_channels.append((name, chan_id, self._sampling_rate, sig_dtype,
- units, gain, offset, group_id))
- sig_channels = np.array(sig_channels, dtype=_signal_channel_dtype)
- # No spikes
- unit_channels = []
- unit_channels = np.array(unit_channels, dtype=_unit_channel_dtype)
- # read all markers in memory
- all_info = read_brainvsion_soup(marker_filename)['Marker Infos']
- ev_types = []
- ev_timestamps = []
- ev_labels = []
- for i in range(len(all_info)):
- ev_type, ev_label, pos, size, channel = all_info[
- 'Mk%d' % (i + 1,)].split(',')[:5]
- ev_types.append(ev_type)
- ev_timestamps.append(int(pos))
- ev_labels.append(ev_label)
- ev_types = np.array(ev_types)
- ev_timestamps = np.array(ev_timestamps)
- ev_labels = np.array(ev_labels, dtype='U')
- # group them by types
- self._raw_events = []
- event_channels = []
- for c, ev_type in enumerate(np.unique(ev_types)):
- ind = (ev_types == ev_type)
- event_channels.append((ev_type, '', 'event'))
- self._raw_events.append((ev_timestamps[ind], ev_labels[ind]))
- event_channels = np.array(event_channels, dtype=_event_channel_dtype)
- # fille into header dict
- self.header = {}
- self.header['nb_block'] = 1
- self.header['nb_segment'] = [1]
- self.header['signal_channels'] = sig_channels
- self.header['unit_channels'] = unit_channels
- self.header['event_channels'] = event_channels
- self._generate_minimal_annotations()
- for c in range(sig_channels.size):
- coords = vhdr_header['Coordinates']['Ch{}'.format(c + 1)]
- coords = [float(v) for v in coords.split(',')]
- if coords[0] > 0.:
- # if radius is 0 we do not have coordinates.
- self.raw_annotations['signal_channels'][c]['coordinates'] = coords
- def _source_name(self):
- return self.filename
- def _segment_t_start(self, block_index, seg_index):
- return 0.
- def _segment_t_stop(self, block_index, seg_index):
- t_stop = self._raw_signals.shape[0] / self._sampling_rate
- return t_stop
- ###
- def _get_signal_size(self, block_index, seg_index, channel_indexes):
- return self._raw_signals.shape[0]
- def _get_signal_t_start(self, block_index, seg_index, channel_indexes):
- return 0.
- def _get_analogsignal_chunk(self, block_index, seg_index, i_start, i_stop, channel_indexes):
- if channel_indexes is None:
- channel_indexes = slice(None)
- raw_signals = self._raw_signals[slice(i_start, i_stop), channel_indexes]
- return raw_signals
- ###
- def _spike_count(self, block_index, seg_index, unit_index):
- return 0
- ###
- # event and epoch zone
- def _event_count(self, block_index, seg_index, event_channel_index):
- all_timestamps, all_label = self._raw_events[event_channel_index]
- return all_timestamps.size
- def _get_event_timestamps(self, block_index, seg_index, event_channel_index, t_start, t_stop):
- timestamps, labels = self._raw_events[event_channel_index]
- if t_start is not None:
- keep = timestamps >= int(t_start * self._sampling_rate)
- timestamps = timestamps[keep]
- labels = labels[keep]
- if t_stop is not None:
- keep = timestamps <= int(t_stop * self._sampling_rate)
- timestamps = timestamps[keep]
- labels = labels[keep]
- durations = None
- return timestamps, durations, labels
- raise (NotImplementedError)
- def _rescale_event_timestamp(self, event_timestamps, dtype):
- event_times = event_timestamps.astype(dtype) / self._sampling_rate
- return event_times
- def read_brainvsion_soup(filename):
- with io.open(filename, 'r', encoding='utf8') as f:
- section = None
- all_info = {}
- for line in f:
- line = line.strip('\n').strip('\r')
- if line.startswith('['):
- section = re.findall(r'\[([\S ]+)\]', line)[0]
- all_info[section] = {}
- continue
- if line.startswith(';'):
- continue
- if '=' in line and len(line.split('=')) == 2:
- k, v = line.split('=')
- all_info[section][k] = v
- return all_info
|