1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- from ChildProject.projects import ChildProject
- from ChildProject.annotations import AnnotationManager
- from ChildProject.metrics import gamma, segments_to_grid
- import numpy as np
- import pandas as pd
- from sklearn.metrics import confusion_matrix
- from sklearn.preprocessing import normalize
- import seaborn as sns
- import matplotlib.pyplot as plt
- speakers = ['CHI', 'OCH', 'FEM', 'MAL']
- project = ChildProject('.')
- am = AnnotationManager(project)
- am.read()
- intersection = AnnotationManager.intersection(am.annotations, ['vtc', 'its'])
- segments = am.get_collapsed_segments(intersection)
- segments = segments[segments['speaker_type'].isin(speakers)]
- segments.sort_values(['segment_onset', 'segment_offset']).to_csv('test.csv', index = False)
- #print(gamma(segments, column = 'speaker_type'))
- print('creating grids')
- vtc = segments_to_grid(segments[segments['set'] == 'vtc'], 0, segments['segment_offset'].max(), 100, 'speaker_type', speakers)
- its = segments_to_grid(segments[segments['set'] == 'its'], 0, segments['segment_offset'].max(), 100, 'speaker_type', speakers)
- print('done creating grids')
- speakers.extend(['overlap', 'none'])
- def get_pick(row):
- for cat in reversed(speakers):
- if row[cat]:
- return cat
- def conf_matrix(horizontal, vertical, categories):
- vertical = pd.DataFrame(vertical, columns = categories)
- vertical['pick'] = vertical.apply(
- get_pick,
- axis = 1
- )
- vertical = vertical['pick'].values
- horizontal = pd.DataFrame(horizontal, columns = categories)
- horizontal['pick'] = horizontal.apply(
- get_pick,
- axis = 1
- )
- horizontal = horizontal['pick'].values
- confusion = confusion_matrix(vertical, horizontal, labels = categories)
- confusion = normalize(confusion, axis = 1, norm = 'l1')
- return confusion
- plt.rcParams.update({'font.size': 12})
- plt.rc('xtick', labelsize = 10)
- plt.rc('ytick', labelsize = 10)
- fig, axes = plt.subplots(nrows = 1, ncols = 2, figsize=(6.4*2, 4.8))
- confusion = conf_matrix(its, vtc, speakers)
- sns.heatmap(confusion, annot = True, fmt = '.2f', ax = axes[0], cmap = 'Reds')
- axes[0].set_xlabel('its')
- axes[0].set_ylabel('vtc')
- axes[0].xaxis.set_ticklabels(speakers)
- axes[0].yaxis.set_ticklabels(speakers)
- confusion = conf_matrix(vtc, its, speakers)
- sns.heatmap(confusion, annot = True, fmt = '.2f', ax = axes[1], cmap = 'Reds')
- axes[1].set_xlabel('vtc')
- axes[1].set_ylabel('its')
- axes[1].xaxis.set_ticklabels(speakers)
- axes[1].yaxis.set_ticklabels(speakers)
- plt.savefig('Fig5.pdf', bbox_inches = 'tight')
|