123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375 |
- # -*- coding: utf-8 -*-
- """
- BCI2000RawIO is a class to read BCI2000 .dat files.
- https://www.bci2000.org/mediawiki/index.php/Technical_Reference:BCI2000_File_Format
- """
- from __future__ import print_function, division, absolute_import # unicode_literals
- from .baserawio import BaseRawIO, _signal_channel_dtype, _unit_channel_dtype, _event_channel_dtype
- import numpy as np
- import re
- try:
- from urllib.parse import unquote
- except ImportError:
- from urllib import url2pathname as unquote
- class BCI2000RawIO(BaseRawIO):
- """
- Class for reading data from a BCI2000 .dat file, either version 1.0 or 1.1
- """
- extensions = ['dat']
- rawmode = 'one-file'
- def __init__(self, filename=''):
- BaseRawIO.__init__(self)
- self.filename = filename
- self._my_events = None
- def _source_name(self):
- return self.filename
- def _parse_header(self):
- file_info, state_defs, param_defs = parse_bci2000_header(self.filename)
- self.header = {}
- self.header['nb_block'] = 1
- self.header['nb_segment'] = [1]
- sig_channels = []
- for chan_ix in range(file_info['SourceCh']):
- ch_name = param_defs['ChannelNames']['value'][chan_ix] \
- if 'ChannelNames' in param_defs else 'ch' + str(chan_ix)
- chan_id = chan_ix + 1
- sr = param_defs['SamplingRate']['value'] # Hz
- dtype = file_info['DataFormat']
- units = 'uV'
- gain = param_defs['SourceChGain']['value'][chan_ix]
- offset = param_defs['SourceChOffset']['value'][chan_ix]
- group_id = 0
- sig_channels.append((ch_name, chan_id, sr, dtype, units, gain, offset, group_id))
- self.header['signal_channels'] = np.array(sig_channels, dtype=_signal_channel_dtype)
- self.header['unit_channels'] = np.array([], dtype=_unit_channel_dtype)
- # creating event channel for each state variable
- event_channels = []
- for st_ix, st_tup in enumerate(state_defs):
- event_channels.append((st_tup[0], 'ev_' + str(st_ix), 'event'))
- self.header['event_channels'] = np.array(event_channels, dtype=_event_channel_dtype)
- # Add annotations.
- # Generates basic annotations in nested dict self.raw_annotations
- self._generate_minimal_annotations()
- self.raw_annotations['blocks'][0].update({
- 'file_info': file_info,
- 'param_defs': param_defs
- })
- for ev_ix, ev_dict in enumerate(self.raw_annotations['event_channels']):
- ev_dict.update({
- 'length': state_defs[ev_ix][1],
- 'startVal': state_defs[ev_ix][2],
- 'bytePos': state_defs[ev_ix][3],
- 'bitPos': state_defs[ev_ix][4]
- })
- import time
- time_formats = ['%a %b %d %H:%M:%S %Y', '%Y-%m-%dT%H:%M:%S']
- try:
- self._global_time = time.mktime(time.strptime(param_defs['StorageTime']['value'],
- time_formats[0]))
- except:
- self._global_time = time.mktime(time.strptime(param_defs['StorageTime']['value'],
- time_formats[1]))
- # Save variables to make it easier to load the binary data.
- self._read_info = {
- 'header_len': file_info['HeaderLen'],
- 'n_chans': file_info['SourceCh'],
- 'sample_dtype': {
- 'int16': np.int16,
- 'int32': np.int32,
- 'float32': np.float32}.get(file_info['DataFormat']),
- 'state_vec_len': file_info['StatevectorLen'],
- 'sampling_rate': param_defs['SamplingRate']['value']
- }
- # Calculate the dtype for a single timestamp of data. This contains the data + statevector
- self._read_info['line_dtype'] = [
- ('raw_vector', self._read_info['sample_dtype'], self._read_info['n_chans']),
- ('state_vector', np.uint8, self._read_info['state_vec_len'])]
- import os
- self._read_info['n_samps'] = int((os.stat(self.filename).st_size - file_info['HeaderLen'])
- / np.dtype(self._read_info['line_dtype']).itemsize)
- # memmap is fast so we can get the data ready for reading now.
- self._memmap = np.memmap(self.filename, dtype=self._read_info['line_dtype'],
- offset=self._read_info['header_len'], mode='r')
- def _segment_t_start(self, block_index, seg_index):
- return 0.
- def _segment_t_stop(self, block_index, seg_index):
- return self._read_info['n_samps'] / self._read_info['sampling_rate']
- def _get_signal_size(self, block_index, seg_index, channel_indexes=None):
- return self._read_info['n_samps']
- def _get_signal_t_start(self, block_index, seg_index, channel_indexes):
- return 0.
- def _get_analogsignal_chunk(self, block_index, seg_index, i_start, i_stop, channel_indexes):
- if i_start is None:
- i_start = 0
- if i_stop is None:
- i_stop = self._read_info['n_samps']
- assert (0 <= i_start <= self._read_info['n_samps']), "i_start outside data range"
- assert (0 <= i_stop <= self._read_info['n_samps']), "i_stop outside data range"
- if channel_indexes is None:
- channel_indexes = np.arange(self.header['signal_channels'].size)
- return self._memmap['raw_vector'][i_start:i_stop, channel_indexes]
- def _spike_count(self, block_index, seg_index, unit_index):
- return 0
- def _get_spike_timestamps(self, block_index, seg_index, unit_index, t_start, t_stop):
- return None
- def _rescale_spike_timestamp(self, spike_timestamps, dtype):
- return None
- def _get_spike_raw_waveforms(self, block_index, seg_index, unit_index, t_start, t_stop):
- return None
- def _event_count(self, block_index, seg_index, event_channel_index):
- return self._event_arrays_list[event_channel_index][0].shape[0]
- def _get_event_timestamps(self, block_index, seg_index, event_channel_index, t_start, t_stop):
- # Return 3 numpy arrays: timestamp, durations, labels
- # durations must be None for 'event'
- # label must a dtype ='U'
- ts, dur, labels = self._event_arrays_list[event_channel_index]
- # seg_t_start = self._segment_t_start(block_index, seg_index)
- keep = np.ones(ts.shape, dtype=np.bool)
- if t_start is not None:
- keep = np.logical_and(keep, ts >= t_start)
- if t_stop is not None:
- keep = np.logical_and(keep, ts <= t_stop)
- return ts[keep], dur[keep], labels[keep]
- def _rescale_event_timestamp(self, event_timestamps, dtype):
- event_times = (event_timestamps / float(self._read_info['sampling_rate'])).astype(dtype)
- return event_times
- def _rescale_epoch_duration(self, raw_duration, dtype):
- durations = (raw_duration / float(self._read_info['sampling_rate'])).astype(dtype)
- return durations
- @property
- def _event_arrays_list(self):
- if self._my_events is None:
- self._my_events = []
- for s_ix, sd in enumerate(self.raw_annotations['event_channels']):
- ev_times = durs = vals = np.array([])
- # Skip these big but mostly useless (?) states.
- if sd['name'] not in ['SourceTime', 'StimulusTime']:
- # Determine which bytes of self._memmap['state_vector'] are needed.
- nbytes = int(np.ceil((sd['bitPos'] + sd['length']) / 8))
- byte_slice = slice(sd['bytePos'], sd['bytePos'] + nbytes)
- # Then determine how to mask those bytes to get only the needed bits.
- bit_mask = np.array([255] * nbytes, dtype=np.uint8)
- bit_mask[0] &= 255 & (255 << sd['bitPos']) # Fix the mask for the first byte
- extra_bits = 8 - (sd['bitPos'] + sd['length']) % 8
- bit_mask[-1] &= 255 & (255 >> extra_bits) # Fix the mask for the last byte
- # When converting to an int, we need to know which integer type it will become
- n_max_bytes = 1 << (nbytes - 1).bit_length()
- view_type = {1: np.int8, 2: np.int16,
- 4: np.int32, 8: np.int64}.get(n_max_bytes)
- # Slice and mask the data
- masked_byte_array = self._memmap['state_vector'][:, byte_slice] & bit_mask
- # Convert byte array to a vector of ints:
- # pad to give even columns then view as larger int type
- state_vec = np.pad(masked_byte_array,
- (0, n_max_bytes - nbytes),
- 'constant').view(dtype=view_type)
- state_vec = np.right_shift(state_vec, sd['bitPos'])[:, 0]
- # In the state vector, find 'events' whenever the state changes
- st_ch_ix = np.where(np.hstack((0, np.diff(state_vec))) != 0)[0] # event inds
- if len(st_ch_ix) > 0:
- ev_times = st_ch_ix
- durs = np.asarray([None] * len(st_ch_ix))
- # np.hstack((np.diff(st_ch_ix), len(state_vec) - st_ch_ix[-1]))
- vals = np.char.mod('%d', state_vec[st_ch_ix]) # event val, string'd
- self._my_events.append([ev_times, durs, vals])
- return self._my_events
- def parse_bci2000_header(filename):
- # typically we want parameter values in Hz, seconds, or microvolts.
- scales_dict = {
- 'hz': 1, 'khz': 1000, 'mhz': 1000000,
- 'uv': 1, 'muv': 1, 'mv': 1000, 'v': 1000000,
- 's': 1, 'us': 0.000001, 'mus': 0.000001, 'ms': 0.001, 'min': 60,
- 'sec': 1, 'usec': 0.000001, 'musec': 0.000001, 'msec': 0.001
- }
- def rescale_value(param_val, data_type):
- unit_str = ''
- if param_val.lower().startswith('0x'):
- param_val = int(param_val, 16)
- elif data_type in ['int', 'float']:
- matches = re.match(r'(-*\d+)(\w*)', param_val)
- if matches is not None: # Can be None for % in def, min, max vals
- param_val, unit_str = matches.group(1), matches.group(2)
- param_val = int(param_val) if data_type == 'int' else float(param_val)
- if len(unit_str) > 0:
- param_val *= scales_dict.get(unit_str.lower(), 1)
- else:
- param_val = unquote(param_val)
- return param_val, unit_str
- def parse_dimensions(param_list):
- num_els = param_list.pop(0)
- # Sometimes the number of elements isn't given,
- # but the list of element labels is wrapped with {}
- if num_els == '{':
- num_els = param_list.index('}')
- el_labels = [unquote(param_list.pop(0)) for x in range(num_els)]
- param_list.pop(0) # Remove the '}'
- else:
- num_els = int(num_els)
- el_labels = [str(ix) for ix in range(num_els)]
- return num_els, el_labels
- import io
- with io.open(filename, 'rb') as fid:
- # Parse the file header (plain text)
- # The first line contains basic information which we store in a dictionary.
- temp = fid.readline().decode('utf8').split()
- keys = [k.rstrip('=') for k in temp[::2]]
- vals = temp[1::2]
- # Insert default version and format
- file_info = {'BCI2000V': 1.0, 'DataFormat': 'int16'}
- file_info.update(**dict(zip(keys, vals)))
- # From string to float/int
- file_info['BCI2000V'] = float(file_info['BCI2000V'])
- for k in ['HeaderLen', 'SourceCh', 'StatevectorLen']:
- if k in file_info:
- file_info[k] = int(file_info[k])
- # The next lines contain state vector definitions.
- temp = fid.readline().decode('utf8').strip()
- assert temp == '[ State Vector Definition ]', \
- "State definitions not found in header %s" % filename
- state_defs = []
- state_def_dtype = [('name', 'a64'),
- ('length', int),
- ('startVal', int),
- ('bytePos', int),
- ('bitPos', int)]
- while True:
- temp = fid.readline().decode('utf8').strip()
- if len(temp) == 0 or temp[0] == '[':
- # Presence of '[' signifies new section.
- break
- temp = temp.split()
- state_defs.append((temp[0], int(temp[1]), int(temp[2]), int(temp[3]), int(temp[4])))
- state_defs = np.array(state_defs, dtype=state_def_dtype)
- # The next lines contain parameter definitions.
- # There are many, and their formatting can be complicated.
- assert temp == '[ Parameter Definition ]', \
- "Parameter definitions not found in header %s" % filename
- param_defs = {}
- while True:
- temp = fid.readline().decode('utf8')
- if fid.tell() >= file_info['HeaderLen']:
- # End of header.
- break
- if len(temp.strip()) == 0:
- continue # Skip empty lines
- # Everything after the '//' is a comment.
- temp = temp.strip().split('//', 1)
- param_def = {'comment': temp[1].strip() if len(temp) > 1 else ''}
- # Parse the parameter definition. Generally it is sec:cat:name dtype name param_value+
- temp = temp[0].split()
- param_def.update(
- {'section_category_name': [unquote(x) for x in temp.pop(0).split(':')]})
- dtype = temp.pop(0)
- param_name = unquote(temp.pop(0).rstrip('='))
- # Parse the rest. Parse method depends on the dtype
- param_value, units = None, None
- if dtype in ('int', 'float'):
- param_value = temp.pop(0)
- if param_value == 'auto':
- param_value = np.nan
- units = ''
- else:
- param_value, units = rescale_value(param_value, dtype)
- elif dtype in ('string', 'variant'):
- param_value = unquote(temp.pop(0))
- elif dtype.endswith('list'): # e.g., intlist, stringlist, floatlist, list
- dtype = dtype[:-4]
- # The list parameter values will begin with either
- # an int to specify the number of elements
- # or a list of labels surrounded by { }.
- num_elements, element_labels = parse_dimensions(temp) # This will pop off info.
- param_def.update({'element_labels': element_labels})
- pv_un = [rescale_value(pv, dtype) for pv in temp[:num_elements]]
- if len(pv_un) > 0:
- param_value, units = zip(*pv_un)
- else:
- param_value, units = np.nan, ''
- temp = temp[num_elements:]
- # Sometimes an element list will be a list of ints even though
- # the element_type is '' (str)...
- # This usually happens for known parameters, such as SourceChOffset,
- # that can be dealt with explicitly later.
- elif dtype.endswith('matrix'):
- dtype = dtype[:-6]
- # The parameter values will be preceded by two dimension descriptors,
- # first rows then columns. Each dimension might be described by an
- # int or a list of labels surrounded by {}
- n_rows, row_labels = parse_dimensions(temp)
- n_cols, col_labels = parse_dimensions(temp)
- param_def.update({'row_labels': row_labels, 'col_labels': col_labels})
- param_value = []
- units = []
- for row_ix in range(n_rows):
- cols = []
- for col_ix in range(n_cols):
- col_val, _units = rescale_value(temp[row_ix * n_cols + col_ix], dtype)
- cols.append(col_val)
- units.append(_units)
- param_value.append(cols)
- temp = temp[n_rows * n_cols:]
- param_def.update({
- 'value': param_value,
- 'units': units,
- 'dtype': dtype
- })
- # At the end of the parameter definition, we might get
- # default, min, max values for the parameter.
- temp.reverse()
- if len(temp):
- param_def.update({'max_val': rescale_value(temp.pop(0), dtype)})
- if len(temp):
- param_def.update({'min_val': rescale_value(temp.pop(0), dtype)})
- if len(temp):
- param_def.update({'default_val': rescale_value(temp.pop(0), dtype)})
- param_defs.update({param_name: param_def})
- # End parameter block
- # Outdent to close file
- return file_info, state_defs, param_defs
|