123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253 |
- # -*- coding: utf-8 -*-
- import eval_sim_data
- import os
- from sim_data import SimInfo, read_config
- from objsimpy.stim.stim_sequence import read_input_file, InputTrace
- import spike_file
- import numpy as np
- import numpy.testing as npt
- import pylab as plt
- #import pymeas.plot3d
- from mpl_toolkits.axes_grid import AxesGrid
- import colormaps
- from config import SIMDATA_BASE_DIR, MOVIE_DIR
- def main():
- for i in range(26):
- simname = 'taurec_9__2'
- data_dir = os.path.join(SIMDATA_BASE_DIR, 'csim', 'simresults', simname)
- evaluate_single_sim(data_dir=data_dir,
- test_nr=i,
- show=False,
- reevaluate=False)
- def evaluate_single_sim(data_dir=os.path.join(SIMDATA_BASE_DIR, 'csim', 'som02', 'asymgauss__1'),
- stim_dir=MOVIE_DIR,
- test_nr=30,
- reevaluate=False,
- evaluate_spikes=False,
- show=False,
- fig_format='.png',
- ):
- sim_info = SimInfo(os.path.join(data_dir, "Sim.SimInfo"))
- layer_name = "RepresentationLayer"
- input_name = "MovieScanInput0"
- layer_info = [l for l in sim_info.get_layers() if l.name==layer_name][0]
-
- plt.close("all")
-
- if evaluate_spikes:
- spike_file_name = layer_name + "spikes.datTEST"+str(test_nr)+".bin"
- input_file_name = input_name + ".inp.datTEST"+str(test_nr)
- spikes = spike_file.read(os.path.join(data_dir, spike_file_name))
- input = InputTrace(os.path.join(data_dir, input_file_name))
-
- print len(spikes[0])
- #max_time = max(spikes[0]) + 1
- #n_neurons = max(spikes[1]) + 1
- n_neurons = layer_info.LayerDimensions['N']
- #spikes = create_dummy_spikes(n_neurons=n_neurons, max_time_ms=max_time)
- #return
- response_strength_pickle_file = os.path.join(data_dir, spike_file_name + ".response.pickle")
- response_strength = eval_sim_data.calc_response_strength2_PICKLED(response_strength_pickle_file,
- spikes, input, 430,540, n_neurons=n_neurons, reevaluate=reevaluate)
- response_selectivity = calc_response_selectivity(response_strength)
-
- print "response_strength: "
- print response_strength.shape
- plt.plot(response_strength[:,0])
-
- stim_onsets = input.get_stim_onset()
- stim_numbers = [onset[1] for onset in stim_onsets]
-
- if False:
- fig = plt.figure()
- plt.hist(stim_numbers, bins=range(-2,410))
-
- nx = sim_info.get_inputs()[0].NXPara
- ny = sim_info.get_inputs()[0].NYPara
- pickle_file = os.path.join(data_dir, spike_file_name +".pref_xy_sel.pickle")
- preferred_stimuli_x, preferred_stimuli_y, selectivity = calc_preferred_stimuli_from_response_PICKLED(pickle_file, response_strength, nx, ny, reevaluate=reevaluate)
- fig = show_preferred_stimulus_maps(preferred_stimuli_x, preferred_stimuli_y, selectivity, nx, ny)
-
-
- weight_file = os.path.join(data_dir, "conForward0weights.dat" + str(test_nr))
- stim_file = os.path.join(stim_dir, "gauss20x20.idlmov")
- #fig = plt.figure()
- stim_nx = 20
- stim_ny = 20
- pickle_file = os.path.join(data_dir, weight_file + ".pref_stim_sel_inc_map" + ".pickle")
- fname_stimcorr_pickle = os.path.join(data_dir, weight_file + ".stimcorr" + ".pickle")
- pref_x, pref_y, selectivity, inc_sum = eval_sim_data.calc_pref_stim_maps_from_weights_PICKLED(
- pickle_file,
- weight_file,
- stim_file,
- stim_nx,
- stim_ny,
- reevaluate=reevaluate,
- fname_stimcorr_pickle=fname_stimcorr_pickle,
- stimcorr_reeval=reevaluate)
- fig = show_preferred_stimulus_maps(pref_x, pref_y, selectivity, inc_sum, stim_nx, stim_ny)
-
- # patch_sizes_x, patch_sizes_y = eval_sim_data.calc_patch_sizes(weight_file, stim_file, stim_nx, stim_ny)
- if False:
- show_neuron_vs_stimuli(response_strength)
- for x in [10]:
- for y in [10]:
- pass
- show_stimuli_vs_neuron(response_strength, x_0=x, y_0=y)
-
- if False:
- show_total_psth(spikes, input)
- total_stim_response = response_strength.sum(axis=0)
- plt.matshow(total_stim_response.reshape(20,20), cmap=plt.cm.gray)
-
- if False:
- fig = plt.figure()
- response_to_all_stimuli = response_strength.sum(axis=1)
- plt.imshow(response_to_all_stimuli.reshape(100,100), origin='lower', interpolation='nearest', cmap=plt.cm.gray)
-
- if show:
- plt.show()
- save_prefmap(pref_x, stim_nx, 'preferred stimuli x', os.path.join(data_dir, 'prefmap_x_' + str(test_nr) + fig_format))
- save_prefmap(pref_y, stim_ny, 'preferred stimuli y', os.path.join(data_dir, 'prefmap_y_' + str(test_nr) + fig_format))
-
- def create_dummy_spikes(n_neurons=10, max_time_ms=1000, spike_rate_herz=10):
- n_spikes = n_neurons * max_time_ms / (1000*spike_rate_herz)
- spike_times = round(np.linspace(0, max_time_ms-1, n_spikes))
-
- def calc_response_selectivity(response_strength):
- total_mean_response = response_strength.mean()
- no_response = response_strength.max(axis=1) < total_mean_response
- print "no response n=", no_response.sum()
- def show_preferred_stimulus_maps(preferred_stimuli_x,
- preferred_stimuli_y,
- selectivity=None,
- inc_sum=None,
- nx=20,
- ny=20,
- figtext=None):
- fig = plt.figure(figsize=(10,11))
- if figtext is not None:
- plt.figtext(0.5, 0.965, figtext, ha='center', color='black', weight='bold', size='large')
-
- show_preferred_stimuli_x_y(preferred_stimuli_x, preferred_stimuli_y, nx, ny, fig, 421, 422)
- if selectivity is not None:
- show_selectivity_plot(selectivity, fig, 423)
- if inc_sum is not None:
- show_incomming_weights_sum_plot(inc_sum, fig, 424)
- show_preferred_stimuli_histograms(preferred_stimuli_x, preferred_stimuli_y, nx, ny, fig, 413, 414)
- return fig
- def save_prefmap(pref, n_stim, title, fname):
- plt.figure()
- plot_prefmap(pref, n_stim, title)
- plt.savefig(fname)
-
- def plot_prefmap(pref, n_stim, title):
- circular_cm = colormaps.cmap_color_circle()
- norm = plt.matplotlib.colors.Normalize(0, n_stim)
- im = plt.imshow(pref, origin='lower', interpolation='nearest', cmap=circular_cm)
- im.set_norm(norm)
- plt.title(title)
- plt.colorbar()
- def print_y_hist(preferred_stimuli_y):
- y_hist = {}
- for y in preferred_stimuli_y.flat:
- if not y in y_hist:
- y_hist[y] = 1
- else:
- y_hist[y] += 1
- for y in y_hist:
- print "y = " + str(y) + " h=" + str(y_hist[y])
-
- def show_preferred_stimuli_x_y(preferred_stimuli_x, preferred_stimuli_y, nx, ny, fig, pos_x, pos_y):
- fig.canvas.set_window_title("preferred stimuli")
-
- fig.add_subplot(pos_x)
- plot_prefmap(preferred_stimuli_x, nx, "preferred stimuli x")
- fig.add_subplot(pos_y)
- plot_prefmap(preferred_stimuli_y, ny, "preferred stimuli y")
- def show_preferred_stimuli_histograms(preferred_stimuli_x, preferred_stimuli_y, nx, ny, fig, pos_x, pos_y):
- sub = fig.add_subplot(pos_x)
- plt.hist(preferred_stimuli_x.flat, bins=np.arange(-2,20)+0.5, facecolor='green', alpha=0.75)
- plt.title("x histogram")
- plt.xlim([-1,nx])
- sub = fig.add_subplot(pos_y)
- plt.hist(preferred_stimuli_y.flat, bins=np.arange(-2,20)+0.5, facecolor='blue', alpha=0.75)
- plt.title("y histogram")
- plt.xlim([-1,ny])
- def show_selectivity_plot(selectivity, fig, pos):
- sub = fig.add_subplot(pos)
- im_selectivity = plt.imshow(selectivity, origin='lower', interpolation='nearest', cmap=plt.cm.gray)
- plt.title("selectivity")
- norm_0_1 = plt.matplotlib.colors.Normalize(0, 1)
- im_selectivity.set_norm(norm_0_1)
- plt.colorbar()
-
- def show_incomming_weights_sum_plot(inc_sum, fig, pos):
- sub = fig.add_subplot(pos)
- im_inc_sum = plt.imshow(inc_sum, origin='lower', interpolation='nearest', cmap=plt.cm.gray)
- plt.title("incomming weight sum")
- plt.colorbar()
-
- def show_neuron_vs_stimuli(response_strength, n_x=5, n_y=5, x_0=0, y_0=0):
- columns = range(n_x)
- rows = range(n_y)
- fig = plt.figure(figsize=(n_x, n_y))
- grid = AxesGrid(fig, 111, nrows_ncols = (n_x, n_y), axes_pad=0.1)
- title = "neuron_vs_stimuli x0=" + str(x_0) + " y0=" + str(y_0)
- fig.canvas.set_window_title(title)
- for x in columns:
- for y in rows:
- neuron_nr = (x_0 + x) + 100*(y_0 + y)
- sgl_response_map = response_strength[neuron_nr,:].reshape(20,20)
- grid[x+n_x*y].matshow(sgl_response_map, cmap=plt.cm.gray)
- def show_stimuli_vs_neuron(response_strength, n_x=5, n_y=5, x_0=0, y_0=0):
- columns = range(n_x)
- rows = range(n_y)
- show_neuron_vs_stimuli(response_strength)
- fig = plt.figure()
- grid = AxesGrid(fig, 111, nrows_ncols = (n_x, n_y), axes_pad=0.1)
- title = "x0="+str(x_0)+", y0="+str(y_0)
- fig.canvas.set_window_title(title)
- for x in columns:
- for y in rows:
- stim_nr = x_0 + x + 20 * (y_0 + y)
- sgl_stim_response = response_strength[:,stim_nr].reshape(100,100)
- grid[x+n_x*y].matshow(sgl_stim_response, cmap=plt.cm.gray)
- def show_total_psth(spikes, input):
- total_psth = eval_sim_data.calc_total_psth(spikes, input, 1, 1000)
- fig = plt.figure()
- plt.plot(total_psth, 'o-')
- def show_pref_stim_maps_from_weights(weight_file, stim_file, fig, pos1, pos2):
- stim_nx = 20
- stim_ny = 20
- pref_x, pref_y, selectivity = eval_sim_data.calc_pref_stim_maps_from_weights(weight_file, stim_file, stim_nx, stim_ny)
- show_preferred_stimuli_x_y(pref_x, pref_y, stim_nx, stim_ny, fig, pos1, pos2)
- if __name__=="__main__":
- main()
|