Lucas Gautheron 3 jaren geleden
bovenliggende
commit
9c39475ffd
2 gewijzigde bestanden met toevoegingen van 161 en 0 verwijderingen
  1. 77 0
      scripts/plots.py
  2. 84 0
      scripts/recall.py

+ 77 - 0
scripts/plots.py

@@ -0,0 +1,77 @@
+from ChildProject.projects import ChildProject
+from ChildProject.annotations import AnnotationManager
+from ChildProject.metrics import gamma, segments_to_grid
+
+import numpy as np
+import pandas as pd
+from sklearn.metrics import confusion_matrix
+from sklearn.preprocessing import normalize
+
+import seaborn as sns
+import matplotlib.pyplot as plt
+
+speakers = ['CHI', 'OCH', 'FEM', 'MAL']
+
+project = ChildProject('.')
+am = AnnotationManager(project)
+am.read()
+
+intersection = AnnotationManager.intersection(am.annotations, ['vtc', 'its'])
+segments = am.get_collapsed_segments(intersection)
+segments = segments[segments['speaker_type'].isin(speakers)]
+segments.sort_values(['segment_onset', 'segment_offset']).to_csv('test.csv', index = False)
+#print(gamma(segments, column = 'speaker_type'))
+
+print('creating grids')
+vtc = segments_to_grid(segments[segments['set'] == 'vtc'], 0, segments['segment_offset'].max(), 100, 'speaker_type', speakers)
+its = segments_to_grid(segments[segments['set'] == 'its'], 0, segments['segment_offset'].max(), 100, 'speaker_type', speakers)
+print('done creating grids')
+
+speakers.extend(['overlap', 'none'])
+
+def get_pick(row):
+    for cat in reversed(speakers):
+        if row[cat]:
+            return cat
+
+def conf_matrix(horizontal, vertical, categories):
+    vertical = pd.DataFrame(vertical, columns = categories)
+    vertical['pick'] = vertical.apply(
+        get_pick,
+        axis = 1
+    )
+    vertical = vertical['pick'].values
+
+    horizontal = pd.DataFrame(horizontal, columns = categories)
+    horizontal['pick'] = horizontal.apply(
+        get_pick,
+        axis = 1
+    )
+    horizontal = horizontal['pick'].values
+
+    confusion = confusion_matrix(vertical, horizontal, labels = categories)
+    confusion = normalize(confusion, axis = 1, norm = 'l1')
+
+    return confusion
+
+plt.rcParams.update({'font.size': 12})
+plt.rc('xtick', labelsize = 10)
+plt.rc('ytick', labelsize = 10)
+
+fig, axes = plt.subplots(nrows = 1, ncols = 2, figsize=(6.4*2, 4.8))
+
+confusion = conf_matrix(its, vtc, speakers)
+sns.heatmap(confusion, annot = True, fmt = '.2f', ax = axes[0], cmap = 'Reds')
+axes[0].set_xlabel('its')
+axes[0].set_ylabel('vtc')
+axes[0].xaxis.set_ticklabels(speakers)
+axes[0].yaxis.set_ticklabels(speakers)
+
+confusion = conf_matrix(vtc, its, speakers)
+sns.heatmap(confusion, annot = True, fmt = '.2f', ax = axes[1], cmap = 'Reds')
+axes[1].set_xlabel('vtc')
+axes[1].set_ylabel('its')
+axes[1].xaxis.set_ticklabels(speakers)
+axes[1].yaxis.set_ticklabels(speakers)
+
+plt.savefig('Fig5.pdf', bbox_inches = 'tight')

+ 84 - 0
scripts/recall.py

@@ -0,0 +1,84 @@
+from ChildProject.projects import ChildProject
+from ChildProject.annotations import AnnotationManager
+from ChildProject.metrics import segments_to_annotation
+
+from pyannote.metrics.detection import DetectionPrecisionRecallFMeasure
+
+import numpy as np
+import pandas as pd
+from sklearn.metrics import confusion_matrix
+from sklearn.preprocessing import normalize
+
+import random
+
+import seaborn as sns
+import matplotlib.pyplot as plt
+
+speakers = ['CHI', 'OCH', 'FEM', 'MAL']
+sets = ['its', 'vtc (conf 50%)', 'vtc (drop 50%)', 'vtc (conf 75%)', 'vtc (drop 75%)']
+
+project = ChildProject('.')
+am = AnnotationManager(project)
+am.read()
+
+def confusion(segments, prob):
+    segments['speaker_type'] = segments['speaker_type'].apply(
+        lambda s: random.choice(speakers) if random.random() < prob else s
+    )
+    return segments
+
+def drop(segments, prob):
+    return segments.sample(frac = 1-prob)
+
+intersection = AnnotationManager.intersection(am.annotations, ['vtc', 'its'])
+segments = am.get_collapsed_segments(intersection)
+segments = segments[segments['speaker_type'].isin(speakers)]
+segments.sort_values(['segment_onset', 'segment_offset']).to_csv('test.csv', index = False)
+
+conf50 = segments[segments['set'] == 'vtc'].copy()
+conf50 = confusion(conf50, 0.5)
+conf50['set'] = 'vtc (conf 50%)'
+
+conf75 = segments[segments['set'] == 'vtc'].copy()
+conf75 = confusion(conf75, 0.75)
+conf75['set'] = 'vtc (conf 75%)'
+
+drop50 = segments[segments['set'] == 'vtc'].copy()
+drop50 = drop(drop50, 0.5)
+drop50['set'] = 'vtc (drop 50%)'
+
+drop75 = segments[segments['set'] == 'vtc'].copy()
+drop75 = drop(drop75, 0.75)
+drop75['set'] = 'vtc (drop 75%)'
+
+segments = pd.concat([segments, conf50, conf75, drop50, drop75])
+
+metric = DetectionPrecisionRecallFMeasure()
+
+scores = []
+for speaker in speakers:
+    ref = segments_to_annotation(segments[(segments['set'] == 'vtc') & (segments['speaker_type'] == speaker)], 'speaker_type')
+
+    for s in sets:
+        hyp = segments_to_annotation(segments[(segments['set'] == s) & (segments['speaker_type'] == speaker)], 'speaker_type')
+        detail = metric.compute_components(ref, hyp)
+        precision, recall, f = metric.compute_metrics(detail)
+
+        scores.append({
+            'set': s,
+            'speaker': speaker,
+            'recall': recall,
+            'precision': precision,
+            'f': f
+        })
+
+scores = pd.DataFrame(scores)
+scores.to_csv('scores.csv', index = False)
+
+plt.rcParams.update({'font.size': 12})
+plt.rc('xtick', labelsize = 10)
+plt.rc('ytick', labelsize = 10)
+
+fig, axes = plt.subplots(nrows = 2, ncols = 2, figsize=(6.4*2, 4.8*2))
+
+plt.savefig('Fig4.pdf', bbox_inches = 'tight')