Regimantas Jurkus 5487b03b19 gin commit from PC151FJ2 | před 1 rokem | |
---|---|---|
.. | ||
data | před 1 rokem | |
scripts | před 1 rokem | |
LICENSE.md | před 1 rokem | |
README.md | před 1 rokem | |
authors | před 1 rokem |
This folder contains the data used for the spectral Granger causality (GC) unit tests. Specifically, it contains the time series data generated using an autoregressive model (ARM) as well as the R grangers
[1] parametric GC spectrum.
authors
-- list of authors and contributors
LICENSE.md
-- summary of scripts/
and data/
licenses
scripts/
LICENSE
(BSD 3-clause)generate_test_data.py
-- Python script that generates time series data using parameters from [2].grangers_estimate.R
-- R script that loads the generated time_series_small.npy
and estimates the directional causalities using Granger.unconditional
(see [3] for details).requirements.txt
-- requirements containing the exact package versions used in generate_test_data.py
to generate time_series.npy
and time_series_small.npy
in data/
folder. The requirements file was generated using pipreqs-0.4.11
package.data/
LICENSE
(CC-BY)weights.npy
-- weight parameter values for ARM used to generate the time series taken from [2].noise_covariance.npy
-- noise covariance parameter values for ARM used to generate the time series taken from [2].time_series.npy
-- artificial time series data (2, 300000) generated using ARM.time_series_small.npy
-- artificial time series data (2, 30000) generated using ARM.gc_matrix.npy
-- Granger causality estimate resulting from the grangers_estimate.R
.conda create -n test_data_env python
conda activate test_data_env
scripts/
folderpip install -r requirements.txt
python generate_test_data.py
install.packages(c("RcppCNPy", "grangers"))
scripts/
foldergrangers_estimate.R
interactively:copyright: 2023 by the development team.