1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 |
- import numpy as np
- # #expected signature is like this:
- # def ctv_dummy(
- # time_trace, sampling_period,
- # first_frame, last_frame,
- # stimulus_number, stim_on_times, stim_off_times,
- # flags, p1):
- # """
- # dummy CTV to specify function call signature
- # :param time_trace: iterable of numbers
- # :param sampling_period: float, sampling period of <time_trace>, in ms
- # :param first_frame: int, interpreted as a frame number, where frames are numbered 0, 1, 2...
- # :param last_frame: int, interpreted as a frame number, where frames are numbered 0, 1, 2...
- # :param stimulus_number: int, indicates the which stimulus to use, use 1 for first stimulus
- # :param stim_on_times: list of floats, stimulus onset times, in ms
- # :param stim_off_times: list of floats, stimulus offset times, in ms
- # :param flags: FlagsManager object, is a mapping of flag names to flags values with additional functions
- # :param p1: pandas.Series object, internal representation of data
- # :rtype: list
- # :return: one member, float
- # """
- # return [0]
- def ctvBente(time_trace, sampling_period,
- first_frame, last_frame,
- stimulus_number, stim_on_times, stim_off_times,
- flags, p1):
- """
- ana's method -222
- mean(13-16) - mean(6-9) 4 frames each
- <insert a brief description of the method here>
- :param time_trace: iterable of numbers
- :param first_frame: int, interpreted as a frame number, where frames are numbered 1, 2, 3...
- :param last_frame: int, interpreted as a frame number, where frames are numbered 1, 2, 3...
- :param sampling_period: float, sampling period of <time_trace>, in ms
- :param stim_on_times: list of floats, stimulus onset times, in ms
- :param stim_off_times: list of floats, stimulus offset times, in ms
- :param flags: FlagsManager object, is a mapping of flag names to flags values with additional functions
- :param p1: pandas.Series object, internal representation of data
- :return: float
- """
- # print('**************************** running ctvBente now: ')
- # print('len time trace is: ', str(len(time_trace)))
-
-
- output = np.mean(time_trace[30:40]) - np.mean(time_trace[10:20])
- return [output]
- def myownctv22(time_trace, sampling_period,
- first_frame, last_frame,
- stimulus_number, stim_on_times, stim_off_times,
- flags, p1):
- """
- ana's method -222
- mean(13-16) - mean(6-9) 4 frames each
- <insert a brief description of the method here>
- :param time_trace: iterable of numbers
- :param first_frame: int, interpreted as a frame number, where frames are numbered 1, 2, 3...
- :param last_frame: int, interpreted as a frame number, where frames are numbered 1, 2, 3...
- :param sampling_period: float, sampling period of <time_trace>, in ms
- :param stim_on_times: list of floats, stimulus onset times, in ms
- :param stim_off_times: list of floats, stimulus offset times, in ms
- :param flags: FlagsManager object, is a mapping of flag names to flags values with additional functions
- :param p1: pandas.Series object, internal representation of data
- :return: float
- """
- output = np.mean(time_trace[30:40]) - np.mean(time_trace[5:95])
- return [output]
|