Scheduled service maintenance on November 22


On Friday, November 22, 2024, between 06:00 CET and 18:00 CET, GIN services will undergo planned maintenance. Extended service interruptions should be expected. We will try to keep downtimes to a minimum, but recommend that users avoid critical tasks, large data uploads, or DOI requests during this time.

We apologize for any inconvenience.

make_movie_MC.py 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124
  1. import argparse
  2. import ipyparallel as ipp
  3. import numpy as np
  4. import os
  5. import cv2 as cv2
  6. import time
  7. from retinatools.library import image_to_cone
  8. #Helper function
  9. def RF_FilterFrame(idx, luminance_frame, r_RF):
  10. """
  11. Helper function to do the parallelized filtering with RFs.
  12. """
  13. from retinatools.library import get_RF
  14. X = np.linspace(-128, 128, 256)
  15. Y = np.linspace(-128, 128, 256)
  16. idx_x = idx%256
  17. idx_y = np.int(np.floor(idx/256))
  18. x, y = np.meshgrid(X,Y)
  19. xoff = X[idx_x]
  20. yoff = Y[idx_y]
  21. RF = get_RF(xoff, yoff, r_RF)
  22. product = np.sum(luminance_frame * RF)
  23. return product
  24. def parallel_prediction(idx_x, RFstrip, fitparameters, celltype):
  25. '''
  26. Helper function to do the parallelized processing of the filtered signal;
  27. This transform center/surround signal to activity with standard parameters.
  28. '''
  29. from retinatools.library import get_MC_response
  30. signal_center = RFstrip[0, idx_x, :]
  31. signal_surround = RFstrip[1, idx_x, :]
  32. R = get_MC_response(signal_center, signal_surround, fitparameters, celltype)
  33. return R
  34. fitparameters = {'rcenter': 4.0, 'rsurr': 13.0, 'ksurr': 0.45, 'surround_delay': 3, \
  35. 'lum_factor': 60, 'tau1': 7.3, 'tau2': 38, 'k1': 0.019, 'c1': 0.016, 'tauplus': 110, \
  36. 'tauA': 20, 'k2': 50, 'dt': 1000/150.} # for 299 Mon
  37. celltype = "on-cell"
  38. # fitparameters = {'rcenter': 4.5, 'rsurr': 20, 'ksurr': 0.34, 'surround_delay': 8, \
  39. # 'lum_factor': 1000, 'tau1': 5.0, 'tau2': 16, 'k1': 0.00048, 'c1': 0.0024, 'tauplus': 22, \
  40. # 'tauA': 33, 'k2': 560, 'dt': 1000/150.} # For 078Moff.txt
  41. # celltype = "off-cell"
  42. savepath = "/jukebox/tank/schottdorf/tmp/"
  43. N_MAXFRAME = 4500 # 4500 to only process first 2.5 min *60sec *30fps in the mpg -> 30sec ret video
  44. def main(profile):
  45. rc = ipp.Client(profile=profile) # ipyparallel status
  46. print(rc.ids)
  47. dview = rc[:] # Set up the engines
  48. dview.use_cloudpickle() # Make sure to fix the closure over luminance_frame
  49. with dview.sync_imports():
  50. import numpy as np
  51. ################################
  52. ##### Process the movie #####
  53. ################################
  54. vidcap = cv2.VideoCapture('/usr/people/ms81/cells/1x10_256.mpg')
  55. data = np.ones((2, 256, 256, N_MAXFRAME)) # for center & surround X 256px X 256px X N_frames
  56. counter = 0
  57. success = True
  58. t0 = time.time()
  59. while success and (counter < N_MAXFRAME):
  60. success, image = vidcap.read()
  61. scone, mcone, lcone = image_to_cone(image)
  62. luminance_frame = mcone + lcone
  63. for tt in ["center", "surr"]:
  64. if tt == "center":
  65. r_RF = fitparameters['rcenter']
  66. luminance_frame = luminance_frame
  67. idx = 0
  68. else:
  69. r_RF = fitparameters['rsurr']
  70. luminance_frame = luminance_frame
  71. idx = 1
  72. rc[:].push(dict( luminance_frame = luminance_frame, RF_FilterFrame = RF_FilterFrame, r_RF = r_RF )) # Seed namespace for the ipython engines.
  73. tmp = rc[:].map_sync( lambda ix: RF_FilterFrame(ix, luminance_frame, r_RF), range(0,256*256) ) # Execute parallel computation on all ipython engines
  74. data[idx,:,:,counter] = np.reshape(tmp, (256,256)) # Reorganize data back to frame
  75. counter += 1
  76. print(counter/N_MAXFRAME)
  77. t1 = time.time()
  78. # filename = "rgc-{0}-raw.npy".format(os.environ["SLURM_JOB_ID"])
  79. # np.save(filename, data)
  80. print("Part 1 DONE; Time needed [in h]:")
  81. print( (t1-t0)/3600 )
  82. ################################
  83. #### Apply temp. process #####
  84. ################################
  85. t1 = time.time()
  86. output_model = np.zeros((256, 256, N_MAXFRAME))
  87. rc[:].push(dict( parallel_prediction = parallel_prediction))
  88. for idx_x in range(0,256):
  89. RFstrip = data[:,idx_x,:,:]
  90. rc[:].push(dict( RFstrip = RFstrip, celltype = celltype, fitparameters = fitparameters, parallel_prediction = parallel_prediction ))
  91. tmp = rc[:].map_sync(lambda idx_y: parallel_prediction(idx_y, RFstrip, fitparameters, celltype), range(0,256))
  92. output_model[idx_x,:,:] = np.reshape(tmp, (256, N_MAXFRAME))
  93. print(idx_x/256)
  94. t2 = time.time()
  95. filename = "-{0}-frames.npy".format(os.environ["SLURM_JOB_ID"])
  96. pp = savepath + celltype + filename
  97. np.save(pp, output_model)
  98. print("Part 2 DONE; Time needed [in h]:")
  99. print("Saved: " + pp)
  100. print((t2-t1)/3600)
  101. if __name__ == '__main__':
  102. parser = argparse.ArgumentParser()
  103. parser.add_argument("-p", "--profile", required=True, help="Name of IPython profile to use")
  104. args = parser.parse_args()
  105. main(args.profile)
  106. print("Done and done.")