123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- import numpy as np
- import matplotlib.pyplot as plt
- import functions as r
- ##### Figure 2 #####
- # load data for Fig2A
- sims=np.load('coefC_tau_th.npy',allow_pickle=True)
- # plot Fig2A
- # uncomment ax.invert_xaxis() in the function "first_approx"
- # in the function "first_approx", the variables A and B must end in "_fixedy"
- # in the function "first_approx", the variable X must be paratemeters1
- fig1,fig2,fig5,fig6,fig7,fig8,fig9,fig10=r.first_approx(sims)
- # load data for Fig2B
- sims=np.load('d_tau_th.npy',allow_pickle=True)
- # plot Fig2B
- # uncomment ax.invert_xaxis() in the function "first_approx"
- # in the function "first_approx", the variables A and B must end in "_fixedy"
- # in the function "first_approx", the variable X must be paratemeters1
- fig1,fig2,fig5,fig6,fig7,fig8,fig9,fig10=r.first_approx(sims)
- # load data for Fig2C
- sims=np.load('coefC_tau_th.npy',allow_pickle=True)
- # plot Fig2C
- # comment ax.invert_xaxis() in the function "first_approx"
- # in the function "first_approx", the variables A and B must end in "_fixedx"
- # in the function "first_approx", the variable X must be paratemeters2
- fig1,fig2,fig5,fig6,fig7,fig8,fig9,fig10=r.first_approx(sims)
- ##### Figure 3 #####
- # load data for Fig3A
- sims=np.load('coefC_d.npy',allow_pickle=True)
- # plot Fig3A
- fig1,ax1,fig2,ax2,fig3,ax3,fig4,ax4,fig5,ax5,fig6,ax6=r.dif_2d(sims)
- r.ns_region(sims,fig1,ax1,fig2,ax2,fig3,ax3,fig4,ax4,fig5,ax5,fig6,ax6)
- ##### Figure 4 #####
- # load data for Fig4B
- sims=np.load('w1-w2_recurrentv2.npy',allow_pickle=True)
- # plot Fig4B
- p1=1.0
- p2=1.0
- fig8, fig9, fig10, fig11, k = r.one_combi(sims,p1,p2)
- # load data for Fig4C
- sims=np.load('w1-w2_recurrentv2.npy',allow_pickle=True)
- # plot Fig4C top
- # comment ax.invert_xaxis() in the function "first_approx"
- # in the function "first_approx", the variables A and B must end in "_fixedx"
- # in the function "first_approx", the variable X must be paratemeters2
- fig1,fig2,fig5,fig6,fig7,fig8,fig9,fig10=r.first_approx(sims)
-
- # plot Fig4C bottom
- # comment ax.invert_xaxis() in the function "first_approx"
- # in the function "first_approx", the variables A and B must end in "_fixedy"
- # in the function "first_approx", the variable X must be paratemeters1
- fig1,fig2,fig5,fig6,fig7,fig8,fig9,fig10=r.first_approx(sims)
- # load data for Fig4D-E
- sims=np.load('w1-w2_recurrentv2.npy',allow_pickle=True)
- # plot Fig4D-E
- fig1,ax1,fig2,ax2,fig3,ax3,fig4,ax4,fig5,ax5,fig6,ax6=r.dif_2d(sims)
- r.ns_region(sims,fig1,ax1,fig2,ax2,fig3,ax3,fig4,ax4,fig5,ax5,fig6,ax6)
- ##### Figure 10 #####
- # load data for Fig10A-B
- sims=np.load('coefC-HF_d-HF.npy',allow_pickle=True)
- # plot Fig10A-B
- fig1,ax1,fig2,ax2,fig3,ax3,fig4,ax4,fig5,ax5,fig6,ax6=r.dif_2d(sims)
- r.ns_region(sims,fig1,ax1,fig2,ax2,fig3,ax3,fig4,ax4,fig5,ax5,fig6,ax6)
- # plot Fig10C
- p1=0.5
- p2=1.7
- fig8, fig9, fig10, fig11, k = r.one_combi(sims,p1,p2)
- # load data for Fig10D-E-F-G
- sims=np.load('coefC-HF_d-HF.npy',allow_pickle=True)
- sims_tauth=np.load('coefC-HF_d-HF_15-tau_th.npy',allow_pickle=True)
- # plot Fig10D-E
- fig1,ax1,fig2,ax2,fig3,ax3,fig4,ax4,fig5,ax5,fig6,ax6=r.effect_tauth(sims, sims_tauth)
- r.ns_region(sims_tauth,fig1,ax1,fig2,ax2,fig3,ax3,fig4,ax4,fig5,ax5,fig6,ax6,sims)
- # plot Fig10F-G
- p1=0.5
- p2=1.7
- fig8, fig9, fig10, fig11, k = r.one_combi(sims_tauth,p1,p2,sims)
- ##### Figure 11 #####
- # load data for Fig11D model A
- sims=np.load('modelA_coefC-HF-d_HF.npy',allow_pickle=True)
- sims_tauth=np.load('modelA_coefC-HF-d_HF_15-tauth.npy',allow_pickle=True) # _15-tau_th
- # plot Fig11D model A
- fig1,ax1,fig2,ax2,fig3,ax3,fig4,ax4,fig5,ax5,fig6,ax6=r.effect_tauth(sims, sims_tauth)
- r.ns_region(sims_tauth,fig1,ax1,fig2,ax2,fig3,ax3,fig4,ax4,fig5,ax5,fig6,ax6,sims)
- # load data for Fig11D model B
- sims=np.load('modelB_coefC-HF-d_HF.npy',allow_pickle=True)
- sims_tauth=np.load('modelB_coefC-HF-d_HF_15-tauthv2.npy',allow_pickle=True)
- # plot Fig11D model B
- fig1,ax1,fig2,ax2,fig3,ax3,fig4,ax4,fig5,ax5,fig6,ax6=r.effect_tauth(sims, sims_tauth)
- r.ns_region(sims_tauth,fig1,ax1,fig2,ax2,fig3,ax3,fig4,ax4,fig5,ax5,fig6,ax6,sims)
|