Scheduled service maintenance on November 22


On Friday, November 22, 2024, between 06:00 CET and 18:00 CET, GIN services will undergo planned maintenance. Extended service interruptions should be expected. We will try to keep downtimes to a minimum, but recommend that users avoid critical tasks, large data uploads, or DOI requests during this time.

We apologize for any inconvenience.

data_overview_1.py 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724
  1. # -*- coding: utf-8 -*-
  2. """
  3. Code for generating the first data figure in the manuscript.
  4. Authors: Julia Sprenger, Lyuba Zehl, Michael Denker
  5. Copyright (c) 2017, Institute of Neuroscience and Medicine (INM-6),
  6. Forschungszentrum Juelich, Germany
  7. All rights reserved.
  8. Redistribution and use in source and binary forms, with or without
  9. modification, are permitted provided that the following conditions are met:
  10. * Redistributions of source code must retain the above copyright notice, this
  11. list of conditions and the following disclaimer.
  12. * Redistributions in binary form must reproduce the above copyright notice,
  13. this list of conditions and the following disclaimer in the documentation
  14. and/or other materials provided with the distribution.
  15. * Neither the names of the copyright holders nor the names of the contributors
  16. may be used to endorse or promote products derived from this software without
  17. specific prior written permission.
  18. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  19. ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  20. WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  21. DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  22. FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  23. DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  24. SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  25. CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  26. OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  27. OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  28. """
  29. # This loads the Neo and odML libraries shipped with this code. For production
  30. # use, please use the newest releases of odML and Neo.
  31. import load_local_neo_odml_elephant
  32. import os
  33. import numpy as np
  34. from scipy import stats
  35. import quantities as pq
  36. import matplotlib.pyplot as plt
  37. from matplotlib import gridspec, ticker
  38. from reachgraspio import reachgraspio
  39. import odml.tools
  40. import neo_utils
  41. import odml_utils
  42. # =============================================================================
  43. # Define data and metadata directories
  44. # =============================================================================
  45. def get_monkey_datafile(monkey):
  46. if monkey == "Lilou":
  47. return "l101210-001" # ns2 (behavior) and ns5 present
  48. elif monkey == "Nikos2":
  49. return "i140703-001" # ns2 and ns6 present
  50. else:
  51. return ""
  52. # Enter your dataset directory here
  53. datasetdir = "../datasets/"
  54. trialtype_colors = {
  55. 'SGHF': 'MediumBlue', 'SGLF': 'Turquoise',
  56. 'PGHF': 'DarkGreen', 'PGLF': 'YellowGreen',
  57. 'LFSG': 'Orange', 'LFPG': 'Yellow',
  58. 'HFSG': 'DarkRed', 'HFPG': 'OrangeRed',
  59. 'SGSG': 'SteelBlue', 'PGPG': 'LimeGreen',
  60. 'NONE': 'k', 'PG': 'k', 'SG': 'k', 'LF': 'k', 'HF': 'k'}
  61. event_colors = {
  62. 'TS-ON': 'Gray', # 'TS-OFF': 'Gray',
  63. 'WS-ON': 'Gray', # 'WS-OFF': 'Gray',
  64. 'CUE-ON': 'Gray',
  65. 'CUE-OFF': 'Gray',
  66. 'GO-ON': 'Gray', # 'GO-OFF': 'Gray',
  67. # 'GO/RW-OFF': 'Gray',
  68. 'SR': 'Gray', # 'SR-REP': 'Gray',
  69. 'RW-ON': 'Gray', # 'RW-OFF': 'Gray',
  70. 'STOP': 'Gray'}
  71. # =============================================================================
  72. # Plot helper functions
  73. # =============================================================================
  74. def force_aspect(ax, aspect=1):
  75. ax.set_aspect(abs(
  76. (ax.get_xlim()[1] - ax.get_xlim()[0]) /
  77. (ax.get_ylim()[1] - ax.get_ylim()[0])) / aspect)
  78. def get_arraygrid(blackrock_elid_list, chosen_el, rej_el=None):
  79. if rej_el is None:
  80. rej_el = []
  81. array_grid = np.zeros((10, 10))
  82. for m in range(10):
  83. for n in range(10):
  84. idx = (9 - m) * 10 + n
  85. bl_id = blackrock_elid_list[idx]
  86. if bl_id == -1:
  87. array_grid[m, n] = 0.7
  88. elif bl_id == chosen_el:
  89. array_grid[m, n] = -0.7
  90. elif bl_id in rej_el:
  91. array_grid[m, n] = -0.35
  92. else:
  93. array_grid[m, n] = 0
  94. return np.ma.array(array_grid, mask=np.isnan(array_grid))
  95. # =============================================================================
  96. # Load data and metadata for a monkey
  97. # =============================================================================
  98. # CHANGE this parameter to load data of the different monkeys
  99. # monkey = 'Lilou'
  100. monkey = 'Nikos2'
  101. nsx_none = {'Lilou': None, 'Nikos2': None}
  102. nsx_lfp = {'Lilou': 2, 'Nikos2': 2}
  103. nsx_raw = {'Lilou': 5, 'Nikos2': 6}
  104. chosen_el = {'Lilou': 71, 'Nikos2': 63}
  105. chosen_units = {'Lilou': range(1, 5), 'Nikos2': range(1, 5)}
  106. datafile = get_monkey_datafile(monkey)
  107. session = reachgraspio.ReachGraspIO(
  108. filename=os.path.join(datasetdir, datafile),
  109. odml_directory=datasetdir,
  110. verbose=False)
  111. bl_lfp = session.read_block(
  112. index=None,
  113. name=None,
  114. description=None,
  115. nsx_to_load=nsx_lfp[monkey],
  116. n_starts=None,
  117. n_stops=None,
  118. channels='all',
  119. units=chosen_units[monkey],
  120. load_waveforms=False,
  121. load_events=True,
  122. scaling='voltage',
  123. lazy=False,
  124. cascade=True)
  125. bl_raw = session.read_block(
  126. index=None,
  127. name=None,
  128. description=None,
  129. nsx_to_load=nsx_raw[monkey],
  130. n_starts=None,
  131. n_stops=None,
  132. channels=chosen_el[monkey],
  133. units=chosen_units[monkey],
  134. load_waveforms=True,
  135. load_events=True,
  136. scaling='voltage',
  137. lazy=False,
  138. cascade=True)
  139. seg_raw = bl_raw.segments[0]
  140. seg_lfp = bl_lfp.segments[0]
  141. # Displaying loaded data structure as string output
  142. print "\nBlock"
  143. print 'Attributes ', bl_raw.__dict__.keys()
  144. print 'Annotations', bl_raw.annotations
  145. print "\nSegment"
  146. print 'Attributes ', seg_raw.__dict__.keys()
  147. print 'Annotations', seg_raw.annotations
  148. print "\nEvents"
  149. for x in seg_raw.events:
  150. print '\tEvent with name', x.name
  151. print '\t\tAttributes ', x.__dict__.keys()
  152. print '\t\tAnnotation keys', x.annotations.keys()
  153. print '\t\ttimes', x.times[:20]
  154. for anno_key in ['trial_id', 'trial_timestamp_id', 'trial_event_labels',
  155. 'trial_reject_IFC']:
  156. print '\t\t'+anno_key, x.annotations[anno_key][:20]
  157. print "\nChannels"
  158. for x in bl_raw.channel_indexes:
  159. print '\tChannel with name', x.name
  160. print '\t\tAttributes ', x.__dict__.keys()
  161. print '\t\tchannel_ids', x.channel_ids
  162. print '\t\tchannel_names', x.channel_names
  163. print '\t\tAnnotations', x.annotations
  164. print "\nUnits"
  165. for x in bl_raw.list_units:
  166. print '\tUnit with name', x.name
  167. print '\t\tAttributes ', x.__dict__.keys()
  168. print '\t\tAnnotations', x.annotations
  169. print '\t\tchannel_id', x.annotations['channel_id']
  170. assert(x.annotations['channel_id'] == x.channel_index.channel_ids[0])
  171. print "\nSpikeTrains"
  172. for x in seg_raw.spiketrains:
  173. print '\tSpiketrain with name', x.name
  174. print '\t\tAttributes ', x.__dict__.keys()
  175. print '\t\tAnnotations', x.annotations
  176. print '\t\tchannel_id', x.annotations['channel_id']
  177. print '\t\tspike times', x.times[0:20]
  178. print "\nAnalogSignals"
  179. for x in seg_raw.analogsignals:
  180. print '\tAnalogSignal with name', x.name
  181. print '\t\tAttributes ', x.__dict__.keys()
  182. print '\t\tAnnotations', x.annotations
  183. print '\t\tchannel_id', x.annotations['channel_id']
  184. # get start and stop events of trials
  185. start_events = neo_utils.get_events(
  186. seg_raw,
  187. properties={
  188. 'name': 'TrialEvents',
  189. 'trial_event_labels': 'TS-ON',
  190. 'performance_in_trial': 255})
  191. stop_events = neo_utils.get_events(
  192. seg_raw,
  193. properties={
  194. 'name': 'TrialEvents',
  195. 'trial_event_labels': 'STOP',
  196. 'performance_in_trial': 255})
  197. # there should only be one event object for these conditions
  198. assert len(start_events) == 1
  199. assert len(stop_events) == 1
  200. # insert epochs between 10ms before TS to 50ms after RW corresponding to trails
  201. neo_utils.add_epoch(
  202. seg_raw,
  203. start_events[0],
  204. stop_events[0],
  205. pre=-250 * pq.ms,
  206. post=500 * pq.ms,
  207. trial_status='complete_trials',
  208. trial_type=start_events[0].annotations['belongs_to_trialtype'],
  209. trial_performance=start_events[0].annotations['performance_in_trial'])
  210. # access single epoch of this data_segment
  211. epochs = neo_utils.get_epochs(seg_raw,
  212. properties={'trial_status': 'complete_trials'})
  213. assert len(epochs) == 1
  214. # cut segments according to inserted 'complete_trials' epochs and reset trial
  215. # times
  216. cut_segments_raw = neo_utils.cut_segment_by_epoch(
  217. seg_raw, epochs[0], reset_time=True)
  218. cut_segments_lfp = neo_utils.cut_segment_by_epoch(
  219. seg_lfp, epochs[0], reset_time=True)
  220. # =============================================================================
  221. # Define data for overview plots
  222. # =============================================================================
  223. trial_index = {'Lilou': 0, 'Nikos2': 6}
  224. trial_seg_raw = cut_segments_raw[trial_index[monkey]]
  225. trial_seg_lfp = cut_segments_lfp[trial_index[monkey]]
  226. blackrock_elid_list = bl_lfp.annotations['avail_electrode_ids']
  227. # get 'TrialEvents'
  228. event = trial_seg_lfp.events[2]
  229. start = event.annotations['trial_event_labels'].index('TS-ON')
  230. trialx_trty = event.annotations['belongs_to_trialtype'][start]
  231. trialx_trtimeid = event.annotations['trial_timestamp_id'][start]
  232. trialx_color = trialtype_colors[trialx_trty]
  233. # find trial index for next trial with opposite force type (for ax5b plot)
  234. if 'LF' in trialx_trty:
  235. trialz_trty = trialx_trty.replace('LF', 'HF')
  236. else:
  237. trialz_trty = trialx_trty.replace('HF', 'LF')
  238. for i, tr in enumerate(cut_segments_lfp):
  239. eventz = tr.events[2]
  240. nextft = eventz.annotations['trial_event_labels'].index('TS-ON')
  241. if eventz.annotations['belongs_to_trialtype'][nextft] == trialz_trty:
  242. trialz_trtimeid = eventz.annotations['trial_timestamp_id'][nextft]
  243. trialz_color = trialtype_colors[trialz_trty]
  244. trialz_seg_lfp = tr
  245. break
  246. # =============================================================================
  247. # Define figure and subplot axis for first data overview
  248. # =============================================================================
  249. fig = plt.figure()
  250. fig.set_size_inches(6.5, 10.) # (w, h) in inches
  251. gs = gridspec.GridSpec(
  252. nrows=5,
  253. ncols=4,
  254. left=0.05,
  255. bottom=0.07,
  256. right=0.9,
  257. top=0.975,
  258. wspace=0.3,
  259. hspace=0.5,
  260. width_ratios=None,
  261. height_ratios=[1, 3, 3, 6, 3])
  262. ax1 = plt.subplot(gs[0, :]) # top row / odml data
  263. # second row
  264. ax2a = plt.subplot(gs[1, 0]) # electrode overview plot
  265. ax2b = plt.subplot(gs[1, 1]) # waveforms unit 1
  266. ax2c = plt.subplot(gs[1, 2]) # waveforms unit 2
  267. ax2d = plt.subplot(gs[1, 3]) # waveforms unit 3
  268. ax3 = plt.subplot(gs[2, :]) # third row / spiketrains
  269. ax4 = plt.subplot(gs[3, :], sharex=ax3) # fourth row / raw signal
  270. ax5a = plt.subplot(gs[4, 0:3]) # fifth row / behavioral signals
  271. ax5b = plt.subplot(gs[4, 3])
  272. fontdict_titles = {'fontsize': 'small', 'fontweight': 'bold'}
  273. fontdict_axis = {'fontsize': 'x-small'}
  274. wf_time_unit = pq.ms
  275. wf_signal_unit = pq.microvolt
  276. plotting_time_unit = pq.s
  277. raw_signal_unit = wf_signal_unit
  278. behav_signal_unit = pq.V
  279. # =============================================================================
  280. # PLOT TRIAL SEQUENCE OF SUBSESSION
  281. # =============================================================================
  282. # load complete metadata collection
  283. odmldoc = odml.tools.xmlparser.load(datasetdir + datafile + '.odml')
  284. # get total trial number
  285. trno_tot = odml_utils.get_TrialCount(odmldoc)
  286. trno_ctr = odml_utils.get_TrialCount(odmldoc, performance_code=255)
  287. trno_ertr = trno_tot - trno_ctr
  288. # get trial id of chosen trial (and next trial with opposite force)
  289. trtimeids = odml_utils.get_TrialIDs(odmldoc, idtype='TrialTimestampID')
  290. trids = odml_utils.get_TrialIDs(odmldoc)
  291. trialx_trid = trids[trtimeids.index(trialx_trtimeid)]
  292. trialz_trid = trids[trtimeids.index(trialz_trtimeid)]
  293. # get all trial ids for grip error trials
  294. trids_pc191 = odml_utils.get_trialids_pc(odmldoc, 191)
  295. # get occurring trial types
  296. octrty = odml_utils.get_OccurringTrialTypes(odmldoc, code=False)
  297. # Subplot 1: Trial sequence
  298. boxes, labels = [], []
  299. for tt in octrty:
  300. # Plot trial ids of current trial type into trial sequence bar plot
  301. left = odml_utils.get_trialids_trty(odmldoc, tt)
  302. height = np.ones_like(left)
  303. width = 1.
  304. if tt in ['NONE', 'PG', 'SG', 'LF', 'HF']:
  305. color = 'w'
  306. else:
  307. color = trialtype_colors[tt]
  308. B = ax1.bar(
  309. left=left, height=height, width=width, color=color, linewidth=0.01)
  310. # Mark trials of current trial type (left) if a grip error occurred
  311. x = [i + width / 2. for i in list(set(left) & set(trids_pc191))]
  312. y = np.ones_like(x) * 2.0
  313. ax1.scatter(x, y, s=5, marker='*')
  314. # Collect information for trial type legend
  315. if tt not in ['PG', 'SG', 'LF', 'HF']:
  316. boxes.append(B[0])
  317. if tt == 'NONE':
  318. # use errors for providing total trial number
  319. labels.append('total: # %i' % trno_tot)
  320. # add another box and label for error numbers
  321. boxes.append(B[0])
  322. labels.append('/ * errors: # %i' % trno_ertr)
  323. else:
  324. # trial type trial numbers
  325. labels.append(tt + ': # %i' % len(left))
  326. # mark chosen trial
  327. x = [trialx_trid + width / 2.]
  328. y = np.ones_like(x) * 2.0
  329. ax1.scatter(x, y, s=5, marker='D', color='Red', edgecolors='Red')
  330. # mark next trial with opposite force
  331. x = [trialz_trid + width / 2.]
  332. y = np.ones_like(x) * 2.0
  333. ax1.scatter(x, y, s=5, marker='D', color='orange', edgecolors='orange')
  334. # Generate trial type legend; bbox: (left, bottom, width, height)
  335. leg = ax1.legend(
  336. boxes, labels, bbox_to_anchor=(0., 1., 0.5, 0.1), loc=3, handlelength=1.1,
  337. ncol=len(labels), borderaxespad=0., handletextpad=0.4,
  338. prop={'size': 'xx-small'})
  339. leg.draw_frame(False)
  340. # adjust x and y axis
  341. xticks = [i + 0.5 for i in range(1, 101, 10)] + [100.5]
  342. ax1.set_xticks(xticks)
  343. ax1.set_xticklabels([str(int(t)) for t in xticks], size='xx-small')
  344. ax1.set_xlabel('trial ID', size='x-small')
  345. ax1.set_xlim(1, 101)
  346. ax1.yaxis.set_visible(False)
  347. ax1.set_ylim(0, 3)
  348. ax1.spines['top'].set_visible(False)
  349. ax1.spines['left'].set_visible(False)
  350. ax1.spines['right'].set_visible(False)
  351. ax1.tick_params(direction='out', top='off')
  352. ax1.set_title('sequence of the first 100 trials', fontdict_titles, y=2)
  353. ax1.set_aspect('equal')
  354. # =============================================================================
  355. # PLOT ELECTRODE POSITION of chosen electrode
  356. # =============================================================================
  357. arraygrid = get_arraygrid(blackrock_elid_list, chosen_el[monkey])
  358. cmap = plt.cm.RdGy
  359. ax2a.pcolormesh(
  360. np.flipud(arraygrid), vmin=-1, vmax=1, lw=1, cmap=cmap, edgecolors='k',
  361. shading='faceted')
  362. force_aspect(ax2a, aspect=1)
  363. ax2a.tick_params(
  364. bottom='off', top='off', left='off', right='off',
  365. labelbottom='off', labeltop='off', labelleft='off', labelright='off')
  366. ax2a.set_title('electrode pos.', fontdict_titles)
  367. # =============================================================================
  368. # PLOT WAVEFORMS of units of the chosen electrode
  369. # =============================================================================
  370. unit_ax_translator = {1: ax2b, 2: ax2c, 3: ax2d}
  371. unit_type = {1: '', 2: '', 3: ''}
  372. wf_lim = []
  373. # plotting waveform for all spiketrains available
  374. for spiketrain in trial_seg_raw.spiketrains:
  375. unit_id = spiketrain.annotations['unit_id']
  376. # get unit type
  377. if spiketrain.annotations['sua']:
  378. unit_type[unit_id] = 'SUA'
  379. elif spiketrain.annotations['mua']:
  380. unit_type[unit_id] = 'MUA'
  381. else:
  382. pass
  383. # get correct ax
  384. ax = unit_ax_translator[unit_id]
  385. # get wf sampling time before threshold crossing
  386. left_sweep = spiketrain.left_sweep
  387. # plot waveforms in subplots according to unit id
  388. for st_id, st in enumerate(spiketrain):
  389. wf = spiketrain.waveforms[st_id]
  390. wf_lim.append((np.min(wf), np.max(wf)))
  391. wf_color = str(
  392. (st / spiketrain.t_stop).rescale('dimensionless').magnitude)
  393. times = range(len(wf[0])) * spiketrain.units - left_sweep
  394. ax.plot(
  395. times.rescale(wf_time_unit), wf[0].rescale(wf_signal_unit),
  396. color=wf_color)
  397. ax.set_xlim(
  398. times.rescale(wf_time_unit)[0], times.rescale(wf_time_unit)[-1])
  399. # adding xlabels and titles
  400. for unit_id, ax in unit_ax_translator.iteritems():
  401. ax.set_title('unit %i (%s)' % (unit_id, unit_type[unit_id]),
  402. fontdict_titles)
  403. ax.tick_params(direction='in', length=3, labelsize='xx-small',
  404. labelleft='off', labelright='off')
  405. ax.set_xlabel(wf_time_unit.dimensionality.latex, fontdict_axis)
  406. xticklocator = ticker.MaxNLocator(nbins=5)
  407. ax.xaxis.set_major_locator(xticklocator)
  408. ax.set_ylim(np.min(wf_lim), np.max(wf_lim))
  409. force_aspect(ax, aspect=1)
  410. # adding ylabel
  411. ax2d.tick_params(labelsize='xx-small', labelright='on')
  412. ax2d.set_ylabel(wf_signal_unit.dimensionality.latex, fontdict_axis)
  413. ax2d.yaxis.set_label_position("right")
  414. # =============================================================================
  415. # PLOT SPIKETRAINS of units of chosen electrode
  416. # =============================================================================
  417. plotted_unit_ids = []
  418. # plotting all available spiketrains
  419. for st in trial_seg_raw.spiketrains:
  420. unit_id = st.annotations['unit_id']
  421. plotted_unit_ids.append(unit_id)
  422. ax3.plot(st.times.rescale(plotting_time_unit),
  423. np.zeros(len(st.times)) + unit_id,
  424. 'k|')
  425. # setting layout of spiktrain plot
  426. ax3.set_ylim(min(plotted_unit_ids) - 0.5, max(plotted_unit_ids) + 0.5)
  427. ax3.set_ylabel(r'unit ID', fontdict_axis)
  428. ax3.yaxis.set_major_locator(ticker.MultipleLocator(base=1))
  429. ax3.yaxis.set_label_position("right")
  430. ax3.tick_params(axis='y', direction='in', length=3, labelsize='xx-small',
  431. labelleft='off', labelright='on')
  432. ax3.invert_yaxis()
  433. ax3.set_title('spiketrains', fontdict_titles)
  434. # =============================================================================
  435. # PLOT "raw" SIGNAL of chosen trial of chosen electrode
  436. # =============================================================================
  437. # get "raw" data from chosen electrode
  438. assert len(trial_seg_raw.analogsignals) == 1
  439. el_raw_sig = trial_seg_raw.analogsignals[0]
  440. # plotting raw signal trace
  441. ax4.plot(el_raw_sig.times.rescale(plotting_time_unit),
  442. el_raw_sig.rescale(raw_signal_unit),
  443. color='k')
  444. # setting layout of raw signal plot
  445. ax4.set_ylabel(raw_signal_unit.units.dimensionality.latex, fontdict_axis)
  446. ax4.yaxis.set_label_position("right")
  447. ax4.tick_params(axis='y', direction='in', length=3, labelsize='xx-small',
  448. labelleft='off', labelright='on')
  449. ax4.set_title('"raw" signal', fontdict_titles)
  450. ax4.set_xlim(trial_seg_raw.t_start.rescale(plotting_time_unit),
  451. trial_seg_raw.t_stop.rescale(plotting_time_unit))
  452. ax4.xaxis.set_major_locator(ticker.MultipleLocator(base=1))
  453. # =============================================================================
  454. # PLOT EVENTS across ax3 and ax4 and add time bar
  455. # =============================================================================
  456. # find trial relevant events
  457. startidx = event.annotations['trial_event_labels'].index('TS-ON')
  458. stopidx = event.annotations['trial_event_labels'][startidx:].index('STOP') + \
  459. startidx + 1
  460. for ax in [ax3, ax4]:
  461. xticks = []
  462. xticklabels = []
  463. for ev_id, ev in enumerate(event[startidx:stopidx]):
  464. ev_labels = event.annotations['trial_event_labels'][startidx:stopidx]
  465. if ev_labels[ev_id] in event_colors.keys():
  466. ev_color = event_colors[ev_labels[ev_id]]
  467. ax.axvline(
  468. ev.rescale(plotting_time_unit), color=ev_color, zorder=0.5)
  469. xticks.append(ev.rescale(plotting_time_unit))
  470. if ev_labels[ev_id] == 'CUE-OFF':
  471. xticklabels.append('-OFF')
  472. elif ev_labels[ev_id] == 'GO-ON':
  473. xticklabels.append('GO')
  474. else:
  475. xticklabels.append(ev_labels[ev_id])
  476. ax.set_xticks(xticks)
  477. ax.set_xticklabels(xticklabels)
  478. ax.tick_params(axis='x', direction='out', length=3, labelsize='xx-small',
  479. labeltop='off', top='off')
  480. timebar_ypos = ax4.get_ylim()[0] + np.diff(ax4.get_ylim())[0] / 10
  481. timebar_labeloffset = np.diff(ax4.get_ylim())[0] * 0.01
  482. timebar_xmin = xticks[-2] + ((xticks[-1] - xticks[-2]) / 2 - 0.25 * pq.s)
  483. timebar_xmax = timebar_xmin + 0.5 * pq.s
  484. ax4.plot([timebar_xmin, timebar_xmax], [timebar_ypos, timebar_ypos], '-',
  485. linewidth=3, color='k')
  486. ax4.text(timebar_xmin + 0.25 * pq.s, timebar_ypos + timebar_labeloffset,
  487. '500 ms', ha='center', va='bottom', size='xx-small', color='k')
  488. # =============================================================================
  489. # PLOT BEHAVIORAL SIGNALS of chosen trial
  490. # =============================================================================
  491. # get behavioral signals
  492. ainp_signals = [nsig for nsig in trial_seg_lfp.analogsignals if
  493. nsig.annotations['channel_id'] > 96]
  494. ainp_trialz = [nsig for nsig in trialz_seg_lfp.analogsignals if
  495. nsig.annotations['channel_id'] == 141][0]
  496. # find out what signal to use
  497. trialx_sec = odmldoc['Recording']['TaskSettings']['Trial_%03i' % trialx_trid]
  498. # get correct channel id
  499. trialx_chids = [143]
  500. FSRi = trialx_sec['AnalogEvents'].properties['UsedForceSensor'].value.data
  501. FSRinfosec = odmldoc['Setup']['Apparatus']['TargetObject']['FSRSensor']
  502. if 'SG' in trialx_trty:
  503. sgchids = [d.data for d in FSRinfosec.properties['SGChannelIDs'].values]
  504. trialx_chids.append(min(sgchids) if FSRi == 1 else max(sgchids))
  505. else:
  506. pgchids = [d.data for d in FSRinfosec.properties['PGChannelIDs'].values]
  507. trialx_chids.append(min(pgchids) if FSRi == 1 else max(pgchids))
  508. # define time epoch
  509. startidx = event.annotations['trial_event_labels'].index('SR')
  510. stopidx = event.annotations['trial_event_labels'].index('OBB')
  511. sr = event[startidx].rescale(plotting_time_unit)
  512. stop = event[stopidx].rescale(plotting_time_unit) + 0.050 * pq.s
  513. startidx = event.annotations['trial_event_labels'].index('FSRplat-ON')
  514. stopidx = event.annotations['trial_event_labels'].index('FSRplat-OFF')
  515. fplon = event[startidx].rescale(plotting_time_unit)
  516. fploff = event[stopidx].rescale(plotting_time_unit)
  517. # define time epoch trialz
  518. startidx = eventz.annotations['trial_event_labels'].index('FSRplat-ON')
  519. stopidx = eventz.annotations['trial_event_labels'].index('FSRplat-OFF')
  520. fplon_trz = eventz[startidx].rescale(plotting_time_unit)
  521. fploff_trz = eventz[stopidx].rescale(plotting_time_unit)
  522. # plotting grip force and object displacement
  523. for ainp in ainp_signals:
  524. if ainp.annotations['channel_id'] in trialx_chids:
  525. ainp_times = ainp.times.rescale(plotting_time_unit)
  526. mask = (ainp_times > sr) & (ainp_times < stop)
  527. ainp_ampli = stats.zscore(ainp.magnitude[mask])
  528. if ainp.annotations['channel_id'] != 143:
  529. color = 'gray'
  530. else:
  531. color = 'k'
  532. ax5a.plot(ainp_times[mask], ainp_ampli, color=color)
  533. # get force load of this trial for next plot
  534. elif ainp.annotations['channel_id'] == 141:
  535. ainp_times = ainp.times.rescale(plotting_time_unit)
  536. mask = (ainp_times > fplon) & (ainp_times < fploff)
  537. force_av_01 = np.mean(ainp.rescale(behav_signal_unit).magnitude[mask])
  538. # setting layout of grip force and object displacement plot
  539. ax5a.set_title('grip force and object displacement', fontdict_titles)
  540. ax5a.yaxis.set_label_position("left")
  541. ax5a.tick_params(direction='in', length=3, labelsize='xx-small',
  542. labelleft='off', labelright='on')
  543. ax5a.set_ylabel('zscore', fontdict_axis)
  544. # plotting load/pull force of LF and HF trial
  545. force_times = ainp_trialz.times.rescale(plotting_time_unit)
  546. mask = (force_times > fplon_trz) & (force_times < fploff_trz)
  547. force_av_02 = np.mean(ainp_trialz.rescale(behav_signal_unit).magnitude[mask])
  548. bar_width = [0.4, 0.4]
  549. color = [trialx_color, trialz_color]
  550. ax5b.bar([0, 0.6], [force_av_01, force_av_02], bar_width, color=color)
  551. ax5b.set_title('load/pull force', fontdict_titles)
  552. ax5b.set_ylabel(behav_signal_unit.units.dimensionality.latex, fontdict_axis)
  553. ax5b.set_xticks([0.2, 0.8])
  554. ax5b.set_xticklabels([trialx_trty, trialz_trty], fontdict_axis)
  555. ax5b.yaxis.set_label_position("right")
  556. ax5b.tick_params(direction='in', length=3, labelsize='xx-small',
  557. labelleft='off', labelright='on')
  558. # =============================================================================
  559. # PLOT EVENTS across ax5a and add time bar
  560. # =============================================================================
  561. # find trial relevant events
  562. startidx = event.annotations['trial_event_labels'].index('SR')
  563. stopidx = event.annotations['trial_event_labels'].index('OBB')
  564. xticks = []
  565. xticklabels = []
  566. for ev_id, ev in enumerate(event[startidx:stopidx]):
  567. ev_labels = event.annotations['trial_event_labels'][startidx:stopidx + 1]
  568. if ev_labels[ev_id] in ['RW-ON']:
  569. ax5a.axvline(ev.rescale(plotting_time_unit), color='k', zorder=0.5)
  570. xticks.append(ev.rescale(plotting_time_unit))
  571. xticklabels.append(ev_labels[ev_id])
  572. elif ev_labels[ev_id] in ['OT', 'OR', 'DO', 'OBB', 'FSRplat-ON',
  573. 'FSRplat-OFF', 'HEplat-ON']:
  574. ev_color = 'k'
  575. xticks.append(ev.rescale(plotting_time_unit))
  576. xticklabels.append(ev_labels[ev_id])
  577. ax5a.axvline(
  578. ev.rescale(plotting_time_unit), color='k', ls='-.', zorder=0.5)
  579. elif ev_labels[ev_id] == 'HEplat-OFF':
  580. ev_color = 'k'
  581. ax5a.axvline(
  582. ev.rescale(plotting_time_unit), color='k', ls='-.', zorder=0.5)
  583. ax5a.set_xticks(xticks)
  584. ax5a.set_xticklabels(xticklabels, fontdict_axis, rotation=90)
  585. ax5a.tick_params(axis='x', direction='out', length=3, labelsize='xx-small',
  586. labeltop='off', top='off')
  587. ax5a.set_ylim([-2.0, 2.0])
  588. timebar_ypos = ax5a.get_ylim()[0] + np.diff(ax5a.get_ylim())[0] / 10
  589. timebar_labeloffset = np.diff(ax5a.get_ylim())[0] * 0.02
  590. timebar_xmax = xticks[xticklabels.index('RW-ON')] - 0.1 * pq.s
  591. timebar_xmin = timebar_xmax - 0.25 * pq.s
  592. ax5a.plot([timebar_xmin, timebar_xmax], [timebar_ypos, timebar_ypos], '-',
  593. linewidth=3, color='k')
  594. ax5a.text(timebar_xmin + 0.125 * pq.s, timebar_ypos + timebar_labeloffset,
  595. '250 ms', ha='center', va='bottom', size='xx-small', color='k')
  596. # add time window of ax5a to ax4
  597. ax4.axvspan(ax5a.get_xlim()[0], ax5a.get_xlim()[1], facecolor=[0.9, 0.9, 0.9],
  598. zorder=-0.1, ec=None)
  599. # =============================================================================
  600. # SAVE FIGURE
  601. # =============================================================================
  602. fname = 'data_overview_1_%s' % monkey
  603. for file_format in ['eps', 'png', 'pdf']:
  604. fig.savefig(fname + '.%s' % file_format, dpi=400, format=file_format)