123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552 |
- #%% initial loading of tools
- import os
- os.chdir('C:\EAfiles\EAdetection')
- #import core.ea_management as eam
- import core.helpers as hf
- import os
- os.chdir('C:\EAfiles\MyCode')
- import pickle
- import matplotlib.cm as cmx # colormap module
- import numpy as np # module for low-level scientific computing
- import scipy as sp # library for working with NumPy arrays
- from scipy import stats
- import scipy.signal # signal processing module
- import pandas as pd # data manipulation tools. built on NumPy library
- import matplotlib.pyplot as plt # makes matplotlib work like MATLAB. ’pyplot’ functions.
- import seaborn as sns # based on matplotlib. high-level interface for visualization.
- '''
- abbreviations:
- recID-recording ID: 'animal_session_electrode', e.g. 'PK22_pre1-3_HCc'
- sr-sampling rate
- auc-area under the curve
- psd-power spectral density
- spec-spectrogram
- dict-dictionary
- ddict- data dictionary
- pre- pre recording (the hour before stimulation)
- stim- recording with 0.1 Hz or 0.05 Hz blue light stimulation
- post- post recording (the hour after stimulation)
- rec-recording
- chan- channel of the recording electrode (HCi1- ipsilateral to saline/kainate injection, HCc-contralateral to saline/kainate injection)
- '''
- #%% define functions
- # prepare variables:
- sr = 10000.
- #prepare functions:
- # Plot the power spectrum:
- def plot_psd(f,psd,chan,chan_x, session):
- plt.subplot(2,1,chan_x+1)
- plt.subplots_adjust(hspace=0.4)
- if session == 'pre':
- plt.semilogy(f,psd,'darkgrey')
- elif session == 'stim':
- plt.semilogy(f,psd,'dodgerblue')
- #plt.semilogy(f,psd,'dimgrey') #for reference
- elif session == 'post':
- plt.semilogy(f,psd,'k')
-
- sns.despine()
- plt.xlim(0,100)
- plt.ylim(10**-6,10**-1)
- plt.yticks(size=15)
- plt.xticks(size=15)
- plt.ylabel('power [$mV^{2}/Hz$]',size=15)
- plt.xlabel('f [Hz]',size=15)
- plt.title('PSD of '+chan, size=15)
- def plot_psd_average(f,psd, sem, session):
- if session == 'pre':
- plt.semilogy(f,psd,'darkgrey', linewidth=2)
- elif session == 'post':
- plt.semilogy(f,psd,'k', linewidth=2)
- elif session == 'stim':
- plt.semilogy(f,psd,'dodgerblue', linewidth=2)
- #plt.semilogy(f,psd,'dimgrey', linewidth=2) #for reference
- sns.despine()
- plt.xlim(0,120)
- plt.ylim(10**-6,10**-1)
- plt.yticks(size=20)
- plt.xticks(size=20)
- plt.ylabel('power [$mV^{2}/Hz$]',size=15)
- plt.xlabel('f [Hz]',size=15)
-
- #extract area under the curve (auc) of the psd plot
- def psd_auc(psd, freq_start, freq_end):
- start=freq_start*10 #the f-array is with 0.1 steps so that is why *10 is needed
- stop=freq_end*10+1
- freq_psd=psd[start:stop]
- freq_auc=np.sum(np.abs(freq_psd))
- return freq_auc
- def psd_auc_dict(stim_ID, dictionary, psd):
-
- all_freq_start=0
- all_freq_end=120
- gamma_start=30
- gamma_end=120
- beta_start=12
- beta_end=30
-
- theta_start=4
- theta_end=12
-
- delta_start=1
- delta_end=4
-
- dictionary[stim_ID]['psd_auc']=psd_auc(psd, all_freq_start, all_freq_end)
- dictionary[stim_ID]['gamma_auc']=psd_auc(psd, gamma_start, gamma_end)
- dictionary[stim_ID]['beta_auc']=psd_auc(psd, beta_start, beta_end)
- dictionary[stim_ID]['theta_auc']=psd_auc(psd, theta_start, theta_end)
- dictionary[stim_ID]['delta_auc']=psd_auc(psd, delta_start, delta_end)
-
- #plotting spectrograms:
- def plot_spec_80szoom(datatrace,recstart_s,recstop_s,vmin=-100,vmax=-20):
- #samp_spec = range(0,60*60*int(sr))
- samp_spec = range(0,80*int(sr))
- f, t_spec, x_spec = sp.signal.spectrogram(datatrace[samp_spec], fs=sr, \
- window='hanning', nperseg=1*int(sr/2), nfft=10*int(sr), noverlap=int(0.25*sr), mode='psd')
-
- #for a better quality zoom (shorter time periods), reduce the nperseg and noverlap, eg. noverlap=int(sr*0.05), nperseg=1*int(sr)
-
- '''
- f- Array of sample frequencies.
- t_spec-Array of segment times.
- x_spec- Spectrogram of x. By default, the last axis of x_spec corresponds to the segment times.
- '''
- fmax = 120
-
- x_mesh, y_mesh = np.meshgrid(t_spec, f[f<fmax])
- t_index = np.arange(0,len(datatrace)/sr,0.5/sr) # time array
-
- plt.pcolormesh(x_mesh+t_index[samp_spec[0]], y_mesh, 20*np.log10(x_spec[f<fmax]), cmap=cmx.jet, vmin=vmin, vmax=vmax)
- plt.ylabel('f [Hz]', size=12)
- plt.yticks(size=12)
- plt.xticks(size=12)
- #plt.colorbar()
- #plt.colorbar(label='dB')
- '''now follow exacmples of these functions were used to analyze/present data in Kleis et al., 2021'''
- #%% load dictionaries, where recording IDs are matched with corresponding smr file names (with .smr in the end)
- filename = 'C:\EAfiles\MyDicts\IDmatch_dict'
- infile = open(filename, 'rb')
- IDmatch_dict = pickle.load(infile)
- infile.close()
- filename = 'C:\EAfiles\MyDicts\preIDs_smr'
- infile = open(filename, 'rb')
- preIDs_smr = pickle.load(infile)
- infile.close()
- filename = 'C:\EAfiles\MyDicts\stimIDs_smr'
- infile = open(filename, 'rb')
- stimIDs_smr = pickle.load(infile)
- infile.close()
- filename = 'C:\EAfiles\MyDicts\postIDs_smr'
- infile = open(filename, 'rb')
- postIDs_smr= pickle.load(infile)
- infile.close()
- filename = 'C:\EAfiles\MyDicts\preIDs_smr_contra'
- infile = open(filename, 'rb')
- preIDs_smr_contra = pickle.load(infile)
- infile.close()
- filename = 'C:\EAfiles\MyDicts\stimIDs_smr_contra'
- infile = open(filename, 'rb')
- stimIDs_smr_contra = pickle.load(infile)
- infile.close()
- filename = 'C:\EAfiles\MyDicts\postIDs_smr_contra'
- infile = open(filename, 'rb')
- postIDs_smr_contra= pickle.load(infile)
- infile.close()
- filename = 'C:\EAfiles\MyDicts\preIDs_smr_ipsi'
- infile = open(filename, 'rb')
- preIDs_smr_ipsi = pickle.load(infile)
- infile.close()
- filename = 'C:\EAfiles\MyDicts\stimIDs_smr_ipsi'
- infile = open(filename, 'rb')
- stimIDs_smr_ipsi = pickle.load(infile)
- infile.close()
- filename = 'C:\EAfiles\MyDicts\postIDs_smr_ipsi'
- infile = open(filename, 'rb')
- postIDs_smr_ipsi= pickle.load(infile)
- infile.close()
- #%% creating lists from textfiles, which contain recIDs that will be used for each type of recording
-
- pathtobadrecIDs = 'C:\EAfiles\ID_Dateien\\badrecIDs.txt'
- badrecIDs = []
- with open (pathtobadrecIDs,'r') as f:
- badIDs = f.read().splitlines()
- badrecIDs = badrecIDs + badIDs
-
- pathto_saline_ref = 'C:\EAfiles\ID_Dateien\\saline_PACK-CA1_ref.txt' #used in example 1
- saline_PACK_CA1_ref = []
- with open (pathto_saline_ref,'r') as f:
- IDs = f.read().splitlines()
- saline_PACK_CA1_ref = saline_PACK_CA1_ref + IDs
-
- pathto_saline_01Hz = 'C:\EAfiles\ID_Dateien\\saline_PACK-CA1_01Hz.txt' #used in example 2
- saline_PACK_CA1_01Hz = []
- with open (pathto_saline_01Hz,'r') as f:
- IDs = f.read().splitlines()
- saline_PACK_CA1_01Hz = saline_PACK_CA1_01Hz+ IDs
-
- pathto_saline_bPAC_01Hz = 'C:\EAfiles\ID_Dateien\\saline_bPAC-CA1_01Hz.txt' #used in example 3
- saline_bPAC_CA1_01Hz = []
- with open (pathto_saline_bPAC_01Hz,'r') as f:
- IDs = f.read().splitlines()
- saline_bPAC_CA1_01Hz = saline_bPAC_CA1_01Hz+ IDs
-
- #%%(Example 1) plot individual PSDs and create a matrix with all PSDs (for saline PACK reference recordings)
-
- sr=10000
- count=0
- os.chdir('C:\EAfiles\ID_Dateien')
- file = open('saline_PACK-CA1.txt', 'r')
- rows = 0
- for line in file:
- line = line.strip('\n')
- rows += 1
- psd_saline_ref1_matrix=np.zeros((rows,50001), dtype=float)
- psd_saline_ref2_matrix=np.zeros((rows,50001), dtype=float)
- psd_saline_ref3_matrix=np.zeros((rows,50001), dtype=float)
-
- psd_saline_ref1_fmatrix=np.zeros((rows,50001), dtype=float)
- psd_saline_ref2_fmatrix=np.zeros((rows,50001), dtype=float)
- psd_saline_ref3_fmatrix=np.zeros((rows,50001), dtype=float)
- # Load data
- folder = r'I:\Piret\EEG' #add directory, where your raw data is (.smr files)
- for stim_ID in saline_PACK_CA1_ref:
-
- print 'working on '+stim_ID
- plt.figure(figsize=(5,8))
-
- pre_ID = IDmatch_dict[stim_ID]['pre']
- post_ID = IDmatch_dict[stim_ID]['post']
-
- if stim_ID [-1:] == '2':
- chanlist = ['HCi1_2', 'HCc_2']
- elif stim_ID [-1:] == '3':
- chanlist = ['HCi1_3', 'HCc_3']
- elif stim_ID [-1:] == '4':
- chanlist = ['HCi1_4', 'HCc_4']
- else:
- chanlist = ['HCi1', 'HCc' ]
-
- filename_pre = preIDs_smr[pre_ID]
- filename_stim = stimIDs_smr[stim_ID]
- filename_post = postIDs_smr[post_ID]
-
- ddict_pre = hf.extract_smrViaNeo(os.path.join(folder, filename_pre), chanlist=chanlist)
- ddict_stim = hf.extract_smrViaNeo(os.path.join(folder, filename_stim), chanlist=chanlist)
- ddict_post = hf.extract_smrViaNeo(os.path.join(folder, filename_post), chanlist=chanlist)
-
- excelpath = r'C:\EAfiles\Excel\startstop_PK_HCc.xlsx'
- df = pd.read_excel(excelpath) #reading an excel file with start and stop times (s) of a recording
- df.set_index('recID', inplace=True) #recID
- pre_start = df.start[pre_ID] #start time
- pre_stop = df.stop[pre_ID] #stop time
- stim_start = df.start[stim_ID] #start time
- stim_stop = df.stop[stim_ID] #stop time
- post_start = df.start[post_ID] #start time
- post_stop = df.stop[post_ID] #stop time
-
- for chan_x, chan in enumerate(chanlist):
- print chan
-
- #get datatrace
- datatrace_pre = ddict_pre[chan]['trace']
- datatrace_stim = ddict_stim[chan]['trace']
- datatrace_post = ddict_post[chan]['trace']
-
- #cut data trace
- reccut_pre=datatrace_pre[int(pre_start*sr):int(pre_stop*sr)]
- reccut_stim=datatrace_stim[int(stim_start*sr):int(stim_stop*sr)]
- reccut_post=datatrace_post[int(post_start*sr):int(post_stop*sr)]
-
- # Compute the power spectrum
- f_pre, psd_pre = sp.signal.welch(reccut_pre, sr, nperseg=10*sr)
- f_stim, psd_stim = sp.signal.welch(reccut_stim, sr, nperseg=10*sr)
- f_post, psd_post = sp.signal.welch(reccut_post, sr, nperseg=10*sr)
-
- #plot the power spectrum
- plot_psd(f_pre,psd_pre,chan,chan_x, 'pre')
- plot_psd(f_stim,psd_stim,chan,chan_x, 'stim')
- plot_psd(f_post,psd_post,chan,chan_x, 'post')
-
- #add the power spectrum into psd_matrix:
- if chan=='HCi1_2' or chan=='HCi1':
- psd_saline_ref1_matrix[count]=psd_pre
- psd_saline_ref2_matrix[count]=psd_stim
- psd_saline_ref3_matrix[count]=psd_post
-
- psd_saline_ref1_fmatrix[count]=f_pre
- psd_saline_ref2_fmatrix[count]=f_stim
- psd_saline_ref3_fmatrix[count]=f_post
-
- elif chan=='HCi1_3' or chan=='HCi1_4':
- psd_saline_ref1_matrix[count]=psd_pre
- psd_saline_ref2_matrix[count]=psd_stim
- psd_saline_ref3_matrix[count]=psd_post
-
- psd_saline_ref1_fmatrix[count]=f_pre
- psd_saline_ref2_fmatrix[count]=f_stim
- psd_saline_ref3_fmatrix[count]=f_post
-
- count += 1
- plt.savefig('C:\EAfiles\SPECTROGRAM\PSD_PACK_reference/'+stim_ID+'_psd.png')
- #plt.close('all')
- #%% save the matrices containing PSDs:
- np.save('psd_ref1_matrix', psd_saline_ref1_matrix)
- np.save('psd_ref2_matrix', psd_saline_ref2_matrix)
- np.save('psd_ref3_matrix', psd_saline_ref3_matrix)
-
- np.save('psd_ref1_fmatrix', psd_saline_ref1_fmatrix)
- np.save('psd_ref2_fmatrix', psd_saline_ref2_fmatrix)
- np.save('psd_ref3_fmatrix', psd_saline_ref3_fmatrix)
- #%% plot the average PSDs:
- psd_saline_ref1_average=np.mean(psd_saline_ref1_matrix, axis=0)
- psd_saline_ref2_average=np.mean(psd_saline_ref2_matrix, axis=0)
- psd_saline_ref3_average=np.mean(psd_saline_ref3_matrix, axis=0)
- psd_saline_ref1_std=np.std(psd_saline_ref1_matrix, axis=0)
- psd_saline_ref2_std=np.std(psd_saline_ref2_matrix, axis=0)
- psd_saline_ref3_std=np.std(psd_saline_ref3_matrix, axis=0)
- psd_saline_ref1_sem=stats.sem(psd_saline_ref1_matrix, axis=0)
- psd_saline_ref2_sem=stats.sem(psd_saline_ref2_matrix, axis=0)
- psd_saline_ref3_sem=stats.sem(psd_saline_ref3_matrix, axis=0)
- f_saline_ref1_average=np.mean(psd_saline_ref1_fmatrix, axis=0)
- f_saline_ref2_average=np.mean(psd_saline_ref2_fmatrix, axis=0)
- f_saline_ref3_average=np.mean(psd_saline_ref3_fmatrix, axis=0)
- np.save('psd_saline-PACK_ref1_average', psd_saline_ref1_average)
- np.save('psd_saline-PACK_ref2_average', psd_saline_ref2_average)
- np.save('psd_saline-PACL_ref3_average', psd_saline_ref3_average)
- plt.figure(figsize=(6,5))
- plot_psd_average(f_saline_ref1_average,psd_saline_ref1_average, psd_saline_ref1_sem, 'pre')
- plot_psd_average(f_saline_ref2_average,psd_saline_ref2_average, psd_saline_ref2_sem, 'stim')
- plot_psd_average(f_saline_ref3_average,psd_saline_ref3_average, psd_saline_ref3_sem, 'post')
- #%% (Example 2) getting the power areas of delta, theta, beta, and gamma oscillations
- #by taking the AUC of PSD plots in respective ranges
-
- sr=10000
- count=0
- os.chdir('C:\EAfiles\ID_Dateien')
- file = open('saline_bPAC-CA1_01Hz.txt', 'r')
- rows = 0
- psd_bPAC_01Hz_pre={}
- psd_bPAC_01Hz_stim={}
- psd_bPAC_01Hz_post={}
- # Load data
- folder = r'I:\Piret\EEG'
- for stim_ID in stimIDs_smr_contra.keys():
-
- if stim_ID in saline_bPAC_CA1_01Hz:
- #else:
- print 'working on '+stim_ID
- psd_bPAC_01Hz_pre[stim_ID]={}
- psd_bPAC_01Hz_stim[stim_ID]={}
- psd_bPAC_01Hz_post[stim_ID]={}
-
- plt.figure(figsize=(5,8))
-
- pre_ID = IDmatch_dict[stim_ID]['pre']
- post_ID = IDmatch_dict[stim_ID]['post']
-
- if stim_ID [-1:] == '2':
- chanlist = ['HCc_2']
- elif stim_ID [-1:] == '3':
- chanlist = ['HCc_3']
- elif stim_ID [-1:] == '4':
- chanlist = ['HCc_4']
- else:
- chanlist = ['HCc' ]
-
- filename_pre = preIDs_smr[pre_ID]
- filename_stim = stimIDs_smr[stim_ID]
- filename_post = postIDs_smr[post_ID]
-
- ddict_pre = hf.extract_smrViaNeo(os.path.join(folder, filename_pre), chanlist=chanlist)
- ddict_stim = hf.extract_smrViaNeo(os.path.join(folder, filename_stim), chanlist=chanlist)
- ddict_post = hf.extract_smrViaNeo(os.path.join(folder, filename_post), chanlist=chanlist)
-
- excelpath = r'C:\EAfiles\Excel\startstop_controls_HCc.xlsx'
- df = pd.read_excel(excelpath) #reading an excel file with start and stop times (s) of a recording
- df.set_index('recID', inplace=True) #recID
- pre_start = df.start[pre_ID] #start time
- pre_stop = df.stop[pre_ID] #stop time
- stim_start = df.start[stim_ID] #start time
- stim_stop = df.stop[stim_ID] #stop time
- post_start = df.start[post_ID] #start time
- post_stop = df.stop[post_ID] #stop time
-
- for chan_x, chan in enumerate(chanlist):
- print chan
-
- #get datatrace
- datatrace_pre = ddict_pre[chan]['trace']
- datatrace_stim = ddict_stim[chan]['trace']
- datatrace_post = ddict_post[chan]['trace']
-
- #cut data trace
- reccut_pre=datatrace_pre[int(pre_start*sr):int(pre_stop*sr)]
- reccut_stim=datatrace_stim[int(stim_start*sr):int(stim_stop*sr)]
- reccut_post=datatrace_post[int(post_start*sr):int(post_stop*sr)]
-
- # Compute the power spectrum
- f_pre, psd_pre = sp.signal.welch(reccut_pre, sr, nperseg=10*sr)
- f_stim, psd_stim = sp.signal.welch(reccut_stim, sr, nperseg=10*sr)
- f_post, psd_post = sp.signal.welch(reccut_post, sr, nperseg=10*sr)
-
-
- #add the psds into dictionaries:
- psd_bPAC_01Hz_pre[stim_ID]['psd']=psd_pre
- psd_bPAC_01Hz_stim[stim_ID]['psd']=psd_stim
- psd_bPAC_01Hz_post[stim_ID]['psd']=psd_post
-
- #calculate and save power areas for beta, low gamma, high gamma, all frequencies:
- psd_auc_dict(stim_ID, psd_bPAC_01Hz_pre, psd_pre)
- psd_auc_dict(stim_ID, psd_bPAC_01Hz_stim, psd_stim)
- psd_auc_dict(stim_ID, psd_bPAC_01Hz_post, psd_post)
-
- count += 1
-
- #save the 0.1 Hz PSD dictionaries and later convert them to excel files to extract data:
- filename = 'C:\EAfiles\MyDicts\psd_bPAC_01Hz_pre'
- outfile = open(filename, 'wb') #write binary: mit Erlaubnis zu (über)schreiben
- pickle.dump(psd_bPAC_01Hz_pre, outfile)
- outfile.close()
- filename = 'C:\EAfiles\MyDicts\psd_bPAC_01Hz_stim'
- outfile = open(filename, 'wb') #write binary: mit Erlaubnis zu (über)schreiben
- pickle.dump(psd_bPAC_01Hz_stim, outfile)
- outfile.close()
- filename = 'C:\EAfiles\MyDicts\psd_bPAC_01Hz_post'
- outfile = open(filename, 'wb') #write binary: mit Erlaubnis zu (über)schreiben
- pickle.dump(psd_bPAC_01Hz_post, outfile)
- outfile.close()
-
- #%% (Example 3) plot spectrograms for saline PACK mice in sessions with 0.1 Hz stimulation (used for the figures in the paper, aligned with snippets from Spike2 LFPs)
-
- folder = r'I:\Piret\EEG'
- for stim_ID in IDmatch_dict.keys():
- if stim_ID in saline_PACK_CA1_01Hz:
- plt.figure(figsize=(5,8))
- pre_ID = IDmatch_dict[stim_ID]['pre']
- post_ID = IDmatch_dict[stim_ID]['post']
-
- if stim_ID [-1:] == '2':
- chanlist = ['HCc_2']
- elif stim_ID [-1:] == '3':
- chanlist = ['HCc_3']
- elif stim_ID [-1:] == '4':
- chanlist = ['HCc_4']
- else:
- chanlist = ['HCc']
-
- filename_pre = preIDs_smr[pre_ID]
- filename_stim = stimIDs_smr[stim_ID]
- filename_post = postIDs_smr[post_ID]
-
- ddict_pre = hf.extract_smrViaNeo(os.path.join(folder, filename_pre), chanlist=chanlist)
- ddict_stim = hf.extract_smrViaNeo(os.path.join(folder, filename_stim), chanlist=chanlist)
- ddict_post = hf.extract_smrViaNeo(os.path.join(folder, filename_post), chanlist=chanlist)
-
- pre_start=1100
- pre_stop=1180
-
- stim_start=1100
- stim_stop=1180
-
- post_start=1100
- post_stop=1180
- for chan_x, chan in enumerate(chanlist):
- print chan
- sr=ddict_pre[chan]['sr']
-
- #get datatrace:
- datatrace_pre = ddict_pre[chan]['trace']
- datatrace_stim = ddict_stim[chan]['trace']
- datatrace_post = ddict_post[chan]['trace']
-
- #cut data trace:
- reccut_pre=datatrace_pre[int(pre_start*sr):int(pre_stop*sr)]
- reccut_stim=datatrace_stim[int(stim_start*sr):int(stim_stop*sr)]
- reccut_post=datatrace_post[int(post_start*sr):int(post_stop*sr)]
-
- #plot spectrograms for 80seconf LFP snippets:
- plt.subplot(4,1,1)
- plot_spec_80szoom(reccut_pre,pre_start,pre_stop,vmin=-100,vmax=-20)
- plt.title(stim_ID)
- plt.subplot(4,1,2)
- plot_spec_80szoom(reccut_stim,stim_start,stim_stop,vmin=-100,vmax=-20)
- plt.subplot(4,1,3)
- plot_spec_80szoom(reccut_post,post_start,post_stop,vmin=-100,vmax=-20)
-
- #showing 0.1 Hz pulses:
- plt.subplot(4,1,4)
- rectime_y=np.zeros(3600)
- rectime_x=np.arange(0,3600)
- start=10
- stop=3600
- period=10
- stimtimes=np.arange(start, stop, period)
- for i in rectime_x:
- if i in stimtimes:
- rectime_y[i]=1
- plt.scatter(rectime_x[stim_start:stim_stop], rectime_y[stim_start:stim_stop], marker='|', color='dodgerblue')
- plt.xlim(stim_start,stim_stop)
- plt.show()
-
- plt.savefig('C:\EAfiles\SPECTROGRAM\saline_bPAC_01Hz/'+stim_ID+'_fft.png')
- plt.close('all')
|