123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- ---
- title: "Stimuli List"
- author: "Jack Taylor"
- output: html_document
- ---
- ```{r setup, include=FALSE}
- knitr::opts_chunk$set(echo = TRUE)
- library(tidyverse)
- ggplot2::theme_set(theme_minimal())
- practice_stim_long <- read_csv("practice_stim.csv")
- stim_tidy <- read_csv("stim_tidy.csv")
- ```
- # Practice Trials List
- Column name explanations:
- * `item_nr`: An identifier for the matched pair of words
- * `image`: The image to be displayed in the study (can right-click, open image in new tab to see larger)
- * `string`: The practice trial's word
- * `condition`: The condition for the practice trial (A1=congruent, A2=incongruent)
- * `Zipf`: Word frequency in Zipf (SUBTLEX-UK)
- * `Length`: Word length
- * `CNC`: Mean concreteness rating
- * `BG`: Mean bigram probability
-
- ```{r, echo=FALSE}
- practice_stim_long %>%
- mutate(image = sprintf("![](boss_small/%s.jpg)", filename)) %>%
- mutate(item_nr = sprintf("Practice %i", item_nr)) %>%
- mutate_at(vars(dplyr::matches("Zipf.SUBTLEX_UK")), ~ round(., 2)) %>%
- mutate_at(vars(dplyr::matches("cos_ppmi_sim")), ~ round(as.numeric(.), 5)) %>%
- mutate_at(vars(dplyr::matches("BG.SUBTLEX_UK")), ~ round(., 5)) %>%
- rename(
- Zipf = Zipf.SUBTLEX_UK,
- sim = cos_ppmi_sim,
- CNC = CNC.Brysbaert,
- BG = BG.SUBTLEX_UK,
- Length = Length
- ) %>%
- select(item_nr, image, string, condition, Zipf, Length, CNC, BG) %>%
- knitr::kable()
- ```
- # Experimental Trials List
- Column name explanations:
- * `item_nr`: An identifier for the matched pair of words
- * `image`: The image to be displayed in the study (can right-click, open image in new tab to see larger)
- * `perc_agree`: The percentage of name agreement for the congruent word
- * `string_A1`: The congruent word
- * `string_A2`: The incongruent word
- * `lev_dist`: The levenshtein distance between the congruent and incongruent words
- * `semantic_sim`: The ppmi associative semantic similarity between the congruent and incongruent words
- * `Zipf_A1` & `Zipf_A2`: Word frequency in Zipf (SUBTLEX-UK) for each word
- * `Length_A1` & `Length_A2`: Word lengths
- * `CNC_A1` & `CNC_A2`: Mean concreteness ratings
- * `BG_A1` & `BG_A2`: Mean bigram probabilities
- * `OLD20_A1` & `OLD20_A2`: OLD20 values (orthographic neighbourhood density)
-
- ```{r, echo=FALSE}
- stim_tidy %>%
- mutate(image = sprintf("![](boss_small/%s.jpg)", filename_A1)) %>%
- select(item_nr, string_A1, image, nb_diff_names_A1, everything(), -filename_A1, -nb_diff_names_A2) %>%
- mutate_at(vars(dplyr::matches("Zipf.SUBTLEX_UK")), ~ round(., 2)) %>%
- mutate_at(vars(dplyr::matches("cos_ppmi_sim")), ~ round(as.numeric(.), 5)) %>%
- mutate_at(vars(dplyr::matches("BG.SUBTLEX_UK")), ~ round(., 5)) %>%
- rename(
- nb_diff_names = nb_diff_names_A1,
- perc_agree = perc_name_agree_A1,
- Zipf_A1 = Zipf.SUBTLEX_UK_A1,
- Zipf_A2 = Zipf.SUBTLEX_UK_A2,
- sim_A1 = cos_ppmi_sim_A1,
- sim_A2 = cos_ppmi_sim_A2,
- CNC_A1 = CNC.Brysbaert_A1,
- CNC_A2 = CNC.Brysbaert_A2,
- BG_A1 = BG.SUBTLEX_UK_A1,
- BG_A2 = BG.SUBTLEX_UK_A2,
- OLD20_A1 = ON.OLD20_A1,
- OLD20_A2 = ON.OLD20_A2,
- lev_dist = levenshtein_distance
- ) %>%
- mutate(
- semantic_sim = c(sim_A1, sim_A2)[c(sim_A1, sim_A2)!=1]
- ) %>%
- arrange(perc_agree) %>%
- select(item_nr, image, perc_agree, string_A1, string_A2, lev_dist, semantic_sim, Zipf_A1, Zipf_A2, Length_A1, Length_A2, CNC_A1, CNC_A2, BG_A1, BG_A2, OLD20_A1, OLD20_A2) %>%
- knitr::kable()
- ```
- ## Predictability Distribution
- ```{r, echo=FALSE}
- pred_hist <- stim_tidy %>%
- ggplot(aes(perc_name_agree_A1)) +
- geom_bar(width = 1, fill="grey25") +
- scale_x_binned(
- expand = c(0,0),
- n.breaks = 10,
- limits=c(0,100)
- ) +
- scale_y_continuous(expand = c(0,0)) +
- labs(x = "Predictability (%)", y = "N Images") +
- theme_classic() +
- theme(plot.margin = margin(5, 15, 5, 5, unit="pt"))
- ggsave(file.path("fig", "pred_hist.svg"), pred_hist, width=6, height=1)
- ```
|