|
@@ -0,0 +1,176 @@
|
|
|
+[2024-08-10 15:44:57,406][ERROR]: CUDA out of memory. Tried to allocate 66.00 MiB. GPU 0 has a total capacty of 39.39 GiB of which 35.06 MiB is free. Including non-PyTorch memory, this process has 39.35 GiB memory in use. Of the allocated memory 38.51 GiB is allocated by PyTorch, and 332.36 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
|
|
+Traceback (most recent call last):
|
|
|
+ File "/usr/local/lib/python3.11/dist-packages/argus/engine/engine.py", line 242, in run
|
|
|
+ self.state.step_output = self.step_method(batch, self.state)
|
|
|
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
+ File "/root/video_reconstruction_from_sensorium2023_winner/src/argus_models.py", line 55, in train_step
|
|
|
+ self.grad_scaler.scale(loss).backward()
|
|
|
+ File "/usr/local/lib/python3.11/dist-packages/torch/_tensor.py", line 492, in backward
|
|
|
+ torch.autograd.backward(
|
|
|
+ File "/usr/local/lib/python3.11/dist-packages/torch/autograd/__init__.py", line 251, in backward
|
|
|
+ Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
|
|
|
+torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 66.00 MiB. GPU 0 has a total capacty of 39.39 GiB of which 35.06 MiB is free. Including non-PyTorch memory, this process has 39.35 GiB memory in use. Of the allocated memory 38.51 GiB is allocated by PyTorch, and 332.36 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
|
|
+[2024-08-10 16:43:05,284][ERROR]: CUDA out of memory. Tried to allocate 112.00 MiB. GPU 0 has a total capacty of 39.39 GiB of which 15.06 MiB is free. Including non-PyTorch memory, this process has 39.37 GiB memory in use. Of the allocated memory 37.60 GiB is allocated by PyTorch, and 1.25 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
|
|
+Traceback (most recent call last):
|
|
|
+ File "/usr/local/lib/python3.11/dist-packages/argus/engine/engine.py", line 242, in run
|
|
|
+ self.state.step_output = self.step_method(batch, self.state)
|
|
|
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
+ File "/root/video_reconstruction_from_sensorium2023_winner/src/argus_models.py", line 52, in train_step
|
|
|
+ prediction = self.nn_module(input)
|
|
|
+ ^^^^^^^^^^^^^^^^^^^^^
|
|
|
+ File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
|
|
|
+ return self._call_impl(*args, **kwargs)
|
|
|
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
+ File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py", line 1527, in _call_impl
|
|
|
+ return forward_call(*args, **kwargs)
|
|
|
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
+ File "/root/video_reconstruction_from_sensorium2023_winner/src/models/dwiseneuro.py", line 399, in forward
|
|
|
+ x = self.core(x) # (32, 256, 16, 8, 8)
|
|
|
+ ^^^^^^^^^^^^
|
|
|
+ File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
|
|
|
+ return self._call_impl(*args, **kwargs)
|
|
|
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
+ File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py", line 1527, in _call_impl
|
|
|
+ return forward_call(*args, **kwargs)
|
|
|
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
+ File "/root/video_reconstruction_from_sensorium2023_winner/src/models/dwiseneuro.py", line 339, in forward
|
|
|
+ x = self.blocks(x)
|
|
|
+ ^^^^^^^^^^^^^^
|
|
|
+ File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
|
|
|
+ return self._call_impl(*args, **kwargs)
|
|
|
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
+ File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py", line 1527, in _call_impl
|
|
|
+ return forward_call(*args, **kwargs)
|
|
|
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
+ File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/container.py", line 215, in forward
|
|
|
+ input = module(input)
|
|
|
+ ^^^^^^^^^^^^^
|
|
|
+ File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
|
|
|
+ return self._call_impl(*args, **kwargs)
|
|
|
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
+ File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py", line 1527, in _call_impl
|
|
|
+ return forward_call(*args, **kwargs)
|
|
|
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
+ File "/root/video_reconstruction_from_sensorium2023_winner/src/models/dwiseneuro.py", line 140, in forward
|
|
|
+ x = self.temp_covn_dw(x)
|
|
|
+ ^^^^^^^^^^^^^^^^^^^^
|
|
|
+ File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
|
|
|
+ return self._call_impl(*args, **kwargs)
|
|
|
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
+ File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py", line 1527, in _call_impl
|
|
|
+ return forward_call(*args, **kwargs)
|
|
|
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
+ File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/container.py", line 215, in forward
|
|
|
+ input = module(input)
|
|
|
+ ^^^^^^^^^^^^^
|
|
|
+ File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
|
|
|
+ return self._call_impl(*args, **kwargs)
|
|
|
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
+ File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py", line 1527, in _call_impl
|
|
|
+ return forward_call(*args, **kwargs)
|
|
|
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
+ File "/root/video_reconstruction_from_sensorium2023_winner/src/models/dwiseneuro.py", line 20, in forward
|
|
|
+ x = self.bn(x)
|
|
|
+ ^^^^^^^^^^
|
|
|
+ File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
|
|
|
+ return self._call_impl(*args, **kwargs)
|
|
|
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
+ File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/module.py", line 1527, in _call_impl
|
|
|
+ return forward_call(*args, **kwargs)
|
|
|
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
+ File "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/batchnorm.py", line 171, in forward
|
|
|
+ return F.batch_norm(
|
|
|
+ ^^^^^^^^^^^^^
|
|
|
+ File "/usr/local/lib/python3.11/dist-packages/torch/nn/functional.py", line 2478, in batch_norm
|
|
|
+ return torch.batch_norm(
|
|
|
+ ^^^^^^^^^^^^^^^^^
|
|
|
+torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 112.00 MiB. GPU 0 has a total capacty of 39.39 GiB of which 15.06 MiB is free. Including non-PyTorch memory, this process has 39.37 GiB memory in use. Of the allocated memory 37.60 GiB is allocated by PyTorch, and 1.25 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
|
|
+[2024-08-10 18:22:17,402][ERROR]: CUDA out of memory. Tried to allocate 64.00 MiB. GPU 0 has a total capacty of 39.39 GiB of which 51.06 MiB is free. Including non-PyTorch memory, this process has 39.33 GiB memory in use. Of the allocated memory 38.38 GiB is allocated by PyTorch, and 446.11 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
|
|
+Traceback (most recent call last):
|
|
|
+ File "/usr/local/lib/python3.11/dist-packages/argus/engine/engine.py", line 242, in run
|
|
|
+ self.state.step_output = self.step_method(batch, self.state)
|
|
|
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
+ File "/root/video_reconstruction_from_sensorium2023_winner/src/argus_models.py", line 55, in train_step
|
|
|
+ self.grad_scaler.scale(loss).backward()
|
|
|
+ File "/usr/local/lib/python3.11/dist-packages/torch/_tensor.py", line 492, in backward
|
|
|
+ torch.autograd.backward(
|
|
|
+ File "/usr/local/lib/python3.11/dist-packages/torch/autograd/__init__.py", line 251, in backward
|
|
|
+ Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
|
|
|
+torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 MiB. GPU 0 has a total capacty of 39.39 GiB of which 51.06 MiB is free. Including non-PyTorch memory, this process has 39.33 GiB memory in use. Of the allocated memory 38.38 GiB is allocated by PyTorch, and 446.11 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
|
|
+[2024-08-10 19:40:28,102][INFO]: train - epoch: 0, lr: 0.0006, train_loss: -210979.7
|
|
|
+[2024-08-10 19:41:41,526][INFO]: val - epoch: 0, val_loss: -262594.4, val_corr_mouse_0: 0.05484205, val_corr_mouse_1: 0.04803763, val_corr_mouse_2: 0.04986684, val_corr_mouse_3: 0.04846702, val_corr_mouse_4: 0.04550785, val_corr_mouse_5: 0.06100428, val_corr_mouse_6: 0.04895828, val_corr_mouse_7: 0.05756247, val_corr_mouse_8: 0.0635027, val_corr_mouse_9: 0.06585407, val_corr: 0.05436032
|
|
|
+[2024-08-10 20:10:10,092][INFO]: train - epoch: 1, lr: 0.0012, train_loss: -349537.9
|
|
|
+[2024-08-10 20:11:23,160][INFO]: val - epoch: 1, val_loss: -400594.5, val_corr_mouse_0: 0.1594308, val_corr_mouse_1: 0.1916381, val_corr_mouse_2: 0.1769449, val_corr_mouse_3: 0.194493, val_corr_mouse_4: 0.1934204, val_corr_mouse_5: 0.1840494, val_corr_mouse_6: 0.1850291, val_corr_mouse_7: 0.2001113, val_corr_mouse_8: 0.1892697, val_corr_mouse_9: 0.1831739, val_corr: 0.185756
|
|
|
+[2024-08-10 20:39:57,037][INFO]: train - epoch: 2, lr: 0.0018, train_loss: -410906.1
|
|
|
+[2024-08-10 20:41:09,767][INFO]: val - epoch: 2, val_loss: -463907.8, val_corr_mouse_0: 0.2015174, val_corr_mouse_1: 0.2422107, val_corr_mouse_2: 0.2251596, val_corr_mouse_3: 0.2407945, val_corr_mouse_4: 0.2489482, val_corr_mouse_5: 0.2257275, val_corr_mouse_6: 0.2352485, val_corr_mouse_7: 0.2600953, val_corr_mouse_8: 0.2367661, val_corr_mouse_9: 0.2270612, val_corr: 0.2343529
|
|
|
+[2024-08-10 21:10:37,897][INFO]: train - epoch: 0, lr: 0.0017865, train_loss: -442167
|
|
|
+[2024-08-10 21:11:46,974][INFO]: val - epoch: 0, val_loss: -486652.8, val_corr_mouse_0: 0.2183807, val_corr_mouse_1: 0.2651948, val_corr_mouse_2: 0.2436745, val_corr_mouse_3: 0.2581284, val_corr_mouse_4: 0.2729389, val_corr_mouse_5: 0.2435641, val_corr_mouse_6: 0.2553889, val_corr_mouse_7: 0.2852657, val_corr_mouse_8: 0.2581222, val_corr_mouse_9: 0.2461846, val_corr: 0.2546843
|
|
|
+[2024-08-10 21:11:47,667][INFO]: Model saved to 'data/experiments/true_batch_002/fold_0/model-000-0.254684.pth'
|
|
|
+[2024-08-10 21:39:47,765][INFO]: train - epoch: 1, lr: 0.0017463, train_loss: -461805
|
|
|
+[2024-08-10 21:40:57,099][INFO]: val - epoch: 1, val_loss: -500040.8, val_corr_mouse_0: 0.2263351, val_corr_mouse_1: 0.2775544, val_corr_mouse_2: 0.2529134, val_corr_mouse_3: 0.2687834, val_corr_mouse_4: 0.2862762, val_corr_mouse_5: 0.2522875, val_corr_mouse_6: 0.2677622, val_corr_mouse_7: 0.2979345, val_corr_mouse_8: 0.2693256, val_corr_mouse_9: 0.256485, val_corr: 0.2655657
|
|
|
+[2024-08-10 21:40:57,735][INFO]: Model saved to 'data/experiments/true_batch_002/fold_0/model-001-0.265566.pth'
|
|
|
+[2024-08-10 21:40:57,736][INFO]: Model removed 'data/experiments/true_batch_002/fold_0/model-000-0.254684.pth'
|
|
|
+[2024-08-10 22:08:50,301][INFO]: train - epoch: 2, lr: 0.0016806, train_loss: -475048.8
|
|
|
+[2024-08-10 22:10:00,159][INFO]: val - epoch: 2, val_loss: -508274.8, val_corr_mouse_0: 0.2319439, val_corr_mouse_1: 0.2842134, val_corr_mouse_2: 0.2579996, val_corr_mouse_3: 0.2746907, val_corr_mouse_4: 0.2945057, val_corr_mouse_5: 0.2595396, val_corr_mouse_6: 0.2768593, val_corr_mouse_7: 0.3058755, val_corr_mouse_8: 0.2780731, val_corr_mouse_9: 0.2627826, val_corr: 0.2726483
|
|
|
+[2024-08-10 22:10:00,706][INFO]: Model saved to 'data/experiments/true_batch_002/fold_0/model-002-0.272648.pth'
|
|
|
+[2024-08-10 22:10:00,707][INFO]: Model removed 'data/experiments/true_batch_002/fold_0/model-001-0.265566.pth'
|
|
|
+[2024-08-10 22:37:55,658][INFO]: train - epoch: 3, lr: 0.0015915, train_loss: -484263.8
|
|
|
+[2024-08-10 22:39:04,905][INFO]: val - epoch: 3, val_loss: -513579.2, val_corr_mouse_0: 0.2348677, val_corr_mouse_1: 0.2888264, val_corr_mouse_2: 0.2627008, val_corr_mouse_3: 0.2786286, val_corr_mouse_4: 0.2994933, val_corr_mouse_5: 0.2638428, val_corr_mouse_6: 0.2813126, val_corr_mouse_7: 0.3118721, val_corr_mouse_8: 0.2827964, val_corr_mouse_9: 0.2670782, val_corr: 0.2771419
|
|
|
+[2024-08-10 22:39:05,450][INFO]: Model saved to 'data/experiments/true_batch_002/fold_0/model-003-0.277142.pth'
|
|
|
+[2024-08-10 22:39:05,451][INFO]: Model removed 'data/experiments/true_batch_002/fold_0/model-002-0.272648.pth'
|
|
|
+[2024-08-10 23:06:55,046][INFO]: train - epoch: 4, lr: 0.0014817, train_loss: -493137.2
|
|
|
+[2024-08-10 23:08:04,133][INFO]: val - epoch: 4, val_loss: -517399.1, val_corr_mouse_0: 0.2358587, val_corr_mouse_1: 0.2904635, val_corr_mouse_2: 0.2655456, val_corr_mouse_3: 0.2822512, val_corr_mouse_4: 0.3019845, val_corr_mouse_5: 0.2678626, val_corr_mouse_6: 0.2864939, val_corr_mouse_7: 0.3154179, val_corr_mouse_8: 0.286069, val_corr_mouse_9: 0.2706207, val_corr: 0.2802567
|
|
|
+[2024-08-10 23:08:04,759][INFO]: Model saved to 'data/experiments/true_batch_002/fold_0/model-004-0.280257.pth'
|
|
|
+[2024-08-10 23:08:04,760][INFO]: Model removed 'data/experiments/true_batch_002/fold_0/model-003-0.277142.pth'
|
|
|
+[2024-08-10 23:35:53,340][INFO]: train - epoch: 5, lr: 0.0013545, train_loss: -503938.6
|
|
|
+[2024-08-10 23:37:02,992][INFO]: val - epoch: 5, val_loss: -519725.3, val_corr_mouse_0: 0.2372634, val_corr_mouse_1: 0.2921011, val_corr_mouse_2: 0.2660066, val_corr_mouse_3: 0.2836768, val_corr_mouse_4: 0.3048874, val_corr_mouse_5: 0.2696646, val_corr_mouse_6: 0.2895354, val_corr_mouse_7: 0.318772, val_corr_mouse_8: 0.2888412, val_corr_mouse_9: 0.2719996, val_corr: 0.2822748
|
|
|
+[2024-08-10 23:37:03,739][INFO]: Model saved to 'data/experiments/true_batch_002/fold_0/model-005-0.282275.pth'
|
|
|
+[2024-08-10 23:37:03,740][INFO]: Model removed 'data/experiments/true_batch_002/fold_0/model-004-0.280257.pth'
|
|
|
+[2024-08-11 00:04:52,078][INFO]: train - epoch: 6, lr: 0.0012137, train_loss: -505846.1
|
|
|
+[2024-08-11 00:06:01,280][INFO]: val - epoch: 6, val_loss: -521633.5, val_corr_mouse_0: 0.2376062, val_corr_mouse_1: 0.2945271, val_corr_mouse_2: 0.2670804, val_corr_mouse_3: 0.2844096, val_corr_mouse_4: 0.3068275, val_corr_mouse_5: 0.2711799, val_corr_mouse_6: 0.292852, val_corr_mouse_7: 0.3216421, val_corr_mouse_8: 0.2914845, val_corr_mouse_9: 0.2744035, val_corr: 0.2842013
|
|
|
+[2024-08-11 00:06:02,061][INFO]: Model saved to 'data/experiments/true_batch_002/fold_0/model-006-0.284201.pth'
|
|
|
+[2024-08-11 00:06:02,062][INFO]: Model removed 'data/experiments/true_batch_002/fold_0/model-005-0.282275.pth'
|
|
|
+[2024-08-11 00:33:57,225][INFO]: train - epoch: 7, lr: 0.0010637, train_loss: -514596.7
|
|
|
+[2024-08-11 00:35:07,028][INFO]: val - epoch: 7, val_loss: -523162.1, val_corr_mouse_0: 0.2399353, val_corr_mouse_1: 0.2949951, val_corr_mouse_2: 0.2685264, val_corr_mouse_3: 0.2861067, val_corr_mouse_4: 0.3081961, val_corr_mouse_5: 0.273417, val_corr_mouse_6: 0.2941183, val_corr_mouse_7: 0.3230472, val_corr_mouse_8: 0.2933642, val_corr_mouse_9: 0.2756703, val_corr: 0.2857376
|
|
|
+[2024-08-11 00:35:07,587][INFO]: Model saved to 'data/experiments/true_batch_002/fold_0/model-007-0.285738.pth'
|
|
|
+[2024-08-11 00:35:07,588][INFO]: Model removed 'data/experiments/true_batch_002/fold_0/model-006-0.284201.pth'
|
|
|
+[2024-08-11 01:03:03,072][INFO]: train - epoch: 8, lr: 0.000909, train_loss: -517452.1
|
|
|
+[2024-08-11 01:04:12,986][INFO]: val - epoch: 8, val_loss: -524394.5, val_corr_mouse_0: 0.2400761, val_corr_mouse_1: 0.2968313, val_corr_mouse_2: 0.2705618, val_corr_mouse_3: 0.2864633, val_corr_mouse_4: 0.3090632, val_corr_mouse_5: 0.2745246, val_corr_mouse_6: 0.2958922, val_corr_mouse_7: 0.3250378, val_corr_mouse_8: 0.2961797, val_corr_mouse_9: 0.2770703, val_corr: 0.28717
|
|
|
+[2024-08-11 01:04:13,544][INFO]: Model saved to 'data/experiments/true_batch_002/fold_0/model-008-0.287170.pth'
|
|
|
+[2024-08-11 01:04:13,545][INFO]: Model removed 'data/experiments/true_batch_002/fold_0/model-007-0.285738.pth'
|
|
|
+[2024-08-11 01:32:07,659][INFO]: train - epoch: 9, lr: 0.00075428, train_loss: -523046
|
|
|
+[2024-08-11 01:33:16,817][INFO]: val - epoch: 9, val_loss: -525619.2, val_corr_mouse_0: 0.2404011, val_corr_mouse_1: 0.2974836, val_corr_mouse_2: 0.2714488, val_corr_mouse_3: 0.2876403, val_corr_mouse_4: 0.309173, val_corr_mouse_5: 0.2760529, val_corr_mouse_6: 0.297399, val_corr_mouse_7: 0.3257575, val_corr_mouse_8: 0.2971133, val_corr_mouse_9: 0.2788082, val_corr: 0.2881278
|
|
|
+[2024-08-11 01:33:17,366][INFO]: Model saved to 'data/experiments/true_batch_002/fold_0/model-009-0.288128.pth'
|
|
|
+[2024-08-11 01:33:17,367][INFO]: Model removed 'data/experiments/true_batch_002/fold_0/model-008-0.287170.pth'
|
|
|
+[2024-08-11 02:01:02,343][INFO]: train - epoch: 10, lr: 0.00060426, train_loss: -530782.9
|
|
|
+[2024-08-11 02:02:11,692][INFO]: val - epoch: 10, val_loss: -526397.7, val_corr_mouse_0: 0.2410226, val_corr_mouse_1: 0.2990908, val_corr_mouse_2: 0.2715428, val_corr_mouse_3: 0.2892544, val_corr_mouse_4: 0.3100843, val_corr_mouse_5: 0.2770697, val_corr_mouse_6: 0.2982894, val_corr_mouse_7: 0.3272332, val_corr_mouse_8: 0.2987141, val_corr_mouse_9: 0.2800532, val_corr: 0.2892354
|
|
|
+[2024-08-11 02:02:12,243][INFO]: Model saved to 'data/experiments/true_batch_002/fold_0/model-010-0.289235.pth'
|
|
|
+[2024-08-11 02:02:12,244][INFO]: Model removed 'data/experiments/true_batch_002/fold_0/model-009-0.288128.pth'
|
|
|
+[2024-08-11 02:30:08,360][INFO]: train - epoch: 11, lr: 0.0004635, train_loss: -539025.4
|
|
|
+[2024-08-11 02:31:17,463][INFO]: val - epoch: 11, val_loss: -527057.2, val_corr_mouse_0: 0.2409496, val_corr_mouse_1: 0.2989776, val_corr_mouse_2: 0.272529, val_corr_mouse_3: 0.2889301, val_corr_mouse_4: 0.3104554, val_corr_mouse_5: 0.2773898, val_corr_mouse_6: 0.3002505, val_corr_mouse_7: 0.3288136, val_corr_mouse_8: 0.2997287, val_corr_mouse_9: 0.2815554, val_corr: 0.2899579
|
|
|
+[2024-08-11 02:31:18,016][INFO]: Model saved to 'data/experiments/true_batch_002/fold_0/model-011-0.289958.pth'
|
|
|
+[2024-08-11 02:31:18,017][INFO]: Model removed 'data/experiments/true_batch_002/fold_0/model-010-0.289235.pth'
|
|
|
+[2024-08-11 02:59:12,528][INFO]: train - epoch: 12, lr: 0.00033628, train_loss: -546479.6
|
|
|
+[2024-08-11 03:00:21,355][INFO]: val - epoch: 12, val_loss: -527561.4, val_corr_mouse_0: 0.2416703, val_corr_mouse_1: 0.3003028, val_corr_mouse_2: 0.2734223, val_corr_mouse_3: 0.2886639, val_corr_mouse_4: 0.310956, val_corr_mouse_5: 0.2785543, val_corr_mouse_6: 0.3018437, val_corr_mouse_7: 0.3298721, val_corr_mouse_8: 0.300742, val_corr_mouse_9: 0.2823378, val_corr: 0.2908365
|
|
|
+[2024-08-11 03:00:21,971][INFO]: Model saved to 'data/experiments/true_batch_002/fold_0/model-012-0.290837.pth'
|
|
|
+[2024-08-11 03:00:21,972][INFO]: Model removed 'data/experiments/true_batch_002/fold_0/model-011-0.289958.pth'
|
|
|
+[2024-08-11 03:28:10,443][INFO]: train - epoch: 13, lr: 0.00022645, train_loss: -550927.7
|
|
|
+[2024-08-11 03:29:19,676][INFO]: val - epoch: 13, val_loss: -527888.5, val_corr_mouse_0: 0.2409341, val_corr_mouse_1: 0.3001636, val_corr_mouse_2: 0.2740403, val_corr_mouse_3: 0.2885665, val_corr_mouse_4: 0.3110365, val_corr_mouse_5: 0.2791434, val_corr_mouse_6: 0.3020895, val_corr_mouse_7: 0.3303515, val_corr_mouse_8: 0.3020804, val_corr_mouse_9: 0.2827457, val_corr: 0.2911151
|
|
|
+[2024-08-11 03:29:20,228][INFO]: Model saved to 'data/experiments/true_batch_002/fold_0/model-013-0.291115.pth'
|
|
|
+[2024-08-11 03:29:20,229][INFO]: Model removed 'data/experiments/true_batch_002/fold_0/model-012-0.290837.pth'
|
|
|
+[2024-08-11 03:57:14,244][INFO]: train - epoch: 14, lr: 0.00013737, train_loss: -555592.8
|
|
|
+[2024-08-11 03:58:23,746][INFO]: val - epoch: 14, val_loss: -528265.1, val_corr_mouse_0: 0.2411301, val_corr_mouse_1: 0.2996703, val_corr_mouse_2: 0.2741814, val_corr_mouse_3: 0.2883833, val_corr_mouse_4: 0.3115615, val_corr_mouse_5: 0.2799062, val_corr_mouse_6: 0.3025025, val_corr_mouse_7: 0.3308826, val_corr_mouse_8: 0.3025078, val_corr_mouse_9: 0.2838141, val_corr: 0.291454
|
|
|
+[2024-08-11 03:58:24,311][INFO]: Model saved to 'data/experiments/true_batch_002/fold_0/model-014-0.291454.pth'
|
|
|
+[2024-08-11 03:58:24,312][INFO]: Model removed 'data/experiments/true_batch_002/fold_0/model-013-0.291115.pth'
|
|
|
+[2024-08-11 04:26:20,672][INFO]: train - epoch: 15, lr: 7.1734e-05, train_loss: -558473.8
|
|
|
+[2024-08-11 04:27:29,818][INFO]: val - epoch: 15, val_loss: -528708.6, val_corr_mouse_0: 0.2409272, val_corr_mouse_1: 0.3000354, val_corr_mouse_2: 0.274586, val_corr_mouse_3: 0.2885822, val_corr_mouse_4: 0.3116796, val_corr_mouse_5: 0.280687, val_corr_mouse_6: 0.3026732, val_corr_mouse_7: 0.3316395, val_corr_mouse_8: 0.3034596, val_corr_mouse_9: 0.2841051, val_corr: 0.2918375
|
|
|
+[2024-08-11 04:27:30,375][INFO]: Model saved to 'data/experiments/true_batch_002/fold_0/model-015-0.291837.pth'
|
|
|
+[2024-08-11 04:27:30,377][INFO]: Model removed 'data/experiments/true_batch_002/fold_0/model-014-0.291454.pth'
|
|
|
+[2024-08-11 04:55:12,698][INFO]: train - epoch: 16, lr: 3.1536e-05, train_loss: -560573.8
|
|
|
+[2024-08-11 04:56:22,484][INFO]: val - epoch: 16, val_loss: -528646.4, val_corr_mouse_0: 0.2412194, val_corr_mouse_1: 0.3002827, val_corr_mouse_2: 0.2740749, val_corr_mouse_3: 0.2888177, val_corr_mouse_4: 0.3113322, val_corr_mouse_5: 0.2808881, val_corr_mouse_6: 0.3032489, val_corr_mouse_7: 0.331802, val_corr_mouse_8: 0.3038598, val_corr_mouse_9: 0.2844974, val_corr: 0.2920023
|
|
|
+[2024-08-11 04:56:23,035][INFO]: Model saved to 'data/experiments/true_batch_002/fold_0/model-016-0.292002.pth'
|
|
|
+[2024-08-11 04:56:23,036][INFO]: Model removed 'data/experiments/true_batch_002/fold_0/model-015-0.291837.pth'
|
|
|
+[2024-08-11 05:24:19,056][INFO]: train - epoch: 17, lr: 1.8e-05, train_loss: -560239.2
|
|
|
+[2024-08-11 05:25:27,746][INFO]: val - epoch: 17, val_loss: -528674.9, val_corr_mouse_0: 0.2413104, val_corr_mouse_1: 0.300466, val_corr_mouse_2: 0.2740428, val_corr_mouse_3: 0.288637, val_corr_mouse_4: 0.3114814, val_corr_mouse_5: 0.2810987, val_corr_mouse_6: 0.3034074, val_corr_mouse_7: 0.3321179, val_corr_mouse_8: 0.3039615, val_corr_mouse_9: 0.2846583, val_corr: 0.2921181
|
|
|
+[2024-08-11 05:25:28,293][INFO]: Model saved to 'data/experiments/true_batch_002/fold_0/model-017-0.292118.pth'
|
|
|
+[2024-08-11 05:25:28,294][INFO]: Model removed 'data/experiments/true_batch_002/fold_0/model-016-0.292002.pth'
|