bafkreibnvnafbqexjgwjjqtyrdofdb7lalnoygcfszgfyn2zgpxdv55jne 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119
  1. <?xml version="1.0" encoding="UTF-8"?>
  2. <!DOCTYPE GIFTI SYSTEM "http://gifti.projects.nitrc.org/gifti.dtd">
  3. <GIFTI Version="1.0" NumberOfDataArrays="1">
  4. <MetaData>
  5. <MD>
  6. <Name><![CDATA[UserName]]></Name>
  7. <Value><![CDATA[wanlin]]></Value>
  8. </MD>
  9. <MD>
  10. <Name><![CDATA[Date]]></Name>
  11. <Value><![CDATA[Mon Nov 15 20:18:22 2010]]></Value>
  12. </MD>
  13. <MD>
  14. <Name><![CDATA[gifticlib-version]]></Name>
  15. <Value><![CDATA[gifti library version 1.08, 8 March, 2010]]></Value>
  16. </MD>
  17. </MetaData>
  18. <LabelTable>
  19. <Label Key="0" Red="0" Green="0" Blue="0" Alpha="0"><![CDATA[Unknown]]></Label>
  20. <Label Key="3289650" Red="0.196078" Green="0.196078" Blue="0.196078" Alpha="1"><![CDATA[Corpus_callosum]]></Label>
  21. <Label Key="1971380" Red="0.705882" Green="0.0784314" Blue="0.117647" Alpha="1"><![CDATA[G_and_S_Insula_ONLY_AVERAGE]]></Label>
  22. <Label Key="1644860" Red="0.235294" Green="0.0980392" Blue="0.0980392" Alpha="1"><![CDATA[G_cingulate-Isthmus]]></Label>
  23. <Label Key="3947545" Red="0.0980392" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[G_cingulate-Main_part]]></Label>
  24. <Label Key="1316020" Red="0.705882" Green="0.0784314" Blue="0.0784314" Alpha="1"><![CDATA[G_cuneus]]></Label>
  25. <Label Key="6558940" Red="0.862745" Green="0.0784314" Blue="0.392157" Alpha="1"><![CDATA[G_frontal_inf-Opercular_part]]></Label>
  26. <Label Key="3947660" Red="0.54902" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[G_frontal_inf-Orbital_part]]></Label>
  27. <Label Key="9231540" Red="0.705882" Green="0.862745" Blue="0.54902" Alpha="1"><![CDATA[G_frontal_inf-Triangular_part]]></Label>
  28. <Label Key="11822220" Red="0.54902" Green="0.392157" Blue="0.705882" Alpha="1"><![CDATA[G_frontal_middle]]></Label>
  29. <Label Key="9180340" Red="0.705882" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[G_frontal_superior]]></Label>
  30. <Label Key="9180300" Red="0.54902" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[G_frontomarginal]]></Label>
  31. <Label Key="657941" Red="0.0823529" Green="0.0392157" Blue="0.0392157" Alpha="1"><![CDATA[G_insular_long]]></Label>
  32. <Label Key="9211105" Red="0.882353" Green="0.54902" Blue="0.54902" Alpha="1"><![CDATA[G_insular_short]]></Label>
  33. <Label Key="11811863" Red="0.0901961" Green="0.235294" Blue="0.705882" Alpha="1"><![CDATA[G_and_S_occipital_inferior]]></Label>
  34. <Label Key="11812020" Red="0.705882" Green="0.235294" Blue="0.705882" Alpha="1"><![CDATA[G_occipital_middle]]></Label>
  35. <Label Key="3988500" Red="0.0784314" Green="0.862745" Blue="0.235294" Alpha="1"><![CDATA[G_occipital_superior]]></Label>
  36. <Label Key="9180220" Red="0.235294" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[G_occipit-temp_lat-Or_fusiform]]></Label>
  37. <Label Key="9221340" Red="0.862745" Green="0.705882" Blue="0.54902" Alpha="1"><![CDATA[G_occipit-temp_med-Lingual_part]]></Label>
  38. <Label Key="1336385" Red="0.254902" Green="0.392157" Blue="0.0784314" Alpha="1"><![CDATA[G_occipit-temp_med-Parahippocampal_part]]></Label>
  39. <Label Key="1326300" Red="0.862745" Green="0.235294" Blue="0.0784314" Alpha="1"><![CDATA[G_orbital]]></Label>
  40. <Label Key="3957820" Red="0.235294" Green="0.392157" Blue="0.235294" Alpha="1"><![CDATA[G_paracentral]]></Label>
  41. <Label Key="14433300" Red="0.0784314" Green="0.235294" Blue="0.862745" Alpha="1"><![CDATA[G_parietal_inferior-Angular_part]]></Label>
  42. <Label Key="3957860" Red="0.392157" Green="0.392157" Blue="0.235294" Alpha="1"><![CDATA[G_parietal_inferior-Supramarginal_part]]></Label>
  43. <Label Key="14464220" Red="0.862745" Green="0.705882" Blue="0.862745" Alpha="1"><![CDATA[G_parietal_superior]]></Label>
  44. <Label Key="9221140" Red="0.0784314" Green="0.705882" Blue="0.54902" Alpha="1"><![CDATA[G_postcentral]]></Label>
  45. <Label Key="11832380" Red="0.235294" Green="0.54902" Blue="0.705882" Alpha="1"><![CDATA[G_precentral]]></Label>
  46. <Label Key="9180185" Red="0.0980392" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[G_precuneus]]></Label>
  47. <Label Key="6568980" Red="0.0784314" Green="0.235294" Blue="0.392157" Alpha="1"><![CDATA[G_rectus]]></Label>
  48. <Label Key="1367100" Red="0.235294" Green="0.862745" Blue="0.0784314" Alpha="1"><![CDATA[G_subcallosal]]></Label>
  49. <Label Key="14423100" Red="0.235294" Green="0.0784314" Blue="0.862745" Alpha="1"><![CDATA[G_subcentral]]></Label>
  50. <Label Key="6610140" Red="0.862745" Green="0.862745" Blue="0.392157" Alpha="1"><![CDATA[G_temporal_inferior]]></Label>
  51. <Label Key="3947700" Red="0.705882" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[G_temporal_middle]]></Label>
  52. <Label Key="14433340" Red="0.235294" Green="0.235294" Blue="0.862745" Alpha="1"><![CDATA[G_temp_sup-G_temp_transv_and_interm_S]]></Label>
  53. <Label Key="14433500" Red="0.862745" Green="0.235294" Blue="0.862745" Alpha="1"><![CDATA[G_temp_sup-Lateral_aspect]]></Label>
  54. <Label Key="3988545" Red="0.254902" Green="0.862745" Blue="0.235294" Alpha="1"><![CDATA[G_temp_sup-Planum_polare]]></Label>
  55. <Label Key="1346585" Red="0.0980392" Green="0.54902" Blue="0.0784314" Alpha="1"><![CDATA[G_temp_sup-Planum_tempolare]]></Label>
  56. <Label Key="16384013" Red="0.0509804" Green="0" Blue="0.980392" Alpha="1"><![CDATA[G_and_S_transverse_frontopolar]]></Label>
  57. <Label Key="14423101" Red="0.239216" Green="0.0784314" Blue="0.862745" Alpha="1"><![CDATA[Lat_Fissure-ant_sgt-ramus_horizontal]]></Label>
  58. <Label Key="3937341" Red="0.239216" Green="0.0784314" Blue="0.235294" Alpha="1"><![CDATA[Lat_Fissure-ant_sgt-ramus_vertical]]></Label>
  59. <Label Key="6569021" Red="0.239216" Green="0.235294" Blue="0.392157" Alpha="1"><![CDATA[Lat_Fissure-post_sgt]]></Label>
  60. <Label Key="1644825" Red="0.0980392" Green="0.0980392" Blue="0.0980392" Alpha="1"><![CDATA[Medial_wall]]></Label>
  61. <Label Key="3937420" Red="0.54902" Green="0.0784314" Blue="0.235294" Alpha="1"><![CDATA[Pole_occipital]]></Label>
  62. <Label Key="1357020" Red="0.862745" Green="0.705882" Blue="0.0784314" Alpha="1"><![CDATA[Pole_temporal]]></Label>
  63. <Label Key="11842623" Red="0.247059" Green="0.705882" Blue="0.705882" Alpha="1"><![CDATA[S_calcarine]]></Label>
  64. <Label Key="660701" Red="0.866667" Green="0.0784314" Blue="0.0392157" Alpha="1"><![CDATA[S_central]]></Label>
  65. <Label Key="1367061" Red="0.0823529" Green="0.862745" Blue="0.0784314" Alpha="1"><![CDATA[S_central_insula]]></Label>
  66. <Label Key="1336503" Red="0.717647" Green="0.392157" Blue="0.0784314" Alpha="1"><![CDATA[S_cingulate-Main_part_and_Intracingulate]]></Label>
  67. <Label Key="6558941" Red="0.866667" Green="0.0784314" Blue="0.392157" Alpha="1"><![CDATA[S_cingulate-Marginalis_part]]></Label>
  68. <Label Key="9190621" Red="0.866667" Green="0.235294" Blue="0.54902" Alpha="1"><![CDATA[S_circular_insula_anterior]]></Label>
  69. <Label Key="14423261" Red="0.866667" Green="0.0784314" Blue="0.862745" Alpha="1"><![CDATA[S_circular_insula_inferior]]></Label>
  70. <Label Key="14474301" Red="0.239216" Green="0.862745" Blue="0.862745" Alpha="1"><![CDATA[S_circular_insula_superior]]></Label>
  71. <Label Key="13158500" Red="0.392157" Green="0.784314" Blue="0.784314" Alpha="1"><![CDATA[S_collateral_transverse_ant]]></Label>
  72. <Label Key="13158410" Red="0.0392157" Green="0.784314" Blue="0.784314" Alpha="1"><![CDATA[S_collateral_transverse_post]]></Label>
  73. <Label Key="1367261" Red="0.866667" Green="0.862745" Blue="0.0784314" Alpha="1"><![CDATA[S_frontal_inferior]]></Label>
  74. <Label Key="6558861" Red="0.552941" Green="0.0784314" Blue="0.392157" Alpha="1"><![CDATA[S_frontal_middle]]></Label>
  75. <Label Key="6609981" Red="0.239216" Green="0.862745" Blue="0.392157" Alpha="1"><![CDATA[S_frontal_superior]]></Label>
  76. <Label Key="3988501" Red="0.0823529" Green="0.862745" Blue="0.235294" Alpha="1"><![CDATA[S_frontomarginal]]></Label>
  77. <Label Key="1326221" Red="0.552941" Green="0.235294" Blue="0.0784314" Alpha="1"><![CDATA[S_intermedius_primus-Jensen]]></Label>
  78. <Label Key="14423183" Red="0.560784" Green="0.0784314" Blue="0.862745" Alpha="1"><![CDATA[S_intraparietal-and_Parietal_transverse]]></Label>
  79. <Label Key="11801661" Red="0.239216" Green="0.0784314" Blue="0.705882" Alpha="1"><![CDATA[S_occipital_anterior]]></Label>
  80. <Label Key="14433381" Red="0.396078" Green="0.235294" Blue="0.862745" Alpha="1"><![CDATA[S_occipital_middle_and_Lunatus]]></Label>
  81. <Label Key="9180181" Red="0.0823529" Green="0.0784314" Blue="0.54902" Alpha="1"><![CDATA[S_occipital_superior_and_transversalis]]></Label>
  82. <Label Key="1346781" Red="0.866667" Green="0.54902" Blue="0.0784314" Alpha="1"><![CDATA[S_occipito-temporal_lateral]]></Label>
  83. <Label Key="14443661" Red="0.552941" Green="0.392157" Blue="0.862745" Alpha="1"><![CDATA[S_occipito-temporal_medial_and_S_Lingual]]></Label>
  84. <Label Key="1315941" Red="0.396078" Green="0.0784314" Blue="0.0784314" Alpha="1"><![CDATA[S_orbital-H_shapped]]></Label>
  85. <Label Key="1336541" Red="0.866667" Green="0.392157" Blue="0.0784314" Alpha="1"><![CDATA[S_orbital_lateral]]></Label>
  86. <Label Key="1362101" Red="0.709804" Green="0.784314" Blue="0.0784314" Alpha="1"><![CDATA[S_orbital_medial-Or_olfactory]]></Label>
  87. <Label Key="9221141" Red="0.0823529" Green="0.705882" Blue="0.54902" Alpha="1"><![CDATA[S_paracentral]]></Label>
  88. <Label Key="11822181" Red="0.396078" Green="0.392157" Blue="0.705882" Alpha="1"><![CDATA[S_parieto_occipital]]></Label>
  89. <Label Key="1367221" Red="0.709804" Green="0.862745" Blue="0.0784314" Alpha="1"><![CDATA[S_pericallosal]]></Label>
  90. <Label Key="13143061" Red="0.0823529" Green="0.54902" Blue="0.784314" Alpha="1"><![CDATA[S_postcentral]]></Label>
  91. <Label Key="15733781" Red="0.0823529" Green="0.0784314" Blue="0.941176" Alpha="1"><![CDATA[S_precentral-Inferior-part]]></Label>
  92. <Label Key="13112341" Red="0.0823529" Green="0.0784314" Blue="0.784314" Alpha="1"><![CDATA[S_precentral-Superior-part]]></Label>
  93. <Label Key="3978301" Red="0.239216" Green="0.705882" Blue="0.235294" Alpha="1"><![CDATA[S_subcentral_ant]]></Label>
  94. <Label Key="16430141" Red="0.239216" Green="0.705882" Blue="0.980392" Alpha="1"><![CDATA[S_subcentral_post]]></Label>
  95. <Label Key="3937301" Red="0.0823529" Green="0.0784314" Blue="0.235294" Alpha="1"><![CDATA[S_suborbital]]></Label>
  96. <Label Key="3947621" Red="0.396078" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[S_subparietal]]></Label>
  97. <Label Key="14474261" Red="0.0823529" Green="0.862745" Blue="0.862745" Alpha="1"><![CDATA[S_supracingulate]]></Label>
  98. <Label Key="11842581" Red="0.0823529" Green="0.705882" Blue="0.705882" Alpha="1"><![CDATA[S_temporal_inferior]]></Label>
  99. <Label Key="3988703" Red="0.87451" Green="0.862745" Blue="0.235294" Alpha="1"><![CDATA[S_temporal_superior]]></Label>
  100. <Label Key="3947741" Red="0.866667" Green="0.235294" Blue="0.235294" Alpha="1"><![CDATA[S_temporal_transverse]]></Label>
  101. </LabelTable>
  102. <DataArray Intent="NIFTI_INTENT_LABEL"
  103. DataType="NIFTI_TYPE_INT32"
  104. ArrayIndexingOrder="RowMajorOrder"
  105. Dimensionality="1"
  106. Dim0="131122"
  107. Encoding="GZipBase64Binary"
  108. Endian="LittleEndian"
  109. ExternalFileName=""
  110. ExternalFileOffset="">
  111. <MetaData>
  112. <MD>
  113. <Name><![CDATA[Name]]></Name>
  114. <Value><![CDATA[node label]]></Value>
  115. </MD>
  116. </MetaData>
  117. <Data>eJztnUFuJEmSZXvdwOxYKORd2Bj0XSJvE425TBT6CnUIJhpzg1rPasJYqSyhUL78/0XVSEZmLBThbioiqmbuNP1PRM3j68Pjv3392X62n+3TtIenf7bqWD7e+XT9ne3P9mM29r2pPvNvj9/Kvnjc+S4qfd3c1e+l8/39+V3/Y7TrO7m+l+t1/p7Gvnw8fg8qG3R8HYvfJ9SX+9W/g28PD69a97ewbNZrFDP7VPNwPwPnb/TEeD/bH7vFv+Pdlu8LTn/+e1buL+ge091D4vvcX10fFLu8lsW9I9uq95lsp9iyNTzfqxTbbP/R39ef7c/Xqr9xdD9Q7hmdrXpvqmxRDHeu3T0uj5/7lHvaatV9o/NB96NfH5+e28Svs61s8nzZPUyxq+w/+jv/WRv7Trn2brw/Y2P3P7e59yC370R/dw90bLp7tnu+8X13v4vfbefex3zjPbG9365zJPdS6Bd883VAMbJvdQ2reVdjKgzOfCvenvpUvurfrmt/d9uZi3MuzPYzXZOfrW6n1x3U/vLw9VXr7tHZNvswWzU3wPT8dR/Lduv+lmPnY9k+9sf3pT4m9y9rbTLWGLSmdOuCuia08wNrUbx20loIzvVqkxj/+9u350bti3E7Xxgj3S9XDCWWE28nhmLHjqv3pp119efa82O1u9ad6nvaMUBemzoftJ5lW7SeTf0cn+48lPNc903VDq1/7Hg1TrUOsPuuw19vYg5zX06sHK/y6dbAaJf7Vkx3PSw/W+AX15DOD9nlNc1ZA9F3MH8W2bbqjzbd5xrP46/fbf9K1sWu/ZXMG7Wfa9nHt7v5aLqmnVrz2Fqh2k7WImXdm6zJqh9bc9Da09nmNU85hsaAcyBcp65t+btOz71Z27rr0cYt1qZu7WO2V3u5XwP71Z9t8hoW1wsUt/L51sTPsV+tWcSuWg/zelW1V+crrENqDNV/rYGq/7Jjx362P8e690dubI3ONsp6Xq1/zN7xddlUHUsdI18XtP5Ucdm6xGwZ26H1srUrbJX1Ul33lXj5M3bW8nhdXD9lvWdrPVo7Oz2A1limDSq/6KPog7+Czx3Zvlo3gW2ew7JH/Wh9dtbkiU22/+h17s/Qqr/vTsf/bO/f1hqn2Lh11Mm67LI7i7UbQ80ZtJwP1mPUt/rZmofW+JO+qq7oNEAVv1uHpHkBP+d6styGem27ONt6pJmfo08U3aBwvKM1FHtm181BzaN0Puh81xrWxXr69vW5IT1S2Vb2lU/uV3zROoz8frb300HovqLcuzrbj9YPH6FVsl5Bx3a0CuJkO0bxWVlaBXzWrW+zBiKWd3XJZK1W9Y2rO05qnsp2R4PQ8ZrPe6IjUKyR7hDncYcu2M2PKPaqBpHPRfgcq/NCftVY0fZa16s9dt28og7pdAHUWyCWGud5PSxiwLWTaK2fOucefTLRKVUfi/d8X/zy7VXLMZnNq3VFtIu2d+kVpj9UfTLVMSPN02iNHX3SaizwHaH+ot90/C6Woy+cfrVvomcm2gnpnF0dpvqq+ohpFOVzV2Od1FyOr1uPUfSHo5WQfin1wUBDuZ/R6ThMx1VaS9VblZ+iufJ5qPpNmZuSl8pxoq+qy9BcVD9njJ9tX/u90THCfbLUP0O/aSw1Xnu/F7VjjuPoTuSj+He+yN6Zm6Jll7ZUa2S575pTqc3S51jZdbku5leNE78znd+bsQt/1Z75KPrAjtNoG/i3sNmv2Lx8Rw/oTuXesKPJlPM8oWffUxe7ce84P0U7qnXC3fxcjsX0WKfFJV0qfHZSPMEfnQvStYomVfQt06BZhyp11W8ppqKLq3Nx9W/l6+itHf+fOthrSKu5GnGqURW9iHxZX6XnOpsqr4rsXsVM9xjZNmnBaO/sz3Jyd1PNGJuj4ZBPZ+/Gl3KZzpyE9UbJeTo6icYR9AqzcfuU/jwHZazpNTqh7+C1G2iO8TkO4p/Q5LYPmLOi82ytSeYu77kzYqIxUF23jC/EU2Mq9q4O7bQjqo27sZVxJtpvNzbzv46586jGjv3OPJhtdbw6bzb+Z2inNGT+G5vqzs63vHcSLVragHtEpQ0r21abFvcg2b7xidpTvY9a/oM4Tn37ak4Nv/ObjqfoYeS3q8OdeVvnLqyfpzSxo4Nd3Yn6u/NyNLgyR+U6tPaOLfpbO5ibZOO+6V+xUvxK4ynfPfRMhvP9nfiifCPTcFl7MX041XTTuF3sGP9ErInmUvOfagxVtyENuasjXZ1d2e7EY7rxRIwuzgmbE/nK6m/8Dk1a3lOJFkS2SAtOfK7+aHutv512zLGp/iNzs/KfYqxdLYt06EvMxv9EHpPNear7PrtmdOeetaKqMSd5S2aD+ju/apzueHeulj3xUWzRtVb169WWpih9wPeg1XzNd25HK6JnUvLxrMGYTlM1424cVz+yWIouZNpLta3sp+Mgv12bqFMq+0qzKnNcumeiy+5qau7N1UJXg/bN36g0Hvkbz3VYR2fRWu/Ep5nrCa1UxZnoJGd8K89HfHf0WTs2uebIX9V2jr5ha1KnhxytmTVR9JX1Vlr3oRYQj+e1F2msrB1UfcG0HfNTvu8xhvr3Wdo3eiS2ie5yfJl+qjRSpSm+FWs2yuUxLcV8T2ooNd/m6BxFx0w0ErNluiPGYP3//ve/PzflumXbLkY8zsb4ETXQVBuxe0PUMuu1o2PaOmXydfXSNFdU+d7iL8Q5GUvSFaE9fL83P4CcghpvxVDjIK2kxEHfq52YOzpuRyep+ghqJeDD9BHTJNJ6TtZ9RVs4GsTVKqt1a7mqw9QYqi+ydzQYm3/WFJ0N0y6VraqxXJ3VaaMdbYFsKi2haoTqnJQYnYZC/kjnTGKcnI+ioe6IifTeTiykEdVzPOFT+Z3WqU/fnqwWtSQ6Hvt2tCnUl4/1ugo1JbCv9APzrbTGJLc28XHqYTs1Q2UOrn50tejJmP9zfb+I9lNqxSyOOp8YI8eZaNkVo9KfnU2lEaNtXIuZBs3noug3RUsxuzd6xoiNcnTqGLtatdKlSK+62pTZI+3l+CFNuePnatId30pjKjaq/nPyYGpe7oTmmmgkRxPuaEnH15mn4uucr6sjT8Sp9OLU78TYnylnyufs6dwfoVU6HGn0eCzmU5XasqOrs5ae5lF3crmddp3EafXqUD+rec1Kc0WtJev8x7ca1mWFy5f5o2sVfXc1c+fPzqGK0/lW2pjp6c4PacHKX/GLGqian2pbjaHYIh9FKyv6e/Uj3VitrYrNsuv0dKcjVE3e+bMYU63NNL6r2RXfvya/aMs0rdo/0d9unN2YWdvuxlK08t3ncOJcTsVyc9adnxNjmv9XPx/3M3VtJ/E/St9/tK7+URvigahvll3ui74dE0z7KpZQ93PAvDnhB1WrI+2n7D9QWGESp+OGndwzyqm7OnqHBxBTMD2+yyCRf1S/TsdPc+EOF3T8gfyWfb5Wjn7vfB0GYGxR6XPWX9mx9ZsxQZvvD9/5LvaOPkexpoywOx8lDouX43bMwHjJ0XoTW1ePIu2CzqHSv5Xt7r4FdXxVh5/M76tj7eprJx6zUeoi0/0lP7Xyj9Wihq6OL/1caeL/8/D03JBmzn3X8Tf2heZjNkwjX/5KPhpp0rv9TurzTuvt7A9hehppWLSfZKKfFU3s5venufqd+UR9UM0F+VY+SFNnnatoakUbIy3s2kdNpejw1aoYlS/TxtFX0d6KBlc0f6c1mU2lMZkeZVo/57IVHY40sjKfrI0rfazqZUcHK3auRnb1KdPKzHeqlR29zvxUjX0de/x+z7oaGiPbXa3XgfgcYgwW52Qs5uuc0/RcHNufWvuP13Luuzpeae91PPZVx6rjE026dLirjZGeP5F3jmwwjTONsav3XY2ujNfZT/LSTL9/lI5nWp7NJ2v47P9Gx+V4hm+ly9G13PHJtojhOh3O/FSNzrig0+BVHNWv0/moH+3liceYbke6Gulhx5bZZ5uTulzRw4rudm3y/Kd6XNXzU42uzq8b5z8e5ueN5qz6ZN3p+qm+aDxF2zu+pzmj0/o7sU5o/rv06C/f5xSbY//RWvpHbxULuAyw1squf8IDOd5E72Z/JUbnp2h7Vj9wdPxubp2d78RP0e7O/JQ9NJ0+dmK1mhlobkd3w1hCPBqz0eedrndiRK2uavYun47idDUfR7c7dQE3lsMfyvHqmiC7rg/F7fLsSMNPfJ0cP2MBxgwqC0z9YwyFFZxY6hwyS1z6PGp0dj7IP+t8xA9sfHR9O390/owDWJ/KEKr+Rr6K1l72J/Ppd2vuTjsrOvyn9tavRc6vK9cua/HuM6m0e7aPWjauZZ2douur40szolw50iqdvpzGyDq+2tPicETFIJN5TObSMYBzPbO/cv07JnBqBZ02rngg59uZ5mY1hcwEUxZAcRQNz5igi1kyUKGn0ffC9WNjVSygaO1K/2bt3XGGkptHYyBecMboYio8FONEDmPngTR/npNi19l09YzOXmmn4rkxVCZw8+CnuAPZK1yixKn231SM0M1fZYRsyziiOh80lnqNl36P46MxlHqCk8vvYkz3Gzl5f8VOq4l8vL7uNHM8nvtcTlHt7j7HCRMwH4cnGFsgduj8Fe5gNpWP41exRFdbiC2zSGdb2Xe2Lqt0Wn8y5i6vuAzU8ctknh3fTK+BE8uxb3U8YSHmn2NEflfGRHzD5s54BsWruALZdj6dfdbcSg1iwjAs3oRhOq5w58o4yOGqLlaMo1w3hVkUG8QEKjNMOGOHb1icKUuoc9yJebUp7zj8tRMHPW+g8E7FL6weUs3xv748PTcljhJvxezidZ9Hns9iI4fL4ri7+6kc/86HcZHT/xkYaOmt1Vh/ZdNx0GqTvm7OzM6Zb7ZHcaMNYgDkU2mFzi9reqQr2TWr9NJkPlWsKk6eT9b1U+Y6xWuMCV3WYvbZR2Wm6KfykBM7a+wJfzlso14rh8Gc2tF0LLXe5Iyh1KKcmE6dK/p3fFYy0JfahtlVjAZ9gYbsrgeqG1U6FMW41v0uhspYiGm62A7DKRzH5p3Pu5pn9u98qnN0OA0xXsVhqD+zUMVI6rF8nLGMylIsJuKNSldfjennaJvb1C/qeoXHOv8TNSI2X7bHrfo+qrE6purOVdkrh2LEGlOOk69T9rtsOp/qufBpu5NVXKZBPpXdSZ/OruOg6FvZdH1KDIWbVHvGUJ0f4inEIp294tdpiO58kX53YqI4TtyKbxRfxknT6zOJo8bL56nyQ+evcp3CXagfjeey3KTOprDHR9fLTjHUpAanxL70JOK0SUyVn67G6mWVXfW9RTHZeTj8o/q57JTHULhO4SR3fsuv82VsVPlVHKTwD2MgxEGVfVc7QkzC7NT6jlJ76uyZv+u37Nk87uAoxnedvTrPijn+8u2fLev/bv5VDFZDUutYChdFv4qBOo6KbIN8kH2u1XQ2d7HU48NbHY10NdLd+ZjCAIhZXC5S7F3O6vhH8VW4KNuqfFadCxvrThZjGtnhKxbD4YAqhsNXMYZT50Jz6JhM0X2MYXYZKcdQOJHNqeMR10+9ltV4jJsYUzEWU9mJMUwcZ3fP46Qm5MRAPKf6u9eqYwxUs0LjKfv+KMOIdpPaS45R1UwmcRHvTNimY5rOj7GN4pdtO46rbJFOR7EqHavYOnWcSuNWvie4qGMVx7/yVetLSq3ptG1lH/lgsctqiIEyUzCfq7HfQuhsK57InIJYJnIJ4x62f0xhGMW28mGM9Kr+8/TlVZvwDtK5Sh+yycc7DYyOM6ZwOUZloAkjTVhnwlwoBvocTvDTCXZydPREx59iAUdfT+bVxc6fqRtD8UXz78Y44Zv9Ec+wa55ZoIvf8U22UfvU+gfjix0+2q3P7PBS1vpTP3Veu6zkxKp8HC5CHDXlnR2+Udmrs61YpOOcyq7jmo6nsp9au1GYR/VXWMfhHmXsTqd38832Sg3HqQEpNZHcnDgslutzgq/c2lG0QzYVI3Vz7/jqavn3E9D1iJofxax+i0GJlWtVaE6VH/LJnJK5rbPteKqrN0n77b4zlsNnmdGmbNf2N/r8PZrKCowpO66s9GQVMx4/xYtTRnXG787PGfd0HMWXfaaV7dJGClN2daKOGRTmnLKdyiuoIW5y/FX+7dgyx2A8ycZ059k15bpOWbviPRZnwpeMPa/XXf+yYWyJPqNcU9tlwsw9u/W3jiVdhlT9qzhovoj9cuvYCu1TrGLfyXrZJ/shX8W24jS1LqbYRnu2HzDHrtij8mNM2LGHypYuG7p86p5H9FPYz7V12a+zcXnPiYH8UX9+LqjjvorXsi9izPiaMSCKybgQxd6JidgSsWrmPDQHxS4yEmLliqeincqDkQknDLjLfll3dzq86/uszNjZZX3WsWLVX12XCS/meBM+7FjK9UXX1OXG3VgKD7q+LAby75hyHe8Y4RQDutzWcaDKVko8hXNZrI4ld2yzT/dd7T4L5dzd2NN5qp+ven7ZdzFh971nfhXvou9Ljld9l9S8QuZW9nc04c8J9yL2dBgX+SmMqTKiyvZdbXNnPMa9Xewc45kJCm6u+LNi0B0fdK5Ls6p2yD7qQDSvam6ZpdQ6a8XC1fwYO6LzUtlVZWdl3+tqiEeRfeUTP5fKvup36okqj6K6ocJirn0er/NR2FmpUXZ1xTwHFAv5LzZUfKr6IvJV7ZZtfI1iIQa9uA7xrFprVNkyM6nDopFBs+ZmOj73d7afvbFzVVmV8euyYRq1uqZojie484Q/YtDT8brPacKiLsOqc3Zt8jlO2KfjFoenqrjos9iJqcZ156YyvGqfeU6xP3G9nFiu/4k5uOdy6rvDzsFlW7WvmhOqr34U06o8qjKhW5Nl8RnXOvEiK1Ws2jEZ8mGs6cZgNdIu5ql4V8t+FRuw64X4tfPv+NzdMztlyy5OFSvHcfk4XocVo4vfzbvrU7hV5UaHVZUaIoo/janGUXwqluzOX2FXxb+Lg1iW8azDtMs2+v729eENszJGvXwWO044t+Nbh23Rs5OXNphyHmO6j2bV92DfrNNOHa9aZ9fNMetKlzFZTEXD7rAt0sQub7rznFyj3XONcabng67Xbryl43Ncl4/UcSaMrsxhh9dPcfuU5aYseqcPu36T76oag13bqV/l736GDoej7w+bU/V9m9h0373Izh1X73C86j9hdIf3J3VmN15V970aiuf6X031yX4oJ+CwPeNx5RpPY6P4kbk79kfxK15F81+xlm83Z8TCi2PZuVZzy+fE4jB/ZQ6Vb8ftjONVtq0+Z6U+Pakds7kg3kb2mW1Zf7RhbN6x9Ko9X+3i09U6do522bbi52yfGbjj5WXvsDLj68i+ig2q/5btW8/DU6ZmvL0b60dpk+tR6bspf6t8rtgiHnfYqLoeLl+h66DYO+M6fssu+zHd3untKgbTuxP2nMafMqjzWTvn48ZF83S/hxM+dfzY9XX9lHN2vzuqrTOX7rN32VL5LnY+ip3zfVYYuuJMxG/V3+WESaf1XKd+3HFIx77uOOx8nJiMlxC7Mnvms+yzT1cbruzV+nfFNq5v9F8M2XEk83fZzbVXxnH9EVMqXNnxJWLHaN+xHYqr+CKbyHMdU1bjKCyYuU9hu46nso/DeFUM5lfZZds4/gmui2tlxx1Vn8I0pxhI8XN8J+OcjOXOVTm/rH06RnTsXRvHvuKkOEdHq1cac4cfWTwn5u6clq+q3x2tj3SlEpex3dWYPlZ9Vf5i/p2PwjoKCynsU81vwmOq3ZSrlGvZsf6EqdTvwJ08pzIaqzVW8dGYkQEYn7gsgtoOj+2wUdSY2Z/xgmqPGGVnrHh+DuPkWJP6YYylMBOL5zBUFUvx7eZ/iqOYvcpQ7Jpnm3Ws4pmOzzo/p342tcl2zj7YzFgdZ8XG9obu8pZir+xV7epo4/pZUUuLa9yO9u/6TrMPm4vDJygO0j5TRnLmvHtuu9fEvW7sWlXHkY/Sj3wYY6D5OdzUXacdrjsV52pTP9Wf+Uz6J7YTnnjFUI+PVJsju66/ZDHFxuCDXd7drb0qcVRWYz4nOE8dX4lxBz92cV2uZHF2uJPV/CJjVdw1ZcSdWt3O3tanb7hmFvum3Jfn43KgMvervexBFHgx+kXfaU3NYaspQ56Y62QO1X0w10JXq+phyL+Kheppqq9y7lereLQ7nwnrsWcgVb5Ez0+i+GhPpsqQyrOFFT8q3HiCHRkvjlhx+Hs8E7uTsU6MWWkjl6c6v65fHW+HGavxrnXePcfKB10DpuuRjcKNJzlQ8VXiuFwZr+kuy01jsZin5tXFmvgxW+U4ZMWGA1G/a9ONh85B5STUumtcxT4Zbzrnk/x4MjaLvztX9Xqq56x+Rgo7Tllc5VNlLpGHqmORQRGTdhyqMLfKsjt7T5++6TXIZbvsHd6sxnD243ZxKr9of7Vlc4JXlXNV648ophLDnUP3PVDZ82qLe9zzcu6X1XhxTDfmlJnVGmi0WceyLdtj2tmoddFublO+zYybOfdEfdRl4er5xYp5OxbuGHnCsSfZk9koMe627Rhtlx2rNvWLvt2xrAVc1q2aOmfFp7Jn18Bhuu7adXw0Zd735rzO9+54u3F2fJy4kA1/58jY/8KW4XjmTcasKB7j2hf7Q/yHPpeTjNl9/nfyZhf/xLm8d2yF8SaxHYY8wdLqWM73Rb0fsbkz28hbi41VLkaMpzCxw8WO76Se+vStZ1t17C5O58/8FMbNXIw4sWPCaa21Y75dfu7iT3wZE6M5u8ytjDVhb5d3USz1Hp6ZeepXnTtj8onNhMunNecqbhfD4XLG5nfzeO7LHI5YuzvucHhcoxyW/giGrua6a+vEvJvlT/L9Tlz3u3A1pJvUeTD9NfFjuQCV7VQu3bHfibvLswrvTnT3WKsnRlb1+CseJv6dffe+eh2PIdZhdjKDDfwdLlL4bcp07LvgxJvEceeinNOUs53Y7t+RwrbMV5nr0onTvtiv8Guc0yn2zZ9Lx4LMf8KyXbynbxorT+Oy+G6sEzFWUxibMXFsu6ydY0/4XTn3kzkBFreKxeZ4snbN6uKTWMin4tvq/Kq6NOpnNh0Df3t8fG6qT+Ta5RtbF6fzi77VOai+iL8rn8zkjMujn8PdDp9nH8TmUz5X2Bz9JpPzvvJXWTev8w47qnzpzOkvX//+3Fb/en+1O9k3jjMZi8XP56pcJ4edO3uFl1HcKWMqdvn8u75dO6b1Vd08iWEx1CPmWDfGJE7mWzfGi1Yn/mosNY4bo+rvjqM+1F/ZMVv3O/Dmcx/ychXPYVNFq01jW997k9WdOU/mPRkjjzX5zncxnXvi8nHGQezOrinjCOezULjO+d4gpoV/vxu5iSr+bpwY78Tvh8V4T9/e5gF2znfF6+LuxrzaqTirTXICavzp3oEu/k4eYxKnOr+da7b+NtS5KGtUjMf2D6CYy3flC3J/VXfPfdexOI+8J3+1iuO7XMLlc/Ho8mV5ASU/4eQcTuUuujyGGsfJXaj5i8p/sr/AyVmoeQv2fLy6/z++V/ccxLUW5S4meQ9Wq87jns5rVLYxd4HsWH5h+eSchJufQHPu4lZjdOfPrq97/ZBfzldUOYvqPerLTIbmt8viO/p9i98eOW9WzeFV5DfhwxO5hml+4GQsdN2cXIL7mXT5mvjdUD+jN9+jA7z+KqbJ6YxTd2KhGJXffz0+0PHRd+byjf7svpFjM//dGN09evkrY1StG4N9F9gcXR9mP8kpuDydfR22jb5P314zssvHOc5qShzkG9tk3/UklrKXW42nxDjBrTtzcmIr18v1q/g3nkfFvdfxqh6P5s9sr8b6V4tzQ/veM1ertfJTNfwu5mfjYaeW3/E0s1f31KuMrHAy43D0fzFlPp783tvVELfe8R7xFuOxCUMjLu78Os5VYimcvOwcHkZzcP2d85my/mpZjzLfbF/15ffdHupn7fW4X8uN85jGyvNWxjvBw4q9y7vMNtuf5HKXrVm8if91bP3LzlNhaHa8Ze9NDnXjLJ672qu/C8OX+SGOjb4qOzO/aNP+3QMfl7HRdVJjVvdNNaYSqzvXyTyy764fs8scmeddcWZ1bRCLZruleR3+Xj7Rd5ctYzvJrCzelPl3Y1VznZyvMq8qDorh5gzQPJS5MhaNfgqDuoyL6r1d2635TvaJ7zItiqPEUv3u4Nsp2zKfjnWrOaFxrv8buTuXagzkg9h4Yrvzu+nVe/f1eo9eI8at+lb/bw9fYH/FdZe946My4Yo7jbH8Vwynfsx8HX5eMU/WyREvo2uB2IjZPuuoR/w8cj6GWFvhKDQW8mGcGeNNmNjhvV3enfox30uvThl5x7eL5XwvIlN05999bxyuRmz4Ko7B0HnujJ8VpkUxkF/HThMOZqzeMZpio3B/xcATn+zXceOOT3WfVWyRTT5W2VVM3rFntI2MUjEn1PnJ/xQbTuIqjOjEVlgVzekOrtyJw2LGONU46LxdJp9wocumLP7S9PFYPCeHOVe8iw0u/sgMwmKuuSy/yMFOXVZhTma/uOdOzlRYU/WpfKvPAM2ts82cedJuseWb78rvx3b/T654vHuPXjusitjP5cNsz3hpwqAV4zH+ij6ZDRUuzf6ML0/HUjgzx6w4U+HUCW8i26zRK1ZE7xlnOLVQ1YbZKdyo7JtV7RmnKWMg/Vz5xToJ8qt8q/GzhmU8iHzZPNA12PVXGVO1e7EteOzNfETWVP0Q9ylMyhhwtz/bTDjUYUqVCRUOdGIgHmR2kfuyf+Y8l50qfnK5w+EzNx6aJ/JTz4kxTmalE2yncp0yT4XbGPepzKcwFWI4leti3SwynctzOc5ig798q2MyDqv8FbZjcXOdq4ur8uH0t7AYXzl1uQnPqVyoMKHCb3k8175iPnQey7ayr/oUZnz88vjclnZfrzPvLburZQ5U+lSWjMcQsyDOWz4qHzIemtY0d/0Yryn1TMRzCheqrLmzD7nj14o5Xe50Y3fxndhIs0/jqvEiI7Prx2pw2Y6xmcOzDj/n8b58v4/EpvBr5atwcvbL9k4dE8VgjL3Doh1bO/6M0R0uPjUP5XPbGUuNX/ms14ylFdZGnD9hXtUecbHD5Z0fY2hk5zA24utX15S8z+yc+xcrvzcvq4yb405ZnM0T+SBOnHAzq2kqvDnhZXatVXZm/Ix8FAZUmVmpWcZxXT52ubhi4hzDZWIUE8Wr2Db7OzwcfVUWznOd8PCpONVnka8BG1etiUZeRb75952y7Tre8XL2i+wbGbmKGfs6dmYtcjXrRzadv3K8YvvMwrlW2/U7zMsY2+H3CfO786nY1rU/we47DK8wZseRDpPusH6nr9W4E9Zn473Rj4+PR8apeD0yu3ttkL8yF5WdGfe/d4zM/+t1vJ6Kf/4M2Jyjn5MLiP6db8fJVd8pxt9h+1Os/8v192VeF4XLnbbmUM3l1HjP3wEwDrKPuaN4bB1HdjFvoOYRYg5gavdyLbs8wTp3FDdeH1bDfwx/y2bOwM0bTPMJVf5g5RDUfMEOx09yBjuMPM1xoDgncgFqTuHOfEL3+cQxpp8nOsfOp8oVsTxBZevmGtR8ROR/ZI+Yv+L+mEuocghdTgLFRbkBJV7mV1ZzZ5ze8brqv5t3mOQblJyJmmOo6uFVH8sfdPmGKm8waWoe4USb5hhY346vyvPLfpIHYPmDad5B3bse7bOPkhPobCIPZpvIi11f1V/FR4yM8gkVS1fXBjG9w+idH+JvN9fRxURxd/i+ioXisZhqrCm/V7EVbuv2pFdzVnIByP9qjO9jPkHxq/wVH2Vvgb0fvLB32Hwnl3Cizt8x+CQfoI6lxtxl/TWWE6PLGXSx8n6ZHAf5V36O7S/JDtkgplft2d6GKo4aC8VQchKq/fJx7KtxXj7TIrcBfUgupLLLeY8uVpcHYfmQ6vg0x1HlIO7Kn7hjKTFZzmKSC4jz6nx3cx1OroKNNcl9KPmPnbxHZz/Nd6DjVa6hy29UeRGUv0C5CyWfMslZuIyv5hKmuYduPmgPRNy3X+03YPsRcg5A2W/wo+QYdnICyB7ZoqbkGpRnoqsY7t7+iV+1b4HZ7eQPVuv2Fyh2Xb/jv2wYEys22U7JOUzzEpM8QmV/2qfi6sxTXZyOzzsuQ3v1FV+FzZ3ae8Xnaj6gmqvDolEvT3ynewNOM/opPu/i715nxOHO+XbcvcvuShzkl9n6tC/zr2rr9jVs+NSJO+VmJ+40/t2xlBg7uYzWr+H97tw7v4nPqbFQzgLlIfIcGLNGWycP4fAvuiaZVydcXa3fKK7K6GhOiv8d14/lTHb2c8RYLA9xOveg5CByH2L93MfyElWr8g0stxDzC1Vu4WroOQNkN/2dAfV3BVheIe4diDmFfLx6jgHlFe5oH5U3mOYUJnkENW7mcZYvcJ6HQGN2z1VUsRR/17d7ziDadnsHUCwlH8ByEihudxzlGBjnq/kAZKfYdkzfxXV8Is92/sgH5Q2yv7NPAOUgMvujeCovVvG6GNPcwk4cZx5R853g5smeA7VP5W+UZ3DzCRXTTvdaKIxbfZ4de//y9UGyedXStZF8kt/E5y7fV/75czf4vYrh5ADe/B0L8SZ5hRzXYXgnd/Eu8R/wMx5ynIbv4d+b6DPJKXS+KGeQ/XK+oMsZVHEyY+b+CQPHOPl8WF6iywmoeQCWO3D3DLBnQU7tIzgRXz1PxPYV/7s5AOf5jYrHqxwA2nfAcgBVHgDt5Wd7CxT2n/C7sqdA3VeA2D/zf8X+HfefeP7gs/P+j5BbcPccqHkAlf0d7ld9FVuUJ1j2lw6u7CsuZzErpmf5AdVGGSP+m9kf5QSUPADi8yq/wOzUHIDy/ACyQXyv5AMQxyP2yjpF+Y2AjqMVfp/YKowetdeEzVl8h10jH6j73xWNfQdjQwZ4fMuUi61e+hOTvjpvxqzO8SqW0t/FZjytxlufSWA0hz/XNVM4MtpXbPjG7vf7UeSkqn/ZZKZadqwOjHzz97fjtthfsVoXizWXx6LfKaZCMXaYCZ2DE2/Cuiy+yrmIz7q+KZ8pcSaMhrjLqdMiNlP47FR9dvfZc7XGm+dYMdgOr52u2340M/3oTWG+zHGoz+W7yl/Zi474TOFJ5qcwWzVXlfU67uv4r9svvhMj16GVPfDT2NXxteajmic6Hvsq7cP6dny7OSL2U3iy4z3Gq9Vcl3/HNRXL7dhNGHTKhpmZFL5yWK/iOTb/zIOMBRnrKTXSkv0eCavl18hesdvhP4cBFdt1/PEts63jSDdHfqM2gM1UFqtYKb5HfS5fVVylckPFVworuM/dKvzEmG3KRcx3wkJdLUvhIIWlKjtlX6nCQFWNSmWlipcqLmHMlLmpelb2BDM5vMR+twvVuRD7Kftaq77MT6f2xH40i0zapSVZf7T57eHfX1rFIdG+s41aVhk/8oJrv/jC1fuIbxCrTP0ZD6zrinwVfkDnrcRgrMRioDlMOKhiBzVGF+eLcQ6IaRh/uWzW9Suspcyh6l82aM+xymAde1Vxu/NQeUbxqebocFjFLy57Zf6Y1PMU9soMdZK1sn/HYoi/KCOh9+wYY53uOGMoh812fJj941u+qdgLMZTDXYi9EFchFnMZTLVltZcVZ/f5QcXffdZRrXtlX6eulblqwmpuLUr1RbWrLm7FZdFP4a0dHpswWVcn2n3O0K1hXbyCfs+5q2Xl/Yfo9426ZxEjc+0y2Efz011MlrkIcVjmqMhcsT/GqPR41cf0OuKr1bKGznFQXQhpHxbLYaH3jB3jT2Kr8ePa2jHu7rmwcVwu7fS/wtnutUOsdSIeiqPMwR2n60NM5zChUiM7YZv9mA2K37GmEpPNPcZX4qB4bu2vs6tsHF6uaoeKfWbLruaXGZL1LxuHI6t9qVbdDdl8b397enhuiC1Zf2lT9I/rhO/Ipa+uMeh//OWX51ax3HXcZVAUb1IHVLlH5VOVO9W9jMreRbVO6Nb9JnU9tX5YMWFl53Di6f2RKmuy/ZW7vIl4cbp/stpDubN/UuVM9mwc4tJs+4b5EmeWXHgTc340G+b28P37d4I1M29WbFlxZ3c8s2jXv8OmLt/luSPdrdiulnml44ds63AZ4qNK6zJ+cXhRrY0pDOeeN/psS60wPAf3nL4IsVV/Nr7CiopP9mPXlNXoWB2PMSgbZ2KvMBzjxJOxHSbcrVdmLlTOwdkr6jJjxW2M+VgdEvFjxY3PrBL4hj5/CPitfH6wYbPFem+YcNgX33ccufr+4/FL279sXuyITbaLNqUd4Ms34ypcKtgtPnR4dMqYy1apVVbsyVhxwqlsjMV9VTyVN5FNx4tOzZHZTGuQTv1RqS0qzDdlP8Z9Xc1xUndU6o9ubbJjxq4WOWE8xHnIhvEf48WP4MDId4j1ruMdB3Zsl48j7uv6Fb5T+iq2U2wqPdtpe4XRGLdNfFQ/Zq/ErHioYxWFnxTe2OFIl/lc7kUxO15Sz99lLzWGy94Vw7ncx9iu81H5ZXGSY8/qb904KuupMZRrotTuUL/CZCrDZVZTfstF2f+pMh1is1cc1bBWZReZAvlkTptyWWawyk85no9FVluvIyO1nFVwWLZhnLWYB8VQ64crToxFa4gNt139T9fvKgebzFlX/2odu0U7haWinVLby3FVZuvms+abmS33KftElZofYjeVyRQbtcbnsBtjrym7qT6I3xyGQ7W/vMdTYbf4e5C57qZyGuKibIsYy2E2e6+n6afa31EDXDwW2SxzWsVsjOU6m+tYZrZ8TK3fOWynMl/Vv2wUBj3NWQprqb4T/xNzmPpXrObadz6ZoRR+UbmrYhjEbQ4vneDHCa8xf5U1FLaquK3S7y77oRhqXa2L59bpnDjqnE7U3SZcWM2hevZO5bbog9isrXkVDBf7co0IcVn2XfaoHzGYyy1W3Wrgo9bGJG672Oj31tk+2xd2lW0+zpixG1PlS5ULXZ/MiPF4ZsPMh9Gms+s4sGJLZutwomLf8W03JuM3xG6IFx0mvJsLGduhZwbVumC3fzQyIavDqXW9Khb7DZbKvutjjIj8GC8iZmQseR13GE/lwFMMiHiw4jvGgB3vrf5TNhUbVsyI+lSuq/jNZcOsnVW7zpbF7hi1skfs4/BotFXtJkzczdfhxyn3IoZ0xlW50rVXbVWbO8ZFnBXZRuExxIu5Mb5QbbvYXbx1vGKCrm9ii65rySOPvO6l8lY+hmpbOU61p66rg3U6nl0/xh4sBmOSiieezzUwgOJT1pkKhpqwTOaxFc+OZcR4FSf5rdb5Ri6smvKZqP7TGA7b7pwH/WyEz+R0HbTyi/6IeTOvKhzb1cqQvxpDqbEim45nK1sWKzOiyqHdvlZlb6szjsO8p7jX5V/GvSeZtzoPh3e7uiljYca4KutGls2+zp7Wu/a9nmZexr3Ve3as41qnLtq1XR/HPnP01ZD9xZiVfeUTOdW1zyzbzQexr2Mb7Su+Rlx0J+tPxsgcdrW/XNe+uP7MBvV1eYOqL3Ozy/pVU/bnuhxe+Zy0dRn75BwZj2f7rlZX8fHyQfysMjezZ5xe8a8aB3FhZlnG3c48nLwA8uvOUckLoN9JzfXVKjeAbNDzfrFVfiofLT/VfnG2my+o/F5dJ8LskfE7f8RzOU+QfTJbd/xW+cs5hSZfMcknVMwcj3V9d+UJXEZ3cjBKfsfl9s62YuTKr+JpxmaMwafsXnF1V+d2Ob3qp3VrwMNO/3QMl7vfXHPAwdP9yR1bR8au6s4de5/k7/wbPqhW7XC4y+JoX6/C8ErdmfH3Lk9PebtjbMbWO+z7WRl7GjsytmofGVu1VZgf8TPjbTUGY/E743SxGF87n8tuTJf/UYyL4Z055RgrD4D8lZxDaUdsWO1dyTlM4kZ7los4mVs4nVeY2t81h/w5RMZVrw3KE6A92DkmYuLOX8k13GXfsb4bg+U1pvkMxQ6dBxtrN0dxtS6PgPY1OPXaOEdnP0D2UfMAi8OdZ2uVvAMaC+UtWA6A+TMGviNvoeYrYj4i5yZyX5Vf2NrLQXIVcs7j4Bhsn7uytwDlAZY9yz9UOQiUa6jGQXZoX0KXw+j2xyv1f5SDqDhesWG/lazEOpGT6HILak6iygV0tX30m8kr93Ai5zDJNXS+7h74k/kFJcfA9r8reYTTOQaFjU/lCqb1fjUXoMbN3N6xoXMtJn6Mn+/2deftjqPwNvsOuLmSv3zjfK1wPmJ8NfeAeLyyzyw94T6FwZmv4n9izBM5gCnnn/KttLibv0DN2Y+wE0eJcfK87oiX2X83FstdnI458b173OifYzDbfCy+R77KPPIzEfD/ADLyDSdi5NzD1Zz8wTTfwJ45z/YoP/DqWhu22Ufh5YkPyj1QRu/GaPqqfuU1y4FMzvVkXuH52fnNOF2uYcVQ8w1u7qLLMajxr36Uk2Acz/qZTbdnIjP9zt6FyPdObqHLETj5AZQjyP/PbJcj6Pbk7+QIop+STzi5J0HxY/mBKt7EpsoV5LkoOQSHv5V8gJtDYDbq/DJvMvZlfDxl/zt8EOMjvlb7Xbupfcfz7NyRnxoD+Va2UROx73G2XQyt+kS/yN+Ob5Wz6MbIfI5Yq4qjxHLZTfFTOO1EHDUG8rvLfnd+jCUn10vdHzD9PE8x/GRfgcvc6hgVX3fHYx87pvZ3tf+rVXOa1P6fY3x9+/sHyjPay6caE3Eoqvl3+wRQTXrC1Io9s+14Mtp2NirjOhzN/Du7HbZ29jKo+ZQTXP7CyQVXv7FpWJox9Mvv4xUxKo7uYkzYumLtjoMZR3fXIsdTnud3+Nep0bssrTB15OrYVl98Tr7q32XpzvdUnR7x8Q57T/b5V9w85eWd5+zR8wDTGrrK5S7Dv/L5+u25nbZ/5Wf6OJx8yu+OeErugfkp/IvYvPNj9mrs6jvIbBnfV9dkmhNgPiwvMM0lfEnXAtlkxlZiqnZVfgExxCRnoMSa8uGEV52chHJeyMaJUbGia6/ub6hYbsLqagyHpafMzerTk2MV/zK2Zuzb+Waerpj4xafgRZVxp0w85eiKYV0efrXPHIxH+4p/MwurbDzl4Df8TXhXZdw7eDazrFNjRoybGTP6KixcsWw1jy4O818+VX/uexT70LxirVo5j46PVf/OJ9eZK8bNTK7YqnytPDuvxOj2w1exu/p15RO53Nnzztjb4W+Xwbt97chO4fHd/fEOpzusPt07f4rd23ax7vq3YF6Fo1c/Y+qJb2Y6l0sdpp3yL+LvaSyHj6ccfGcMh7EV7laYeMLtp/zyZ7zj/4aJQRzG25G5JzaI3Rk/d7zt8Hr0cev3jr3D+ioTd+fE+DqymFuvVrhcjcF4mjGkUmdeff/95eFVY6webRkLM15G7K36TXwqPld9FSaPbI7Gr+JEv/dgepfnXZbv+qtrVjF3xeiIzxF7O0w+ZnnA2Tu1aurXMbjJ611z2H0Sr+P7nbmhWjnjeJZTYLmBbOeO73A/yxuocRa/szxClxuIrL/er1jTOjviePX39araOeL/ZZd5Oh4/xevu3nXXX8kv7D4bz/aeT3IESjyWX0Cc7+59f4+8wVbuYLWVQ1ivY04h2+T+wP7RtuJmh+dV2xM5AofxHRY+mR84lV9YsVy+jX6nuP692P6E/x1xKr6eXhfG9W6Mzq/LS0Q7ZR92lVdwav7TPQOZWae+6v4CFGPiP5l3Zm93XMT8Tj4jflbMn40fYyi8Xs0dxc/fjWqMKpeBYrJjbO6KbeXn7BlQnxNHfh33dzbLrtuvwHIJu8+4d3kExPLO+2rMKv8Aa/okj+DseR/FafISW7FyXDU/4eQxBJ6tcgen8hAsx6DmB9x8guKDcgyKH8td5ByDEk/NMcSm5BuqhuJMYvzn9/t+5d/lHS6fE/kLNxaKfcWILec/qtdV/uCuPQk7uQ20T8HNGag5B5bHcOJM8g7dHBy/d8lVxBxD1VflJtjxnKtgx7oYRnyVz918wDSPcNJP4cFuvAnTTvxP1fFP5TfeY/wTPh+RU9nNB6G8gBqry53kvASLdTFrFyvGVGIpeRNnnk4uBrG5ks9w/HbzL04O40S+heU6WJyci3DjdrmRmNuYzrHKryh5BuSDciQoT9LZ7TyHkft38iGVT5V3qGzY7wBUz4F3Y1c5EGbfnQfieseW5psav/a7JoxH8yQkd8FyOpHZc44jM/0kH8JiTOOpORsrfncdp3mZMO+dnI77bAjKyTCb2NflYViOZjE3sst9r34Tr8itTPIoK9bkGZKdPEyVJ1nXo4vF8iG7uRGWE1H8u5wJy5VUuQ7VrsuHLL5nNihnouydQPkOJe+xmy9Bc3B979yvYeVIqvwIylNUfSjvcSp/cjiH8iaP8vteEsT4mXnYfg2nv8o7ZP9pP2LeeB2iT2WfrxuyV3wcHt/1P5W3uDNH4fjlHBn7PyHUvUQVp60x/rXXnp/LDodP2f0kh78n7+/sk8i/aefukdjh+Rgrs7STn2Cc7vZXNui6dccqLq+ue+TgyNSREyvGjpyJOLxib/QMxoR339O2Y+0Tvmx+iEnXsYqDO0aecLW9RyEx9QnGV7hciVE1hfN3nsPo4jFOz4yucDmbq8P2lU8+1nG7w+sVbyM7xug5V+BwvxJD4WzFv2Pzyg7xdcXhEx5XmL76zcT1fvo8R+RK9vxF5lCV56Of8/sL7u80OLYOo38ka4+4fMLfnZ9yzPWrXn/5J29E7sivK1ZUWTKye8eC5TVKvjs+qq/q38VA3Kv6M87v/LJvvm6uHztPxN/ddXFyCWisbw//bIzFu88mxmCcHO07u2Xz+tl3nccrRmN87TCuy8S7/Oyyb8ffp+Ls1u4ZS5/gaoed1Vp6d01QH/ssMndX7L2OZ9vM04ijO55mXKPyp8vUEzs1lmvb8bYz/2WbeRvVtxFH79S1d+rhzJ7xNfOZMrUSj/kjO/fZggkrVzw8aadinZ6P69PV3isWVvm94me3bu9wfBd/wvcV47s5hVWn362zoxyB4x+5Px+rbCrOfsntJH5nv31Q+bBnGtBvJyjPQmQO380BdPYV30/r85+lUc7/DKwfeL9l/mSL+M/hUpdhWc7gJPef9lN4VnkmwWV7lb0nYzCmdufUsbwzHmN4Nq7C5h3nL9Z349ydM2A5BIXvUR9jfIfn3XzFCYZHzDzNB6gczmwZ2yvcPuX8rpYeWz6O7Kt6ecWbV+v+jz+Vi+9gc4Wvd9j8lK/r3+UG0FiZVZW6s1OnVhme2XdzceIj/2kMJz+w2kkfZI/2xrt5gGnOYGp7J+sr81AYXqm3K3ys8P+dbI44XR2T8fcuryN2d2JVeZnqODpWsfib/R2BbRnH530F6P+QcH8zIceMDFvFVX4boeL3qd+U/0/mDz5TDgIy8pdmb4GSg6j8q/fZB/2bXkPG//LYMnzOFyi5gorZd21P5h/cMSp2ndqivAJjfGSr1NrjMXXPPGN7tl8gjxf53PHtavxV/J28gepfcT7qi+9P5QIU3u9sOl4/nRvY4foJ3+/U+yPTV/vaGdfHa9VxPWP6yOvouMLvit1JZj/FxdHP5eidGMvnZHzG9QqbdjZOfbzi5Tt8kJ8zHhqzyyWgXED0r77Dy2axN/qbiPV7lvNC+9qRXbRFnKlyqMuuDm++F/Mve8WmY//FxGq9X80bKLV5xuSnavyR7Xf8q1j5OX0nF4CeL7grv4BiK/sFKhbPjN/lBrIfyw9McgNd3BXbiRlzDJGz3WcOFC4/9cz/xO8o5ztMv2NfHWf23dhsXu68J3Mwcw45P4Ds1RwC20eww/Rdjbzj/8oO5QjY7xZ0doz1uxyBmydYPN49a9HFcXMGXXPzA+o+hIstJ3mH5avuV1D2FGTu7XIN6r6ElXOY5AUUW5XVu9r8JIfgxlPzB9X5svwBOpb36TP2V/IGKA6zjZpQ2f+v5AymuYPJHoAJ/0/nOMkTrP6WoQW9XnLtxEesv3fcrdTcWU4AMXr3fL9rw3ID0abj/t8e/8VwSk5gzenyWw3Zrf7MzgrDO/mBCdffwfN3xUL78hXOV7jVuf4T1t/dJ7BiTPclxDyAw/S7PL+TI4jMHl9XTB3ZepfF0R4AtqfA3U+gxspMn/cadHsF8vkqPD59xgDyt8qmFVt/pK/IwrKPEnMy75P+5ufl/hYA4v3sp/ZP+dnhbDUHMBkz83G2qRi6ioNiMSbfYW2XuXfsp3sE2P4AxOLKMwDqMWW/QMfb6t59t77f8fS0tu/GQ3Nivy+f+bzrq1i5eq+yetRa6HfkK15EzPbSvv2/5zZl1R22nfKvYxPZkGlYZtPxMqvtKs+vIxZ2+ffxOt7Uwbt4iHmV5/wz22XerbhUsYnHq9bZVvzLWKvqn7DstN494TQWK5/jTu067ldXatYVn004dDcO40+FU+9kT2X/e4zH2JKxa3WO2UetR7PfsFfrzJEfVYbN43QsOuFQhUHHzDdhO9T3/f2lN+/iLhbHHvt7izrZsa9YKNp0z2IjXY5YidkgToi21Xl2zNVxW4zTzaM7n8ho6HogZnKPu7VPZ591tM26P5535oJ8XSpuqD7nji0mtgr7OPupd39nzeW7O3mv47BJPXbyO2kd46HfTkO8N+1X920jvqM8+DsDtrYFIyLu+Wjuq65T5iTVNnOhy32P5He7Or/Fceo+5uiTmW31Vf1PoU9hR9WuYtG4bzmeA2K6zJMO+zl2E07MrKb2Odz3kfXPib/Kjh3jdDGV+uEpHnSvj1rnnPgufxTzo2qmrC6a54hscjxWT3XqpYj9HK5UeZKNOf39NKnmqTBnx5rAB/JZ6Juw34T/lFinxmfxYp/CdlUfskPcl2Ps8mBmNtbv1sfUGE4fY8mOySqOVliUfWbKftwuTmZQFqeL1cVxuFX17+JN47AYKo9OGPqOGDssrPD0hJfVXAA6D8bQrKaabdX9xROWPuXTcbl0nkHzQXZvarIsrsL1o1hNHsCOIfI7irVrixha/dymvmw+LLcwySVkrmc16C6X8NvD29blFZhdlTfYtVu5hXyei/Mv+yovgOxRToLlHKa2mXkZVyNOrt53vH6K/U/nE6Z5hsi2yIflEqasf+IZ6rviK3NH7K6yP8onTHIVXX7hamr8mFPIr918g7OvuvNDderdfALqs5+/3uHxL69zC684+sujlTuY1oifa6kPfx/nES7f2NTxsk8193gMve54vWN+p96MuN/JCXRsjLie5Q+6c1Js1fHVMRTffN2neYAuDmN3lo/o/GMNXcmJ5BiKbxdD9d8ZP/o447I8gOrTMTjj9MzLil1nn8eH/AJyHsguvqdsZ+QIok9k527uV+tsnBp8Z7e0lbovO/qp9XjJ94YYKqNPchcuSyMed/hd+UycOUXb9S/i9MzkqMZfcXPHxtEHcTfaG4B8O38lBho320qxf2f3zO9vrlvD2I5tzgkoews6H2WPubu3QMkbnGTvKa9H1p4yK4vv7DdwYjAGzyyusvtOfmHF2blmbszM9iqTTzh/kjeoxq04Px7rGLyzU/epM7/lq+Qblt3F5dM8gPQbZl+E3+r60uz1/vLYs//X2b4Bt7bv5gBU3kecn+1VOyfnwPIIiPFZLoH1sxzBJD+QuVbtc/IAlZ3D69W8nP0ObF+Aw91ObX3KyKgOP/VB9le/ytBxDMdH4W/FB/Gyw+odfzsMzuwjS8e6vcLfqm3m7o6rGXOjGJfeYNy9dMnqi6yWOfRNH+HlyK/Ut/Np9tVnvuyewVY4dGqnsG2uS8djmXMz61b9kQE7tp0yMRqL+Xc1Z8bKzlxQDCdOjKXMqeJlGqdgXfhZAjZW+Lmr1yMmj7Yd+1XniFibMbrLwyqHMza9i487vrx7bGcOTk28YtjTHJ3r465vxcvMJvItY+id2rvD35GTK25G56Hy92oVz05YO++1Z/M4xd0Of1tczjgbcDvb036Ky1msinndmnzlc4LRke1OXOXaMYZVat2TfoW73XiurbsPQOHwbN/5IIZnHD/l/zxPxqZVHkBhWfe5Apf3o5/rU3G9G8OtxU/8WSwlt5BzGTkHsJNT6Or+VU6Asf4kR5CZ3c0NVP7RbumjnBdYx1949enpVYMsv2yKuvUr26enlvkj7z5e3BUasn2JD/IHsb/LHTg5gKov+1TM3rE+YvMJw3c+HbOfGu+FPQmTt9wqMH3H05kXUJ5AqVtbMZt4iLthPMD5Cpu/xGzyBIgrVdZHvI/q8vF9x7gOD5/ibpepT7E94/qT53g1lf27Wrz7GwHVc+yTuXcsz+wZe7tsP80PoPFyDuBi1Y7/MyNPOL7ieZYfcHMDef/94n+UA1B+y/xkHiAzDaoLqzzvcD9jeqXGrXK+mw+4Kw/Q9VfxnJxCZYf4t/JRuF7JDyj8r+YZ2Bgd06tzZbV1hccUjn4PRu+42+FydW6Mwe/gaCUP4OYqphw+iTW5rgrX5+awd+yv+rrYJ7hf3ROQ+xHrLw0Uj1/vJbZXuD/0vWLfp6c37L74vWN8lAdQav4qu6t9F3ut45kBF5sxfs88rLBz5EDG6Sp7d74XC1Zjs5p3xaqIzSPTqbw89WvtBzwNmXojdsXXK0Zl53Cjy5gqlzIbh3NVu9PcfbJmrzB7HOPkfFe/w+SZv7OPOzf2rLrqW9k7Nfr3qM1Xz7Yvhsz9kS+VunzF3bv1+MjNX/7+9+cW/y/xjtF32Pskm1+t4m6Fwyf8rTJ9188427VT+d9lZ7V/1yYydazHsxyBy+yqz6Rf8WP+i68X81QcXnERsmE8PeHyzNluPXynH/VVv7+usCLbnz7xucu3i3GCuVlMFkNh2Wx/kp93/CJPV6wc309YOvK0ws6oH7H3G9b9/Xhk5lfcWvRXdtm2ZOBm7pX94peqTp77ulovqrcipo59p5i4i6H6q+yfn6lWbVs2bhhUsd+JHRtkcKFGTs+xYGVlHkqNuoqj9qlMt8ODd+4xd8a8a/ydevid16KbGxub8ba7D79riM2n7N/FYjHuqr+rNfjpHv9oE30y2+faPGLiavzF5QrPo1iL76tYbe075AdonVzk//eo2Z/KG7Aav5IvcPYBqDHVOv0deYNJH8orMNvJ3gGUV1ByEEquwI3Bcg6n4qixHH+Wz3iuqYrzfKnBiueEfFBsJRei5Cx28h1KLMf3bp8qhzLJJyg5iVN+07G6fQF3nXP0dfMYJ21Vn2pvQZcHubSbkgvJf0PX8fy3eh2rch2ov8o9VPmJnLso9weEfEgXJ+dK1DhdbqQaC/VVuZOYP+lyLt0eBNTX5Ue6XIjj4+5VYPsUWD6F5TAqu2lOZbo3Qc6TkPlJMVK+Y+qXfR3bipt3+hmbn+D79352/7PlMt5znpM8CnpGAbUuD/IeORYnTvdcRpd/2cmTTPZI5GcWqrxJ/v2CKneychdq3iTmO2JTcx2K/an8yHvlO+7Kj7D8xSQPwvZjqHmOSU5E3XuBfHb8uvyH67Pj68zTycs4uZhp7iWy1zTf0uUk2Hku3/yZd7GUXAqLifIrLEY1NzXW7tyUWGo+CMWY5m6Wf5ebcmKsXIASI/t0+ZyYk1DyEOo+lMpvN1ej5FZO5pKU50dQHoRdEyffcso27qlRczVsj0ruy99RNV+zjq/8R+7P+ZpoF22r3Elli/IsMUdTxe7yM9nP8a181BzP83X/93+3cjsxb7PismdOsh/Lr3S/7ajkcaTfHWxisd9CZDGq/Ajb66P8LkP2VXMx7v4WxU+yD/kX1s/idPmibszutcL/p3IZJ+J08XdyJHeNtzNuF6fbo+LmX1ar8hwnYrh5FycGex6Exaiu126+ptur4u5nqd5XeY0uB8N8lJxNzpm4eRrUlBgs1jTGR+RouryNktPZyZmc8P1McVgOiOVQqmuu5GO6eIpt5uzKjuVrOv5XciRd3kDNszh5jZhrUfMRbo7EyUOo+ZVTOZoq1jTGJLfS5cIu3/jZrbxLxaN5HJRnOZUPQftk1ByDm59Q9quweZ7wUXMmSr6ky7WwvvyMDns+59JvOf/R7U3pch85p5GPsXyHapdt1xxzfzwe8xFV/Oo3M5w8B9oPg+zz59ftdcn5jnXsRX+H12yfCsp3sD41d7HjO4nB/GMMNfcRcwVdLJaX6K6nkw/p8gk7+YvMcSyH4dqiOaP3bt7hvXIUp/MLk3zGbv4ix3HyDjv7OtR9G5UN4ng1P6A+7zLJN6BcQf7dDmWvh5JjqPIK6NjiZrbPo/vdiskejy73cGfO4O49IidzB127WEJha5e/HXvFbjI/Zufaduy/4+PMH+UCsq06frTrmFVhZJWjXWbv7FH+weX6yjazrrLPIDNy5N3nuixg1BwnPtvS+TisOvHf4V2VsdG5O7+9iRiX9Xfx8rXL79HvTuT3yjMZi28Z62a2rRhUYVnXdjFqxcvQN/0fkt0+AfT/Q6jsnH9fku0xeObf6v+4IMwc2Tn3X0ycGRm9vxhlva9YLR9X2Znx653sy5h3119l7gljK5yceUeJUXGSMi6y72yjDeNmhelVtlf2ElR9J1n4I/j7M8XO13qH1z9qTifmg3IGk3gVHyt+k30RXb5iN+fg5hqqnIWSm1DyC9P9DijvkI9X+YaYn+hyDW7eYbrfQcl93OWrxu9s3is3wfIWiL+VfMPUpuNzN6egcvlkP0E3Bhtf7Y/8hmwVmwn/Oyzf5Qrc2n2XK6hYrfvthipX0PkiXmb+Dm+rtWJmi7i743HG8wrv7+QH8u9UVoy/uL5ifMb6me9jjmexajzmsn/F9p1Nx/atH+B6mA9I9tEGsX/XT/2LvEJkdPSbmhWvo9e5/l3xeuxHrLj6FU7OrOz6Lv/o6+QJUIxT/p1tnGvk8oqToz1icIerFX81BvoO5M+E5QGcvEFl5+QC7qijV5yocCTrd9lxh5nd87t7DNScmrs6psvFLK4TZ6cOrz4vwGJ0z0Eo9XqVeVWGZs8nMIbOLHn1V3xc8WD+vUuFsz+qru+ytcPLO/z90Tzt8LVSo3btnXGn+wgUllY5urJXeL5jeKcmn30y3zF7xubdGLtsPmHuzjf6dzaIxeM5Tvg5tuzv1MqRz10sfrqfcXn1mwAqv+f9/VUfYnV0jHF7xeuIyZcN4vYJu7d2DrMD9o7jnebzqy+zdrRZDJ3747lUNmtuTq2d1d0j83SM1fFtfhZf9Yv+8f9wRGyucPXEl+UGJj5VriJf53z8vXg9c4UbC8WbzqnyVa6H4hdtEL9XPD9pnT/qy8dVlv8IpnZjONytxJ3Uo1/uicK+c6d2rT5Pz2rUDhc7z9irfOywtluzjjzNGLrj1glD7+6t36lPT+vjjr2bT/hopp7UsRXWnfSzOrjD0g7/Klxd+SpcWNWmFb9cy2Z+q018FKZmvrv19G5OE65mNqyGXdlPmHvy/wfE+XUcuux2atY7Nh0Pu3XwyMrKOIyh38zrF/z/DlQ8nd8r7fLpOHvZKIyt1rxl+4a3FdZWObtj7WjDOHsxcnytsDTi6sgb3f7siitd+8jOH8nP1Xy7Pe6ZkdnegMVuzLbbF87su3pz1P0ur7t+Chs77OfWwLumXDfG1oyvd2zc45XNXTzN4kzZ/ATbq0ytPr9d1YTVuWQWRnYKE+9yc8e5Kq87/3cBygNEju5q0FUtW+FeZ5+4y8yTZ9pZHDfG6Tr2j8Lfk1qyws5uzXqX09Vz62rNSi0617Xfk4dd3y7mNM6Uyav94FOeRqyM2JqxrlrTZrVp5N+xZzXfXVtmp8TIrOmwdPbrWJox+Yqj+r8Z/5f6t9S6sbJPFXOHvytbxuQdn9L964nPW59QN186CrF7tHmxS3vZK0avYqB6+LN90/eiCQd1cJXbF7uz+jWrebt178jtjN27urmTK1BzC+i8oj3i8Yo3GY8yxkQsqvIo85nadWy9w9O7XI5sXAZndg73dv1TP8bn6txU1lfinty77vxGu1q37mKqrM64mtW6GQPv1rN3a9mrXl3xdsXZCltXbI78EI+rNfDdGvpu/X2XvZ197p+FtVH7jzSf631m0XisYlnUf8IGzbmzc5k6+nZsmWvRbh3ZYd5JDfq9OHx37lUtvGLuak+4WsOeMjZj2cle85OMrcY67bNY2vFb7KwwOPJTmR2xLeNv67N71rG9zS6jr+PXvzvc7fpQW/JM+SsfYIvsF5ej863mxWwzw3ccz+rvyP9Fs/7O7CrbdzX6Z2YLzA3ZtWDtzOtdzRqxNYqj+jv26vwY/yP/yMGdLWJVlfljvB3Wd+3QuLv83vkprN+dh8O7EyZ1cwjTfsduwvFs3FMcrzB8x9x5f7jzDLcyP8TobP96xc67HO8wfFdXZ1xd2SoM77D7JEdQsfek7u4yvsre6m/FTTn+o9kc8frXL9+eW3WsO575Ofdnm8zqnW01byUusq94/rJRmD7bVXvLdzn+M/L+bkzVN7N75vZouxi+Yn22/1x55rvjbsbvLa899jVoxtdqLoDNQckZMFafsLbL86+uye9ruePbxXLtK7ZGjH0dO7YvfYfJHYZubKecPuHtCZtXnP2iLa/9D5mZr2POcVCDR8dQzbhix8se1aMjQ2WOVercrL6NbDv7zif7ZW7O5+QwqsunKgczHmVjV3OezBfV6J3zctn2VP17J+7UfjfuaZ7e4ejOt2Ljjo+j72RvOnt2m80hjz8ZE+0Td57RPlFDZzaZ/aa8jlgyM3bHnBWTZ9uKwTuGRey8w8+TGvhH17fvYPKKrZldtlX6K5vM8yrrK8erXELsW1y9Xkeu7pgccf7FX8zeZdCTz2wjtndiZ+502Fvh6dwW/7Ba+mnGVp4Ld7ha4V9aYzXsoy3qr9hVZelc472aUpfu/Jwa9j/1qMfc1fiur+LjxL/sIjN28TJfnqijT7i/2psuxS32s8v/11vz/7tV++1PMf2K/6KBnx5e/s2vVYZ/7gNcr3B7tGd8Hzn4ud5f8PNpH4fVFR/E9N34U6Z3WL6KqdaUd/awT/zdeaIxTtXZVQbsrvtOc+azm9+Y2JzKB5z4Dbqur+P8zNwKyzt5hJ39824+YXc8NE4VM+cGkA/KJbi2J3IKlX30Y/mHLvcQx+6YPds4vl3OoLJFdijH8GfJJ6g5h4rbuxwByxNMbE6NGeeP+tk5VrkJNFeUp8h5jRwP5SNyDsPNY5x+dkDdb6/sdXDyFdFeyU2g/ESXm6jyE9M8w86+gUkeYZKjKNldmIOTn+hyBFdDOQmWUyjP75e3jK7a3RU39rNcwsQn29n5AvCc+06+gcZscgwvdiBfwPZGlHvmm7xAfJ1zAtE/H5/mCKJtZGnXHvkx+47bkR/KOaiM39X0K598LB5HY1R9CkcjPzVXgObj5gh28wuTOKxNr6XS7uJ7Ztv1O0xfsXe0da9HbCd+A2+9rxgW2VQcrf62u8Phzm+/q3EUFne5fT33rtpXrL3jO+H0irE71nb2GSgx2BwYnzOe/zPV/6fM7jDxxAbxdJyPw/QVJ59g/o6zOztlrz+yQ+xexUasr3I+43W2r0FleZXnM9O7+xYcrq/8ImOrDD7Zp69yerap+LvaP1/V+BFL5761NqJ6P+LVjmVdFkf9i8m6vi62ysLVeIiTr+bsp2c1chSzrHc33Iz+TzdUN694+GJWxMMWEyMezkwcjj2/L3g4H+/4F9lO2deJq85zcdLz/vzfGSn3L5sJ++ZjTs24GlupEyuxT3D3DnOzNmVjl2V35+2OP+XbHa7NMe5+Zjz6see6FVZl/hVnKnXpSb25YkDWt9iHsSqrl3fcydiT1eGdfey5PbNbiIW4UrWLc9upW6u16SnL/mj72hV2m/Kastccca5a70V8ihjUOVd0nRy2rJ45V31YvViJVfFr5KLo68SZPKfusOduzfpUjVrhW8a4HdtmNlV/v71j3Myy6PXV2B7ySV9cK1H8f2mtt36dTVVvVvpWf+amill3mJTZsVquuz9ceR5a2X+9zavNXnCVZSuerXwY58b3kHWL/eHxdcV7KrMqPtkv2mY2rfoQr159U15VWZXFy313seYJ3xP+Xbu7pnsnD98VQ7GfxHV/y/xq7n5rpaF91VU8ZS+2Um+s5qE+W62ck/qb5+t4rrMillTqtYxLFe5Vcg4q4+aYHbNG+4p1XXs0TrSvmJftjZ4wrNo+gmu72iHq72qVTn1yWg9lY7BabBUbMfBfHv4B9kH/o9kj/Y9XNVPEn93vsi3+VGqnLvsiNp0wt8O37rPmDueqPDqNg+q8zjlXTBv7HIZFTIzqwR3bVu8RsyqMi56Zjusk4mH03umrWLNiJ8a0iCUZ6zLG7GKqnOqyrcKzyl7jXZ5F7UXnFTzb2XXsWx2P/eXrtK/5Zbz02uFaZe9yVcOtmJZxbbTp+PZ5LzTgW6XWGo8rrMtqtS4HVz6qXxfjTp7dYcTT8fLnN421y74Kg7us6oyxGzs2hWNd37tiRfvIVNWxjqE7xmXzVDg52kfuynasTnz1fSQXrxiKLWLYyk61jXE7GyWOw78/Eid3HFyxsMrLp2rEJ+IxtlbqwYyjMz9f7S0f/+PNtav8ruYwcubvjpM7Vs5xFP7tas0qM+/w9YSVHS6ufpsNsS3j3sWnHf86LFxxMGJchX/Rb3vv8G/FwJ2dcryyU47F99frikXXPFV2Vf2ircK5jG8hmxr8ecJvzen/fv363O7yf9Znh/hWYVyHa6U67zX3pr4b57ZsGe9G28y9rL4bYzp7jTsfNR5ipl0WPsmau5x59xiodtxd3xNzQ/53svBJZlXG2InnMq1qk+1f7hmEVdV68GrVnlaFbysfhVXXcYUzK46sfF1ORfuZEXei+i+rx+aaLGNT1sfqtSf58w4OdXmS8Sjqc/YMn6rbqszp7D/u9xi/5cu6xvmWQTHLvWZRteaKfDk7/iM0zqBdPfd1LD+m8wys69sxL2LP6jXaM1yxaMeZqu0Lv/xud4o9GX+uMau+NW/EoS/n9cu/+LOL808tVPOpajPpj8fya8SSVZ9j92ZuDziOyoqsDzHe+nwWB7osmf0dP8U+xu9qs9FOPbZaZNHu2NXenK/Do6tWPGHZ4KtwqcKk2W8dR8/eVqzi8GzHrE5/1OJdf2ez7Fy27HhtEq+Lv1PvPMWnJ+Kx83EZU43jMOWEJ9mcXCZFMa6+jkXjsYo3FyMpz+NerWJKFLvzQ+zpjMV4kzErmgva263EQGyZYzv1Wvbs78SX+SMfxMHITq3luox8F0u/V61X5WzVJtudqOFObLs5oBprZGjG3i6X53EZG2eORkzc9Tls7fPzhHcr7sa1aeRX2aBx8+sYT2FlPOe3c0F8zGJU1z/HUmJc7RWLfo+h+kR2V/wyn09tK9bv+DrOEfH8Yv5XPr+8ZvzYH9f6fDzHyO8Z/+dj+fXVOjav+qMdY/duXzWqKXe/LdUxulKnjWzq8vQk3uqL83NfV+8XD6/jE2Z+tWfbsEc1YsbMjJuXT7ZF3Kc8I+z0IX5W7BBHr77IKRO+jeNMY3XxKi5lPBv9VYZU5ojmOq2DqmPmHMUOK19N4dxTcVTudrg6fs9YTbqrU2duRMc7bkYxYssMynwqDmf83LFyx8wqgzNOVTne4d4cp2NLFutqjGM7X8bgHd9Pa9J3svRnqkmr/OzUoBVedfczO6ysjl/ZsD3UizVjP6sPI17O/WpNuovlcy+vVTM2ZDzIYrF5u34uI2v5gD5Ox+uTuCs2i8tiZ0Z1eV9h+nwNFKZ35pWZ3PVn3K7YxuetK56PGoLx/NUqfo+vp2z/Ly3LeZ7V4lmd3uH8WJOv5tSxO+Jole0VZr+D6+M5KH1KnXzx/bJxWP1qme/hnu7f945XjJ5ZKfog+8onMlbuV3l9txbOeH7CeWw8JZYy75O8/14MjTj65HjVZ9eNNa05T7nbYfKqz7VD/QqXK3uwK55lnxvj4Wx/grGVGCjWpE7OmLqLxea0w+f53BTWRVzuMvO0771qz6g2mvcyd/buHmqlZuzadzXfjqGne74Zi0/qxSonI/49xcjMvmJOxUdhz6vfnYfDm84cT8RktfPuHKp4b3/nq+dfh9FVXyUv4Nor17ezc9i6s3PZ92rRNh53ebc79objX/Tga3Z3+VXl22us6T72yMPIpuLgipMZ/yr7y1U7xMJOfR3tR0f8G9+j1+w9YujM2BU3PwXb+Bvc2WeNF/sYB0+5ObMzYvKqPsuYkPXl/o4lGKt1LD7hP5crHS4+wagnY7tzn+YK3DHQWA6fT7i764/zQN83xsU77N3xbcd06DPqGHfC3ur+clZ/3mXhbg+8wsCnuDzXh9n+d5VfXXvFZoen72Dn1bo+1q+wK2JFlbcnzM34V2F7hbcXLyM7xMGsv2PpfDxzRDze8ZrLfIxXJ3ueHRae8PiEVysbxLIun+4w7YQdT/FntInM6NZVEVfGYypf/kuvvK2zuvuaV3/ly55zRn0KX1Z11sWPHWOiWuzipKeHL88N1WJR36TeqtZxY5/Lhfl1rsd2+6ZfzYnUXrP9ek66+r+Rlk31/ydlPnzZg90wZLa5Wma9+H8DI65iNdpcy3VZ4zQLqvXbu+qid9RuTzFeda1cxlNjKteU7UFW+zLHIA5T7RBXsVrsCf+O51Q/hQWVvcSV7ZTrJvVRhwt3mLCLwZgw8l3mPLbX2Hm294TPiT3Np9lxhx8RN7r7kZ3abMeHE0as/BV7hR07RlRsmf2l5aNNZrfqGLKp+plvx1wdb7E6r1MTRDXIrlbp1hEde6X2dwfHLZaLdcLS9pe3TJdtkZ9j+x42uV9hzn/qpbqGeTXGmtmH2Vc2O32Rv9TaJeLTbJM5MtosBq1YtOpnvMrsOg5mPtW8q33C3fO98Vj3Xn2+N9t39U7EvYhhK/ZEPh2fVsd+C9+XqrZZsRI6prJRrnsqzKPUQ09z711x1Xgq9zH27PzQZ5I/n9Vf8Q/qi8cqTuu4TmFIt073I/HdhAcZEyo1vqdvfr0Qst0wVseEJ5jtLiY8xYCn23vypMqbjD9VJlPYc7Jft+NGlzeV+qdap1RYreNDhRG7MfLrag5TFmR1O2bnsN+J32/a4UCVJ6taXmfb9Z/gxYrR3oMblRhTW2bHapodJyJGVTl04oPs4+9BdZyZbRiPqjarH+27zRyWbXJ/ZsXVp3BkFUflVYVzd35zquNExpSMM3M/3JNLuDEyo8OSsSZaMWC3P1ZhKpctlXm4czl1TtN4bO4dJ3bsj2wqduxYkR3vWFGp+zE+nDLiCVacxu0Y0mG86XOULkNG9uueI1WYEZ3fGiez4vJ5xUHAtmSmb2/rknfWDydM+iOy4w43dv0qQ7p1S5XZ1P2tiPVcpkSxnDEv1lGPLR2MjlX8VB3veKuz7d5HDo2vHc7sGPKy/+36Xc3UKn9Uf6zidDzq8qbKo8x3Mabjy+xdzkS2CrMh7nPtXYZUOTLalftLCestG2bHbGj/A59Lx3w7/Xm/bOyPvIbqmdmu4rnIXSdqlR3/xf6K8apj+fWEARHnrWOZ6Sqeq45ljqvqf9W+19zX1Q136oqfgc9UDjsZ/24+ReeicuUJpozzyYyJapIdq2RbpS6osOOkNlnFYbGcOqPDe4uVJrXD6KfWCFUfNKfMm2gfqcyKiRdbtks2Uitiy3532n8CVkQsd5IRd55HVGyd3/i5ixMnz1F23Hwdz3aXns3vIycibkTMWDFTfH9xE3qfX1fvEb8hG8Z7kdmYfxVD4cYqTsVuXQ1TrTUyPnbZEo3POHPZIj6M/c4+WJUVFS7s+lHMLl7V5/Bjxc+IITNvsv7KhvJjqAUpNrEvM1XlX7FXFyfXCbt46FnIbB/9uucrI7+qtcnOrzqXijWv1rFl/ndxYbfPNL6v/n3+Hgd+zLXB6/V/fte1iBv/M+j+5beOxb220WfFyvtxXf7ZicHiovm7XLYbB7Hb9NwYezrMqDLi1Y9YsePCqq9jR4chq7bLk12c9+DBzFvTPaCI7zqOnPBgxa3t8cRj3R5TylId0yl9UyZ8By7rmIzxGLNRa1mTvZ8nf9NmyoPsWk4YT4ld2bi8VvHbYpB4rGIudozx2epnTOXwlxozs5rKei7fTfwQn0VGQ/1KDTHadTW6zGGsP9pkRrvalNHcfsUvH1e4T2LfX/6l6Zn9ui6M3xzec3yqOee+fG4o3guzLPvFOuk70LFbZp5qLMRWdF7EVmXCznaXNSu2q/gw9kUmu1r3vGP3Gz7s933y68h+HfetY/l5xetYPN5x39XQ85hOY78Ve6pFlpmOs3PeiAV3z/ckY06Y0akvZjtlL2t+r3Bktld9Kl+HH51a5vLfYTyFFZ09oKcZsjuPbYZkbAkYE3JmYsLWrmJIx5b5VH0Go+6ypsKgTj2Q8ee0Pniyjthx7GS+qE99/tHlU2Sr8CniztwXmWsdr3isO96xHKu/7TLoKd/dGO45VsfzM5oKPzP+ReyLbLsap1J7RLyK5hf7KwbKe1xhXuGX/llHt0ZZHZ9wsDMXxrm7vOr6sTlE9kYcy/ze+DY82HFm5bPDoy6zdgzqMHXHprG/6svaFR3PHNodQ/2IZfO/kVVj7HUc6fWKZ7uW7ScMtrj1BAOjmLtxJrEqTnZsp2OdYGI1nsOoLtOyvccVm7P+eDyyJbJBzMVsM8tVzDhlR5VJ3f2xTiylvjnlUvT+hSUL/kPHX1iv65vyqBHvJEeqjOlyJLNBrOewo/s8YqxpqvtSO05TfSoWzH2XFs78h9ijutYKs+z6qRzlxq98TzCkWwdl9krNlr3v/u+NzJFdjfTqz/+u178VrJV5DfHXaojXcsv+6/ip+uSE2ZzaJLOt5ubyV2fHxuriK3O1ma9gGegLeKoa16kZTpkux5uwWldjZD6L02Idcr1Xnm3Mx6r30bayWb9VU/HaYpDFWAqvsLqj4nOydhj3z56uSVaxd8+jq8tO4qrxnDkiXtyJm3nrVNyd+Spz+h/wfVd9nWdAuxhx3so4LA7yV57J7J4H7Xwd+9x3B+MqMRkfdzHYc6JlzbPh0x+hTVj0NJvu9Dl10K5+6TJotGc86zLnlF278158WrFaZXuKDdF3ZsKiUy5VfWJ8p5aqPKeJjqH3CmeqjFm9zu8jJzJmjGuEypnLLzMPO4ZeT/awdpxa1c4qDptw3YqffZQ5duM5fpF5HGbNHPVm3ILLsv3yUVmuqrMhpuvmivrc46pPfJ0ZrzqmPL9Y2efjsS8yY2RJhRkXPzk1v+jrsqYT6zR/3sG47P/X3Bknxt2tj+7UMZG/Mx+V/3b9Hf5T6pkd73V+LjM6tsgmsxy6Pmw/LhtHYcTogzjRqZEyhnzFN0NmdBhxx/5H5Me7ePEkK+5yImLE6DflQqUGOq1T7tQ3EROptogrXc5z2K5jxAknOuOsY7vPiLpsGBmO/cYO+78kVT7seFHlRpcdX/RGYqSuLx9n7xGDKpyq8pvKcCfi7cbd4dTKP/NmV+es+DTa57iVbbwuFfMq3Mi4M8dg/YxdJ3XKbiz0fh1jDNn1da+VONGmqm+uvvzMpMIkO+x6kl9ZXIfDEaeq82NMqsxB2YeK5uxcI8W3O59uHLWemW1Zf8eSlW3nE7nNsV8+HaNVXKcy3Ru+AtfusnV5sGNDZDutKzKmVPbIKowXjzucOK1XxvG7/s/QdtnRZUWlJqlyYxf7BDdWc3QZsuJIdG4dtzImreJF7a78BhFiBHWMaqzIcA4XKqyocuWyUfexKnZ3MaPDisheOZbfK6y4W4d80Qwi06338XgVI/cjVokafFK3q/wntUJlbvn8Os5i/cgm2zFOijVDh9sYuyn1PnW8aOPGqD6H+D73x/cKp1XHHZ/Yh54TXH1Zf2eGYwyww153sBviE5edOn6bnqcyj47FlJqwwnLqXmTGXcge2V56XOW5pd9dBkM+2W8xT1fvUn7zJvsuW+e3UhkfIbZyYitjKEz1zANmPMRi1XuFr9h4Fb84/ijOe/PZKeY62Sou6/inY58JQ7ks5dTrTvcpe1ARH7nPWk4ZqmMihZmm7DRhKeRz2t7lsR0OQ8ffMFNxbJfL4tpd/f8UyE7hsvyavUevOw6L80L9zLfqj8cz/+S+Hf5SmWqHpxTW2eG0SR0u+ubPIM+h+pwiq+R6Fnuer9KtkXny+2UfeUnhiEk9y2GHk8y1E8+du3OdTvOO+vzlZL8m8rn6VO6JOruyj2yRdTljHqrrRT2v8g9lAWCvxtudR8lVS3uLfKPYZ5vIOZErJB4YMIvip477R+YalXk6je/yy67NScZROWVqzximOq/IRYgVKz5BxxSWiXF3mET1ucu245fTdjvc09kg1qmOL22J9iWuvsxD1f/3kLkH/f8TLvOgfysOUTiH8U7HOohHEKMgLpnyklrHURhDZZY7GaeqEXVMU7EMYprML0iLxppPtsv1nmzXsUan73f45K79e2x+qo86n1Oc8swKTZzu2a/lF21eaeOiP+rVzjbzR7bdYY/Olup1wWdSN5mwh1MTeaWHiU9l2/mo9ohLpkwia/8NDlHitH4dn/1BWIVxDKqbdPUUhUOcfW0OYyi8sjMG4xKFzzqfxS5OrSvzSD6OjjnM0mnvEwwyrQGdtFNtT/wuZOaQilNe6cPQH48v1oivY/4fsQhjlcgiKqsofKNwC7JBTMJYZYdfIp84rMNqGirPOExxN3NcrxXuUJij0/1d7SQyS/e8TfWbGNlu+txO1t0nGUTV9sxPPQfEBei88vM7zrVBTBFjsn7mi/iCaeDMMohpFO1dPeNU2hK+UPhDYYKs36c2I64gtl1N5HSNYeIz8jXP5cX+D8oRHRN0fMEYQ9kfptRfGA9MOEPhkF17xhZK/UXhqcgP+XVkiOuYonkrpjjFBqrdpX+Y7dJJTsyo1xkjMH+lPpJ9qtd/C3Y7jOByQsUKd/MC2j+F+l0bVqdwGCFzBrJD+r477rCFyhQKL2SdPn2PWKFijMfv38uullExRR5H1fPvoftdLb9s8r9RHyMtvqOvlX5ko2pr5MvqE5Xu6uJ0OW/HR/F38/GKvp7YdP2ndf4oby/Eu0vDO7pdjhuvUR7vE2j0OzX+ROerdQLXhnHBji53fNgcXY2ucABjnkrvL40fj2U9uvqY1p0+UzHV8K6OrzR8/j+CFX93j1MXQ33f6fusafP/9XtS0zsxOn2vanTXjtlU8aJmRzEnNmgMt06g9Ls1AcYLE0ZQ//+kaHfp+6Xx4+uOA7IeufriOJUmjs+EKHnw92CArOXRv0jzX9o492fNjDQ03ZtjaHFFg090uKJNHT+m2V0dnbX0CZ3OOKfT4pZGVcYydDvzoXaNflbz6j+K1r40WdRhqnZVtK2ioU/Yq7bOfp5uL446Z6aXd22Yjma6OWpDJYc+1bxZJzi2u7pY+a1iteXYjt/Sz6qWRpr6allTo3w509tIY3e2J/LeO/qbaUVm79gqupxp5EqjV35MS09iKPNRYija3z2f02N2togfJmyyjkeGUPYrVfxRsUbmjup9xx6RLRibdLWKimHegz0Yk7wnjyAW2aklODyg6OJoO+ESygpgTqM8P9LflX5WNXjBEU6uHsZwxj1hV/kRm49mh8/EFhOeQLr7JDeoPKFofDRWdd2VvDyaH+KI2I809dWXmaLjjPUaMQJa77N+h7pgwAFdnCkz7HBDZIe/FfND7LD6Kk5AGkq1Y/oxc0Vnp+jRikcULaiyxMRfOf/ofx2fxojHFf+OH9Sx1GuEbLr5TOKcYJAXbfxOvsvPiZv1d2XPahnV8cgcHXdkjkD8Ub1HPJK1Y8UBju0dvIHsOv/udbXvqWIPxiVVfYTtVcqas9TwSeNPfBAbUH5A2h+9R8ccXT1hhR39PmERoX20rnf0fqflWV+n8Zm2Zxq8mwPT4aeOMz5g7FFdJ6b/kcbvbBXd7ByrXq/1De05f177DC1frrWF33tp/0mc6BOfvV3xoq5f2qA6lnVF9RrtBUet02ZZM3das9KoU22K9HI3pqItp307+lG1n8Z19asTH42halTU3+XGsw5F+lTVsUjzIs1aPT8wbVmj3Okf7ZB+VfVszL1n/Yq0rbpPp81hF1pzu6/Qbo7WvSvnu2X/SdtH61a1OXtPFH3aabfJXheklVm/ql+Zraqj2bl1ef9T2tepATAdHP0q/Rttpvq40radHkb5Z0czI70K135T21bnofrlXHjUvFGHRE2cda/6nulfppVlzfzw+Kop2vaEfaebu/jovKr4jt2d+0R2tO3EV7HLWnLXzrGv9HelvZE+r7Qy28OiavROh7M9Mjkm0u27Gn1H52f97Wh6pNsVrV7tk3EYwNXpzAblnSuNbWlvoI9f7D6B9v2pu/W8cqf1drS3orlP9Kn6m2niiV5W+EHV2jsavdPZqn5nGrzS2tmvs43avOt33jOdrua1s05WdDjUB0Y+Ovqh37KPtkiP5/0ole7OGhwdKzV0bkm3tj5Ef1c2ne5mNp2dasPm3tlA29+PVXOf6u3lcyr/7ehaRVc7Nii3nW2yzkS6Gunn3x5rTbzsWP9EK1fvq7n/7e8PZau0647OPtU6/dzpajUnjt53mng3B47GRccqVvhoDfrZ2kdr3V2dzPYR7OrkUzqYHevins4dT3Q081c5RdnfwbTu0reVPq50cad3FW2s6ONKAyNdjPZjOL9tUtlWsZhudvLdihau/NF+DaSXK62BNIqrjbu8rqIT3b5JvzKGZH/QZ6qHKx2s6kT12MSm0qSXvqw0ZtaozC735+Pde0W/Kno0a1Bkr+jZ3FQ7V4cyPcnyvadytyg3/KyZ8ryzpvoD68yP1nuuLlS0YqcTkT5RjiPNxzQe059u3nGa85zOg83J9Xd0qpJLXXNB+i/bdzqxsnPysopGnerMqAHV/+dTsak0ZaUjkdZ0tWPUkI7eZBoz93WaUtKXu/lK0b/UjiT+VA+6fsg+nw/SiN0+k0pPVnpO1XyuPrxeu/pvYpN1YX6ddWLMV16vHx6/lFruOh77phrQ8VF04iRPifJ7lS5EOs/ViaXmU7XgD6oHP1rHndKClSZUcm/u8amOm2iuTvdO5qOO6eYcmR6rNJlTD1dt1Rxip9+iravbHH2G7FhOsNJoWZehvadZqyG9peQEUR5I0V5Zb021F/QxclsTTaZoJScH6NTKK92G9By69syve5/X9irHx3J+ii/TWF0urtJZUw229FbWWa622tFm3fGnx38dv16/bZ6+mubbXuy+kT2LlZ5iGuunLrK1UNZD+V+kjxQNMbFzcnNMq6gaxdUylZ5RfTpto8Rx9E5nr+odR0Pt5KyyrnHzV0r9NPd3Wum3oE3yXNDxSttUfas/Ho+vkU55o81EHaTsZbP2ARJ9MvFhWkjVO1V+CJ13/rfTNDlfNNUvnU5Z9lGL7GiaSf1R1TYTfYO0DcopVcdr7YIaryuqeR+oWZT8zs2a5aO1xERnKO87XaBoB7a2s75OWyjaRNUWToxTeZOpVphqk1z3UuIoGmP5LF2h+k00CrJ1a2uKbc7bdO+zFqn0SZVziX359bVOfnv6+tygzgjr9rKlPoZOkeMc3AtV5W4U7VH1o5xKl29hrzt9UtXCnH1VWXtU+oTpkhwn75fKrzsNku1iX6Ujsm66GtMo2Tbbx350bOmN6/3174pTaRK77/c1numSVzqjy5UcyKF8tKZwNIejM7rjat6B6QamGRRNkbXPiVg7GiZqj0o3RF2CbDrdgnQDWvORTqjWc1cvdDoC6YOJ/jhhr9STkDZx9QnSJrk/6w6UL3lZRwqNUmmNfAxqh2LNP6FZUNvRMMg3nmNV71k++Xp0WiXaVdok2zn6pdMrMf+StUr+LKvjuQ/ZLDtF56AxVPvLdmmWdazSQWz/d7dHvNI5iiZCesiJlfvzcaZpkAbqtBHUL5WO6WyY/jF00UfrnB191OmfSis52kLRHXm8qeZg83PiqHOo4joap8vPMJuoA9QajKoZHG0x0To7OinrE6UGxGI5ugjpm/g+apica6m0DcrDVGtXp3We10+mG05qloFf1CrIvtIr1fpd2bL1HvlUeZWpHcrRILuleZieYeeo2k7tke5RPoNd3bUzlzxm7q+e5UO5KuV5vV195uou1N9ps9zn6DOq0aQ2qJFt5qv+CJotag5Ht6naSNF4Ey3HNNpEPzraM2u0SrdF7eZoMkWzRc2D9BrTINM+V2+d/n+j1ZqYGsu1q+pkf0uvO11W1dAcfZZfq9qr1V+7/kS/Vb6Vdptos043dcdZX+7v/JAWUrXMxG9nnKn2UjQXGxP1/+13fVP1V5qq6kdaSdFfLJ/F9NJUV1W6aWmhVQeMx5GusnNfavuTaSGmjVCOhemgieaYHFdzUFUcpnMqjVPptKh9dvJSXQ0PaZG7dA/7vdG7tI/7/2Q5mgbpmOp9pWNWf7dW/E3UNvFfOQ90QvuQOEwb7GiYy5blh7o81mqKNlHt3FzYXVoH6RRnnBxH1SosxxPj5uMvfxeF7+pTdQzTMvE980N5l65/2TCt4/gqc3LGqXJQnZ7ptJSqm5h/1T5ax5xsTk0M6ZBOm7Dczm7NTsnvOHkhJbayhzprg2xbnR/LE2U7ppOcvcuK3lJ+c1LRUXfrpkoTdTYx5xP10mrKulRpqs620ktMM0n650QOyPBHOgT5Ih9ke0IzqTauZsr6YVIvm2ieqV7qvo9I50S9M9VIJ3RSrpchrVQ1tp6jGMwvai5F10x110R7dRps9annWM3ByTspOo1pNSU39tFa6o/apvprkqdy8mpKXDZftTbYadvOxomH5st8XJ2JNGpnszQTOl7pSld/Knm2iS49kV9ztSf6DYC4LqK1VNWbWadG30qTdppzqi13tCTSW51PzsF1dkpcNd/maMiJjlRzVJ3Nrg+aQ9aIu7owa8POTtnb3mnBqPHu1ovd2H/5/t1wxlP362d/tabJ5sKedVSuU6U/Hd1YacdJDKYtVX2J2kfrsx+x5Vpsp9OQjaKfJvlNVXMyO2S/owun1yrbMJ2I5sjGVDVo1q1If2adymyyTkVa1dGrSGNONaxaaz6tSR2f53U/5EeRZmCatdOmlXbd0aeuFi3tTL1Z1YSZFlV0aM755vNyNd9vX/BnxLRnZ/8fD0/PbcVffdXxrPcmepHlGVUdGW2YplTqr1FjOhrp0oWdnox2q030q+u77F0NGTVTFWOiXz9KM7rakM3jozXXe2o7lONjuUJVe7m5PDU/N9Vf//Xg+Vb+q7m6sYqB5qP6svOp7DufqH2Yb6WXkN5zc5ZqfjL3Pa+hT/j/vkHa7tW6OchtRi2G+rr+zqea28QvazhX71V1c6T/VA3I7Nq9iIUW7PYrdhqxmk/WgZ1Np/8ubbVap+UqO0UDLv2W/Sr9F21zvhDZVLpt2UVt12lCN7+IbCsN1mnHTm9df8udfux04eWbdVunBat+pv3i8UrfMf13Sqs5e/3UOI5++5H1GcrpVOt9tf4jPdTpILUWWukhZBMb0zjIVtVHThzk0+kfpv+Q7kExKu3U6afsz3zcHBrLn1XH1j200jmONkJ+2bfTK52+QdrG1VQxZ1bVfztf9FxpN8euzlyt8ei5D+b/ai99Y5v7mR6T9Zpqq+yVLGwqfYdsOk0W9ZZqd0qXIZ+ovar8XPxOVHm9q1X9jg5j+qvaJ1jppejn6jLFr9Jjb+5Dwfbr97/1r7/fs9br9T7GWcezdut0TbbJeoz5oRrwrw9zjbaj1U7sJVS1449er126o9N1nU5jubHTNlEjKXpP0XlMzylasLPptFDUX6pOy1rNzXOp2pDZ55xX1e/quC63xXJiim6b+nZ6B2k4ZFvFVXVYpf9c3+zT6T2k3xzdp+hGRfNV2q/q283ZdRqyO+70Kbrsda5P12K5Jtr1V89luDm0TrutOWRtFnVd/r6x2mHl9/y3JOiz8m+Q6LJOo2Ut1mmzpc9UXZa1HNNwip5Bmu3Saqu5+qiKefWpsdzncZlG+xE0WdQXU7uu/qnUQCc+nWZSdNdEm6majOk0V4OxPJua76o0m6rdlPxa1mydXos6q9NqU71W3V/fW7Mpug3l8FCOD+XeWI6N5bAcnYWe/53k06CuBDpm6of0l+LLbNTxo86q8mVvc3K9T+lb1B5LfRt0E9JYp3RYZfOi+2LuOOmlUj8WWqnyybru1d8T8e3uAVGfXbZZy0X7pZ2iHlO0W9RAsa/qr1qn4S7/pZPcGFW8qAtPxpvEYXrS0ZRIT6r5RCfvF21/BM2oaspdu6q/04eVrmTa0tGeE03I6rKdNnX1ZJenQ/bIx63ZVrrSzQeifXmVzkM19S7nh3wUvTnVoc7+OUensv9vKuoxpBPz+65WijRfZ/NKqxJdNtVySj6N9WeNlfNVnU+nc6Me67TYul5R96HcGNNTTHehHFm7vy1+f4jmUvVa9qm01tUUTdbZrD6knbK2yo1pLVebVTrkRIw7tJ6r8VAspu0muULHv9NySM9V+s3J730Wzebk9k7F6nycvN9O/6Smqmi1aI90mqPFVK2FrrXry/SWkius6t9R+0SbPAbSVdnH8Y32Uy0X3090mar5JvqtO551HNNmSl+X73Pqmop+U3Jiaj5N0mMgv1b5reuRdRmaa7y2eZxOn1X6adl1Ggtps2zb+SC7TosxPcZ0WbRHNlkHLTtFl031XKUFJxoH+So6K841aiUldxb9mC/SZK4OdHVWt7+u01ysrTl8tN6a6LNTWq6rzTKN1uXTFN3V2aj6S9FgneZi75kum+ip6hyV8SoNxfJp2SfrFWZXaa5KdzHNxTRb57N7XNFlJ3VbjlVpsmrueS1kNpWGY++rHBvSIK2uETVZ58tqlIo2kv1ArinaI9ulq05oJNdO1VmVbaWdnv/+gL5afV1/pW1UnRVzakxjndBG0cepJWZNpGqqXX21/Do7RVexOqSip6o6JNJPyvEfTWtNc1s5b9W97/RZpZGYxmLaiWkxVTdVOgppMlVLobGVfFinixTNtHRTZ4v0EtNW6LoyjeTqJJSHcmyUY5W+QXppqqkUreTaVf2V1uqORS2VtQPUEoP8U+ev6KY3Mcj+rjc+QI+8sms0C+tXbJi/o3ny96/zefX312ihaJt1kGLb6afKztFOSo1Q0UCqzqpyUI5mqvJKzF7VUpVOWvqo00Z36aM/gjaq1uysZdjrShchbdQdV20UXdLpkE7jIN3Q6RtV16g1PWZb2UTt0+WB8r4rphlP6xpF07h2k2NxHVH0iLovS9U3jq+Se1Lf5/UUrbFvcj9FH629CXkRVBvqcjRt3U4Ys9M2O7ZIxyDNo4xb6R7kV12LSgN1WqmKreaPutiVVnL0Urbp9FLWWEhTvZdmUjSQUl9TNdF0LPZMZqen4j4q9vsZSFv9qPqq00DdcbUfabMdO3VMRau5sS9d4drH1vkgXTfZ6z/Zg6XEiv4st5TjKtqt02/In+kwNQ+laqGd3NbJGEiTsfNRa48v63ml3Yq+sp/5B5uo1coaXqEB2/3vRPMh3cH0naLpkB3LL3V6asduouGu81jrbfWdYVouagumzTpbJ4+V9Zar2Ry9hvxU7XS1yq+z7WqDzl4otC/e1WuqxlTzXp1Wy1qr+53biT77aC3m6LWsk1Q9dEoHuXpt2n+HhkNjoxycqsfU/VJuHg3VEisbRZ+5Wq3LlVW2jsaq9t9n32WjaqKJ/mL2XS4tzs/VaZWGoprqgC2za/VTsmM5NqSjVPuJjtuZk2MTNVV1jOXH1DyaoxNZnbHzzxpB0XxRo2V9wsZGfllXIT8nP6fYdJrvpDZcub71uoqtaq14XSr/iV5DzzxOcnqORsx+nVbs6qCqXtzRjB+tBXe1o2o71XRM190Zm51L7qtex387nefouE77KfZMv7n78TstWWm7pXeqvnxNss3SclV/1Hqor7JxbbPWrPorzdrZKXm4HKPTkrH/eawvr8epjmVthnRMp2+63BvTYqf0VJePQ6+ZBovXmmmlSrN0+kjRRpU900XZD9UDO39HGym2qk7qxsnaB9lm3RBfV/Nx8mCdv6JZqs9G8VVtUZ4uXouljVA9s9IvSl3zz6SR0NrPdEGXm8rH8r+druj0BFunHZ+cL2L5oOraOVqC7XdH2oRpkep4pQmYXlD0RGWz7JjmQLHQmt/piGVX+Sqv49rp5jK69926m9feqg/1v9KPps1vxfVT1vKdtRvFZOsqWr9ZbmGyniP7yVqeW7W+5nVOXb+nazertU33LKE1XM1rxPV7rY/q/9vYrc3V+o363ZrYZ1/DlTW+W9O7dbvyibWh9bp6Fg2ty7vPoak1pLi2KuuzGhet1epc47rX2XU20Va1i3EVO3WeqtboNELWB7saIc9D1RXRHvUzbRHHq94jlkdrOdIKaj/THMiu6lOPRW0R+6v8+n8nW7TmKrkAtm4rumWiOXbyA1UcN4aimbINyxdU1+Y6jvSKE6OK0+md7Hu1ye8BoP8Dp4rR6ZPKn+2vVjSLq2smz7j9CHpGqWWg95UWya+zDkHrvZpniLpg2TON4cTMOmOiMao1eVcDuJrFtWN6pdNBjj5R9Iti2+kMNK6qUZh/1iPqeBO7Ln+BbJCm6OJle2bTaZsdPTPRPVFLOHontonWYfqkqttMY6F4O9pHnWfWF8gX6RGU36p0DdIZKM7SNygGipN1zo6+qa5157u0DtJGrIai7llW9c5uLqfTP59BA6kaB+mWSqM4NlVfbpUeYWtxt8472kPVB52eQGu5opccm8k1UDTJVLeciNvpk4m+YTHUeXRxTpyL46dcB+aTtVD2YVqG6RxHu7C+uE4qmifrH1VrTHIxlZ+qQ3LNwtUy1TqONEu2XVqhW6cVXYLW9zUPZx+rm1tB+zOQf8ytMP3g7uVQ93CguD+qnqjWdHY8r/XVa1VrMP3A1ssqh3K1bs11tUK2Y2s70xkTbXC3lmD6p7tmjq2r55gO2fHt1u271vq7tQbSAex6ZC2Rj/93+rd7nXVBdRxphirfEdfFuN5O+lVNUK3v1RrvxInN1RxoDVXnhPwde6QnHC3h7DeNOkHVIDEn0dnntTnGZ2u3su+kq+WwXAXSG6rmqI59Bm3RaQ627rP8Q+fDdMa0P+oPVXt0azdahx390a2TO7rjtFZxbJz1f6Jf0HWbagvlWjo65uX++fT48n69RjGv/s6miqvYVnmHfFzVCJ02YHmFF11TrP/duu30u2s9Wvd246BYE9+dcdGaP/Fn63P269b9LtZa/+K6vrved2s9Gl9dy6tjH8X9bK1W1svpuCyGog2U49Ua7KzRlX13DK3VVb+6drA1eeoX/Z2xlDXtjrX/xHrs+rHrkee61mW09iprd7RhdlW8uH4razVbp9EaXdnkuGvNVfzyvTXmDJT1+yPXZeY/0RNsPa7iqDGU9bizY2tytfai9Rit1RU/szVbXbvVfP97r9XVOjZZC3+2eUPrj6IF0Pt1TF2nXSY+pQUUPdD1767n6rmeZHTko1yzyqbSAHlNr9b1vJ7v2ke/rAmQbVyXUX/Xl9d11I80QKUfmP6Y2qH13dURu7oBxaj0Q9U/1Qhdnh/5Z192Hug5DqQfOq2Q30ftwPYZKrn9LjeA+tnegI/OzXfa4Kdu8K9h1FuV9ur0WF5/kA1br6I9W1eXDVuD871KWe93WH+iZabagNkrc0E2ea2v+mJT1uzJOq/kEZRxppqgW/cnGkA5ZyWGk69ANnntc/IPvw7WeNWnsnHX9i4HMMk/THQBso39cW9gPob0QlX/V/L+ql5gOQqmDT56Xfsztbwud+t0XvO7NTyux6wv9qP1G63by46t1916icZS1tgJ13frateH1lO2pqr2ld+ODbrW7vrera+KDlDX1BMxWM7BWfN3YlS1DLZWn1x7J7bZHq27lV8Xx1nr2RqNYuXjbA2ujlXrsbpvH+2x6xi+Ov7R69GP3lz2RWsqWjMRKyPGZX1oHe3slDWwWovVdVYZI9swH2UO3VzV9bJbuxV/1S/7OGvwibU3+zlr6vKZrMUqJ0/XS3cNjzHR2qqss5N1GK1RCg93rVp31XGna7azXv/6UK/Tsa/qj5ysMHJ1PHKzysLK83X5On70OvajtG5tZX1ore3WYTQGi9GtzWjNjetut2ZW9swvnwfzU2zdOSg8r2qK1a/wZ5yTu55n2+582RqLrpfKx0iXdf7OWqtcf9WvW1+v+11ew901OMbqYsR16nmdSMer37x7c86CTV57fgVrnbL+Kj7TNViJ0/mf7GO5bMbNiGvZ7wtOePmj1733XmN31uEd+4ql0fqM1mV1DUf93TrvaILI8Pn8Ud6AzVXRLIotuodHW7S2ObZrzayulbpeKnYqD6trbcfQrL+8L5trWl6fpnav+pmvULN0+TA3tA+K2TtjOrlfJbfbHV/rV8WZaw1R9lPndcn9bbc/O1+eXItUhqzeszXIWZ+YHYp553l34+6sTSxHnO3yfbjqQ9e0u99X109dK6KPy3aIt+L4qk+1BlX3/Vd6/+D65KxLk7VOWRcqf2U/zs5aNV2v2LrF7Nw4bJ2PvNutZ3ntUdcipf+PvGad4iuHqdg9vGOUeFy1y+NWfd38lLVKXR+79cXxUWzdcTofd11S1s/Kj62Hax2KvmgNijZxnaHrz4k16IGsFWwtUdam7r5prFvMd7IOTfapnlzDnPXVzU/mHCyyjzwWbavnUdBaxtYzd0376PXmPZqyVikxqnVEta3WKLZu5bWG5enQe4fzFL5b/f/r3/5fey+v+rNddV9CfpVPZ5PXlTvv+ezePb3v5/sI4w2aIzt8/8/3y+7+WN1TOz/3nq/Wlr5e3wfhWkW7XGOLNtV9Hd2T2f1cYY8/yn17ch/dvTezcV12qO7RnY3KKt39GN2D1/Huvhzvsc59lvllH6bvu2P5PvPKVrwvX3+Xq1X3kq4vj9/di5/bw9tW3VOyfdXXzSvHg/MX7rXV9XF91/0O2cV7aNS7VX93f63usUgvd/dW5f760ffEu++r6v10556t3Jun79Vj6/26X1W2se/6N94/1/vqfofupeq9kWnX6j6arzO6jzI7dv+M94XY4j0zv67ufejvuLLvcsZ5Dt29sLPt5pDvXb+C+2S+VyG/2Dr/HAPZsRjdderue12dVrlf/lme03F0pZtLUO0q++nxbr7dfTLeR9f9Mffne2q+jyq2zH5qq/pV92v0GXX9zv05/43v3quRPcttuPdtNQ5iarRm5PP5FejP2NetAUzXVv7KPVuJl/2zJmbj3XFfR8fW8Y++53621t2LJ/mHE3ZVf3Vvzffr7t5X3YtP34+Ve68y3mTceN9lNvH+7KwB6D7fxe7uO+r9381bT/1OrhNbcYU41TXq7rm/Crq/0+0snxFb9kX3fYcH0PpQHZvo/nzso+/Lu/fznfu+4nvCZt3blLl093XH3l0DOpvquHOPd20n59bdz7vjnfbP92jrvm/cvx0fdG/s7qlKnkG9L19+Ss7myPkMrwFag5R7u3P/z3bd68k9vWKBbr9/Pn6tTx99n/5MTbn/spyKu35MfdFcUKvutej1RH8rY0/u19lm6frc393T8/vu3ureq11dz3IQ1VyoVhbuxc5995WPeH92ckXd/VO5t05tKh293qP6I7rXdvfXqu+j720n7onqvWe3BrlzP0P3G+V+NL1/uXbKfW3dq+Kx9f5q3T0qxnXyB8zeuWc596p1nzp9f3r5uzY0Zvy7ZTav7htgftP7U9R/zvObTAuqGvH0PUT529+9Jyj3CuW9e5+Y3hdOxqj+3r+le0P2VXRLZ4/uAVQXCfZO3Py3+hID/P1294SomV44bHD/UPzRvSH+HTK/zpbFV2Kq9w3Go2gO6/0df/cn7xns+OpDf6/d37FyH3B1xht98VDfA1715/W0+BvM8fLfZLUeIubJfujveMeH/R1m29jQ/aW6V6h/X3mdVeJcrTov1zb3uboB9Z38m5v8DbLvfnf8pIbfjdnZVH+H6G/zuS98967PKh9T/q6iT2fL7PLfg3I/iH7Vd9qxu7u/s8l/7/n4nesf+86yv5/J35L6nXdtlb/h9u8HrH2KLo5/D8gm/z10Njmm+/dwytaJ17U7vp/oWPddUO7x0+/Pe7f8fcvH1O+Z8/n9aNfoZ/Pb07evP1z739++vWm/fH14aV++PL56Hd9nm5f+X3752T6o/eeXB8t2NdVOsb9jzifGPz3vn+1n+9l+Nqc9PX2B7dvjY9v/2dqJ67E0w26743P58ve/02tw2XR2k747v2OT9tvD0789Pb5u//Od7fPx69jj93/j8fX6Mb3Px1bL43zm9tH3Eus78e3h1lbt06ly3Cda/P3k6reUK/tlF//Nv8Xcxfq1eL7614f6uNqi/x+trRoP+l7EHMv/Bx+iXjg=</Data>
  118. </DataArray>
  119. </GIFTI>