123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264 |
- '''
- Creates .lst file for single wavelength TIFF files (pre-calculated RATIO) in the format used in Trondheim
- Author: Giovanni, Dec 2021, based on template in VIEW folder by Ajay
- Expected data structure:
- In the folder "01_DATA", each animal has a folder, e.g. "190815_h2_El",
- and located in that folder are all .tif files for that animal
- There is a sister folder "02_LISTS"
-
- Output:
- In the folder "02_LISTS":
- There will be a file Animal.lst.xlsx, e.g. "190815_h2_El.lst.xlsx"
- That file contains one line for each measurement.
-
- What to do next?
- In this file, change values that are global
- or insert a function that can extract odor name or concentration name from somewhere
-
- In the Animal.lst.xlsx file, correct/complete entries (e.g. odor names, odor concentrations)
- Make sure stimulus timing information is correct
- Why do I need a .lst.xlsx file?
- Load measurements in pyVIEW using this .lst file, so that stimulus information is correct
- For off-line analysis, information is taken from this file.
- Good to know:
- Information, where possible, is taken from the OME header of the incoming tif file.
- If that information is wrong, incomplete, or else, modify the code in:
- importers.py:P1DualWavelengthTIFSingleFileImporter:parse_metadata
- '''
- from view.python_core.measurement_list import MeasurementList
- from view.python_core.measurement_list.importers import get_importer_class
- from view.python_core.flags import FlagsManager
- from collections import OrderedDict
- import pandas as pd
- import logging
- import pathlib as pl
- logging.basicConfig(level=logging.INFO)
- # ------------------- Some parameters about experimental setup, data structure and output file type --------------------
- # 3 for single wavelength Till Photonics Measurements
- # 4 for two wavelength Till Photonics Measurements
- # 20 for Zeiss Confocal Measurements
- LE_loadExp = 33 #for Bente, 33 or 35 both work!
- # Mother of all Folders of your dataset
- # On Windows, if you copy paths from the file explorer, make sure the string below is always of the form r"......"
- STG_MotherOfAllFolders = r"/Users/galizia/Nextcloud/VTK_2021/Bente_Test_2021"
- # path of the "Data" folder in VIEW organization containing the data
- # On Windows, if you copy paths from the file explorer, make sure the string below is always of the form r"......"
- STG_Datapath = r""
- # path of the "Lists" folder in VIEW organization containing the list files
- # On Windows, if you copy paths from the file explorer, make sure the string below is always of the form r"......"
- STG_OdorInfoPath = r""
- # Choose measurement list output extension among ".lst", ".lst.xlsx", ".settings.xlsx"
- # VIEW does not support writing .xls list files anymore (nonetheless, it can read them and revise/update them to .xlsx)
- measurement_output_extension = ".lst.xlsx"
- # ------------------- A dictionary containing default values for metadata.----------------------------------------------
- # ------------------- Only metadata included in this dictionary will be written ----------------------------------------
- # ----Note that columns of the output measeurement list files will have the same order as below.------------------------
- default_values = OrderedDict()
- default_values['Measu'] = 0 # unique identifier for each line, corresponds to item in TILL photonics log file
- default_values['Label'] = "none"
- default_values['Odour'] = 'odor?' # stimulus name, maybe extracted from label in the function "custom_func" below
- default_values['OConc'] = 0 # odor concentration, maybe extracted from label in the function "custom_func" below
- default_values['Analyze'] = -1 # whether to analyze in VIEWoff. Default 1
- default_values['Cycle'] = 0 # how many ms per frame
- default_values['DBB1'] = 'none' # file name of raw data
- default_values['UTC'] = 0 # recording time, extracted from file
- default_values['PxSzX'] = '0.0' # um per pixel, 1.5625 for 50x air objective, measured by Hanna Schnell July 2017 on Till vision system, with a binning of 8
- default_values['PxSzY'] = '0.0' # um per pixel, 1.5625 for 50x air objective, measured by Hanna Schnell July 2017 on Till vision system, with a binning of 8
- default_values['Lambda'] = 0 # wavelength of stimulus. In TILL, from .log file, In Zeiss LSM, from .lsm file
- # These will be automatically filed for LE_loadExp=4
- default_values['dbb2'] = 'none' # file name of raw data in dual wavelength recordings (FURA)
- # To include more columns, uncomment entries below and specify a default value.
- # #
- # block for first stimulus
- # default_values['StimON'] = -1 # stimulus onset, unit: frames, count starts at frame 1.
- # default_values['StimOFF'] = -1 # stimulus offset, unit: frames, count starts at frame 1.
- # default_values['StimLen'] = 0 # stimulus onset in ms from beginning - alternative to StimON
- # default_values['StimONms'] = -1 # stimulus length in ms - alternative to StimOFF
- # #
- # block for second stimulus
- # default_values['Stim2ON'] = 0 # stimulus onset, unit: frames, count starts at frame 1.
- # default_values['Stim2OFF'] = 0 # stimulus offset, unit: frames, count starts at frame 1.
- # default_values['Stim2Len'] = 0 # stimulus onset in ms from beginning - alternative to StimON
- # default_values['Stim2ONms'] = -1 # stimulus length in ms - alternative to StimOFF
- # #
- # default_values['Age'] = -1
- # default_values['Sex'] = 'o'
- # default_values['Side'] = 'none'
- # default_values['Comment'] = 'none'
- # #
- # default_values['MTime'] = 0
- # default_values['Control'] = 0
- # default_values['Pharma'] = 'none'
- # default_values['PhTime'] = 0
- # default_values['PhConc'] = 0
- # default_values['ShiftX'] = 0
- # default_values['ShiftY'] = 0
- # default_values['StimISI'] = 0
- # default_values['setting'] = 'none'
- # default_values['dbb3'] = 'none'
- # default_values['PosZ'] = 0
- # default_values['Countl'] = 0
- # default_values['slvFlip'] = 0
- # ----------------------------------------------------------------------------------------------------------------------
- # ----------------- A function used to modify list entries after automatic parsing of metadata -------------------------
- # ----------------- This function indicates what needs to be done for a row --------------------------------------------
- # ----------------- The same is internally applied to all rows of the measurement list----------------------------------
- def get_odorinfo_from_label(label):
- # format for file name (label) is:
- # odor_concentration_anything_else.tif
- # separating element is underscore
- # is the information for a concentration present? Detect "-"
- parts = label.split("_")
- if len(parts) > 1:
- odor = parts[0]
- concentration = parts[1]
- # in the case the name is odor_conc.tif:
- if concentration[-4:] == '.tif':
- concentration = concentration[:-4]
- else:
- odor = 'odor?'
- concentration = 'conc?'
- return [odor, concentration]
- def custom_func(list_row: pd.Series, animal_tag: str) -> pd.Series:
- # Examples:
- # list_row["StimON"] = 25
- # list_row["Odour"] = get_odor_from_label(list_row["Label"])
- # if list_row["Measu"]
- # get Odor from another file based on the value of <animal_tag> and list_row["Label"]
- list_row["StimONms"] = '3000'
- list_row["StimLen"] = '2000'
- list_row["Comment"] = 'create_measurement_list_ratio'
- list_row["Line"] = 'ham'
- #extract odor and concentration from name
- (list_row["Odour"],list_row["OConc"]) = get_odorinfo_from_label(list_row["Label"])
- try:
- float(list_row["OConc"])
- except: #Odour concentration is not a number, set to fictive 0
- list_row["OConc"] = '0.0'
-
- if list_row["Label"][-4:] == '.tif':
- list_row["Label"] = list_row["Label"][:-4]
-
- return list_row
- # ----------------------------------------------------------------------------------------------------------------------
- # ------------------ A function defining the criteria for excluding measurements ---------------------------------------
- # ------------------ Currently applicable only for tillvision setups ---------------------------------------------------
- def measurement_filter(s):
- # exclude blocks that have in the name "Snapshot" or "Delta"
- # or that do not have any "_"
- name = s["Label"]
- label_not_okay = name.count('Snapshot') > 0 or name.count('Delta') > 0 or name.count('_') < 1
- label_okay = not label_not_okay
- # exclude blocks with less than two frames or no calibration
- atleast_two_frames = False
- if type(s["Timing_ms"]) is str:
- if len(s["Timing_ms"].split(' ')) >= 2 and s["Timing_ms"] != "(No calibration available)":
- atleast_two_frames = True
- return label_okay and atleast_two_frames
- # ______________________________________________________________________________________________________________________
- # ------------------ names of columns that will be overwritten by old values -------------------------------------------
- # ------ these will only be used if a measurement list file with the same name as current output file exists -----------
- overwrite_old_values = ["Line", "PxSzX", "PxSzY", "Age", "Sex", "Prefer",
- "Comment", "Analyze", "Odour", "OConc"]
- # ______________________________________________________________________________________________________________________
- if __name__ == "__main__":
- # initialize a FlagsManager object with values specified above
- flags = FlagsManager()
- flags.update_flags({"STG_MotherOfAllFolders": STG_MotherOfAllFolders,
- "STG_OdorInfoPath": STG_OdorInfoPath,
- "STG_Datapath": STG_Datapath})
- # initialize importer
- importer_class = get_importer_class(LE_loadExp)
- importer = importer_class(default_values)
- # open a dialog for choosing raw data files
- # this returns a dictionary where keys are animal tags (STG_ReportTag) and
- # values are lists of associated raw data files
- animal_tag_raw_data_mapping = importer.ask_for_files(default_dir=flags["STG_Datapath"])
- # make sure some files were chosen
- assert len(animal_tag_raw_data_mapping) > 0, IOError("No files were chosen!")
- for animal_tag, raw_data_files in animal_tag_raw_data_mapping.items():
- # automatically parse metadata
- metadata_df = importer.import_metadata(raw_data_files=raw_data_files,
- measurement_filter=measurement_filter)
- # inform user if no usable measurements were found
- if metadata_df.shape[0] == 0:
- logging.info(f"No usable measurements we found among the files "
- f"chosen for the animal {animal_tag}. Not creating a list file")
- else:
- # create a new Measurement list object from parsed metadata
- measurement_list = MeasurementList.create_from_df(LE_loadExp=LE_loadExp,
- df=metadata_df)
- # apply custom modifications
- measurement_list.update_from_custom_func(custom_func=custom_func, animal_tag=animal_tag)
- # set anaylze to 0 if raw data files don't exist
- flags.update_flags({"STG_ReportTag": animal_tag})
- measurement_list.sanitize(flags=flags,
- data_file_extensions=importer.movie_data_extensions)
- # sort by time as in column "UTC"
- #sorted_df = df.sort_values(by=['Column_name'], ascending=True)
- # does not work if the list file already existed.
- measurement_list.measurement_list_df = measurement_list.measurement_list_df.sort_values(by=['UTC'], ascending=True)
- # construct the name of the output file
- #AskAjay - what I am writing seems crude to me (Giovanni Dec 21)
- #Ajay: out_file = f"{flags.get_lst_file_stem()}{measurement_output_extension}"
- singlefilein = pl.Path(raw_data_files[0])
- #singlefilein could be:
- #'/Users/galizia/Nextcloud/VTK_2021/Bente_Test_2021/01_DATA/190815_h2_El/B_1.tif'
- #output should be:
- #'/Users/galizia/Nextcloud/VTK_2021/Bente_Test_2021/02_ANALYSIS/190815_h2_El.lst.xlsx'
- out_file = pl.Path(singlefilein.parent.parent.parent)
- out_file = pl.Path.joinpath(out_file, '02_LISTS' , singlefilein.parts[-2])
- out_file = f"{out_file}{measurement_output_extension}"
- # write measurement file to list
- measurement_list.write_to_list_file(lst_fle=out_file, columns2write=default_values.keys(),
- overwrite_old_values=overwrite_old_values)
|