123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432 |
- #ifndef UNIVERSAL_GLOBAL_ILLUMINATION_INCLUDED
- #define UNIVERSAL_GLOBAL_ILLUMINATION_INCLUDED
- #include "Packages/com.unity.render-pipelines.core/ShaderLibrary/EntityLighting.hlsl"
- #include "Packages/com.unity.render-pipelines.core/ShaderLibrary/ImageBasedLighting.hlsl"
- #include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/RealtimeLights.hlsl"
- // If lightmap is not defined than we evaluate GI (ambient + probes) from SH
- // We might do it fully or partially in vertex to save shader ALU
- #if !defined(LIGHTMAP_ON)
- // TODO: Controls things like these by exposing SHADER_QUALITY levels (low, medium, high)
- #if defined(SHADER_API_GLES) || !defined(_NORMALMAP)
- // Evaluates SH fully in vertex
- #define EVALUATE_SH_VERTEX
- #elif !SHADER_HINT_NICE_QUALITY
- // Evaluates L2 SH in vertex and L0L1 in pixel
- #define EVALUATE_SH_MIXED
- #endif
- // Otherwise evaluate SH fully per-pixel
- #endif
- // Renamed -> LIGHTMAP_SHADOW_MIXING
- #if !defined(_MIXED_LIGHTING_SUBTRACTIVE) && defined(LIGHTMAP_SHADOW_MIXING) && !defined(SHADOWS_SHADOWMASK)
- #define _MIXED_LIGHTING_SUBTRACTIVE
- #endif
- // Samples SH L0, L1 and L2 terms
- half3 SampleSH(half3 normalWS)
- {
- // LPPV is not supported in Ligthweight Pipeline
- real4 SHCoefficients[7];
- SHCoefficients[0] = unity_SHAr;
- SHCoefficients[1] = unity_SHAg;
- SHCoefficients[2] = unity_SHAb;
- SHCoefficients[3] = unity_SHBr;
- SHCoefficients[4] = unity_SHBg;
- SHCoefficients[5] = unity_SHBb;
- SHCoefficients[6] = unity_SHC;
- return max(half3(0, 0, 0), SampleSH9(SHCoefficients, normalWS));
- }
- // SH Vertex Evaluation. Depending on target SH sampling might be
- // done completely per vertex or mixed with L2 term per vertex and L0, L1
- // per pixel. See SampleSHPixel
- half3 SampleSHVertex(half3 normalWS)
- {
- #if defined(EVALUATE_SH_VERTEX)
- return SampleSH(normalWS);
- #elif defined(EVALUATE_SH_MIXED)
- // no max since this is only L2 contribution
- return SHEvalLinearL2(normalWS, unity_SHBr, unity_SHBg, unity_SHBb, unity_SHC);
- #endif
- // Fully per-pixel. Nothing to compute.
- return half3(0.0, 0.0, 0.0);
- }
- // SH Pixel Evaluation. Depending on target SH sampling might be done
- // mixed or fully in pixel. See SampleSHVertex
- half3 SampleSHPixel(half3 L2Term, half3 normalWS)
- {
- #if defined(EVALUATE_SH_VERTEX)
- return L2Term;
- #elif defined(EVALUATE_SH_MIXED)
- half3 res = SHEvalLinearL0L1(normalWS, unity_SHAr, unity_SHAg, unity_SHAb);
- #ifdef UNITY_COLORSPACE_GAMMA
- res = LinearToSRGB(res);
- #endif
- return max(half3(0, 0, 0), res);
- #endif
- // Default: Evaluate SH fully per-pixel
- return SampleSH(normalWS);
- }
- #if defined(UNITY_DOTS_INSTANCING_ENABLED)
- #define LIGHTMAP_NAME unity_Lightmaps
- #define LIGHTMAP_INDIRECTION_NAME unity_LightmapsInd
- #define LIGHTMAP_SAMPLER_NAME samplerunity_Lightmaps
- #define LIGHTMAP_SAMPLE_EXTRA_ARGS staticLightmapUV, unity_LightmapIndex.x
- #else
- #define LIGHTMAP_NAME unity_Lightmap
- #define LIGHTMAP_INDIRECTION_NAME unity_LightmapInd
- #define LIGHTMAP_SAMPLER_NAME samplerunity_Lightmap
- #define LIGHTMAP_SAMPLE_EXTRA_ARGS staticLightmapUV
- #endif
- // Sample baked and/or realtime lightmap. Non-Direction and Directional if available.
- half3 SampleLightmap(float2 staticLightmapUV, float2 dynamicLightmapUV, half3 normalWS)
- {
- #ifdef UNITY_LIGHTMAP_FULL_HDR
- bool encodedLightmap = false;
- #else
- bool encodedLightmap = true;
- #endif
- half4 decodeInstructions = half4(LIGHTMAP_HDR_MULTIPLIER, LIGHTMAP_HDR_EXPONENT, 0.0h, 0.0h);
- // The shader library sample lightmap functions transform the lightmap uv coords to apply bias and scale.
- // However, universal pipeline already transformed those coords in vertex. We pass half4(1, 1, 0, 0) and
- // the compiler will optimize the transform away.
- half4 transformCoords = half4(1, 1, 0, 0);
- float3 diffuseLighting = 0;
- #if defined(LIGHTMAP_ON) && defined(DIRLIGHTMAP_COMBINED)
- diffuseLighting = SampleDirectionalLightmap(TEXTURE2D_LIGHTMAP_ARGS(LIGHTMAP_NAME, LIGHTMAP_SAMPLER_NAME),
- TEXTURE2D_LIGHTMAP_ARGS(LIGHTMAP_INDIRECTION_NAME, LIGHTMAP_SAMPLER_NAME),
- LIGHTMAP_SAMPLE_EXTRA_ARGS, transformCoords, normalWS, encodedLightmap, decodeInstructions);
- #elif defined(LIGHTMAP_ON)
- diffuseLighting = SampleSingleLightmap(TEXTURE2D_LIGHTMAP_ARGS(LIGHTMAP_NAME, LIGHTMAP_SAMPLER_NAME), LIGHTMAP_SAMPLE_EXTRA_ARGS, transformCoords, encodedLightmap, decodeInstructions);
- #endif
- #if defined(DYNAMICLIGHTMAP_ON) && defined(DIRLIGHTMAP_COMBINED)
- diffuseLighting += SampleDirectionalLightmap(TEXTURE2D_ARGS(unity_DynamicLightmap, samplerunity_DynamicLightmap),
- TEXTURE2D_ARGS(unity_DynamicDirectionality, samplerunity_DynamicLightmap),
- dynamicLightmapUV, transformCoords, normalWS, false, decodeInstructions);
- #elif defined(DYNAMICLIGHTMAP_ON)
- diffuseLighting += SampleSingleLightmap(TEXTURE2D_ARGS(unity_DynamicLightmap, samplerunity_DynamicLightmap),
- dynamicLightmapUV, transformCoords, false, decodeInstructions);
- #endif
- return diffuseLighting;
- }
- // Legacy version of SampleLightmap where Realtime GI is not supported.
- half3 SampleLightmap(float2 staticLightmapUV, half3 normalWS)
- {
- float2 dummyDynamicLightmapUV = float2(0,0);
- half3 result = SampleLightmap(staticLightmapUV, dummyDynamicLightmapUV, normalWS);
- return result;
- }
- // We either sample GI from baked lightmap or from probes.
- // If lightmap: sampleData.xy = lightmapUV
- // If probe: sampleData.xyz = L2 SH terms
- #if defined(LIGHTMAP_ON) && defined(DYNAMICLIGHTMAP_ON)
- #define SAMPLE_GI(staticLmName, dynamicLmName, shName, normalWSName) SampleLightmap(staticLmName, dynamicLmName, normalWSName)
- #elif defined(DYNAMICLIGHTMAP_ON)
- #define SAMPLE_GI(staticLmName, dynamicLmName, shName, normalWSName) SampleLightmap(0, dynamicLmName, normalWSName)
- #elif defined(LIGHTMAP_ON)
- #define SAMPLE_GI(staticLmName, shName, normalWSName) SampleLightmap(staticLmName, 0, normalWSName)
- #else
- #define SAMPLE_GI(staticLmName, shName, normalWSName) SampleSHPixel(shName, normalWSName)
- #endif
- half3 BoxProjectedCubemapDirection(half3 reflectionWS, float3 positionWS, float4 cubemapPositionWS, float4 boxMin, float4 boxMax)
- {
- // Is this probe using box projection?
- if (cubemapPositionWS.w > 0.0f)
- {
- float3 boxMinMax = (reflectionWS > 0.0f) ? boxMax.xyz : boxMin.xyz;
- half3 rbMinMax = half3(boxMinMax - positionWS) / reflectionWS;
- half fa = half(min(min(rbMinMax.x, rbMinMax.y), rbMinMax.z));
- half3 worldPos = half3(positionWS - cubemapPositionWS.xyz);
- half3 result = worldPos + reflectionWS * fa;
- return result;
- }
- else
- {
- return reflectionWS;
- }
- }
- float CalculateProbeWeight(float3 positionWS, float4 probeBoxMin, float4 probeBoxMax)
- {
- float blendDistance = probeBoxMax.w;
- float3 weightDir = min(positionWS - probeBoxMin.xyz, probeBoxMax.xyz - positionWS) / blendDistance;
- return saturate(min(weightDir.x, min(weightDir.y, weightDir.z)));
- }
- half CalculateProbeVolumeSqrMagnitude(float4 probeBoxMin, float4 probeBoxMax)
- {
- half3 maxToMin = half3(probeBoxMax.xyz - probeBoxMin.xyz);
- return dot(maxToMin, maxToMin);
- }
- half3 CalculateIrradianceFromReflectionProbes(half3 reflectVector, float3 positionWS, half perceptualRoughness)
- {
- half probe0Volume = CalculateProbeVolumeSqrMagnitude(unity_SpecCube0_BoxMin, unity_SpecCube0_BoxMax);
- half probe1Volume = CalculateProbeVolumeSqrMagnitude(unity_SpecCube1_BoxMin, unity_SpecCube1_BoxMax);
- half volumeDiff = probe0Volume - probe1Volume;
- float importanceSign = unity_SpecCube1_BoxMin.w;
- // A probe is dominant if its importance is higher
- // Or have equal importance but smaller volume
- bool probe0Dominant = importanceSign > 0.0f || (importanceSign == 0.0f && volumeDiff < -0.0001h);
- bool probe1Dominant = importanceSign < 0.0f || (importanceSign == 0.0f && volumeDiff > 0.0001h);
- float desiredWeightProbe0 = CalculateProbeWeight(positionWS, unity_SpecCube0_BoxMin, unity_SpecCube0_BoxMax);
- float desiredWeightProbe1 = CalculateProbeWeight(positionWS, unity_SpecCube1_BoxMin, unity_SpecCube1_BoxMax);
- // Subject the probes weight if the other probe is dominant
- float weightProbe0 = probe1Dominant ? min(desiredWeightProbe0, 1.0f - desiredWeightProbe1) : desiredWeightProbe0;
- float weightProbe1 = probe0Dominant ? min(desiredWeightProbe1, 1.0f - desiredWeightProbe0) : desiredWeightProbe1;
- float totalWeight = weightProbe0 + weightProbe1;
- // If either probe 0 or probe 1 is dominant the sum of weights is guaranteed to be 1.
- // If neither is dominant this is not guaranteed - only normalize weights if totalweight exceeds 1.
- weightProbe0 /= max(totalWeight, 1.0f);
- weightProbe1 /= max(totalWeight, 1.0f);
- half3 irradiance = half3(0.0h, 0.0h, 0.0h);
- half3 originalReflectVector = reflectVector;
- half mip = PerceptualRoughnessToMipmapLevel(perceptualRoughness);
- // Sample the first reflection probe
- if (weightProbe0 > 0.01f)
- {
- #ifdef _REFLECTION_PROBE_BOX_PROJECTION
- reflectVector = BoxProjectedCubemapDirection(originalReflectVector, positionWS, unity_SpecCube0_ProbePosition, unity_SpecCube0_BoxMin, unity_SpecCube0_BoxMax);
- #endif // _REFLECTION_PROBE_BOX_PROJECTION
- half4 encodedIrradiance = half4(SAMPLE_TEXTURECUBE_LOD(unity_SpecCube0, samplerunity_SpecCube0, reflectVector, mip));
- #if defined(UNITY_USE_NATIVE_HDR)
- irradiance += weightProbe0 * encodedIrradiance.rbg;
- #else
- irradiance += weightProbe0 * DecodeHDREnvironment(encodedIrradiance, unity_SpecCube0_HDR);
- #endif // UNITY_USE_NATIVE_HDR
- }
- // Sample the second reflection probe
- if (weightProbe1 > 0.01f)
- {
- #ifdef _REFLECTION_PROBE_BOX_PROJECTION
- reflectVector = BoxProjectedCubemapDirection(originalReflectVector, positionWS, unity_SpecCube1_ProbePosition, unity_SpecCube1_BoxMin, unity_SpecCube1_BoxMax);
- #endif // _REFLECTION_PROBE_BOX_PROJECTION
- half4 encodedIrradiance = half4(SAMPLE_TEXTURECUBE_LOD(unity_SpecCube1, samplerunity_SpecCube1, reflectVector, mip));
- #if defined(UNITY_USE_NATIVE_HDR) || defined(UNITY_DOTS_INSTANCING_ENABLED)
- irradiance += weightProbe1 * encodedIrradiance.rbg;
- #else
- irradiance += weightProbe1 * DecodeHDREnvironment(encodedIrradiance, unity_SpecCube1_HDR);
- #endif // UNITY_USE_NATIVE_HDR || UNITY_DOTS_INSTANCING_ENABLED
- }
- // Use any remaining weight to blend to environment reflection cube map
- if (totalWeight < 0.99f)
- {
- half4 encodedIrradiance = half4(SAMPLE_TEXTURECUBE_LOD(_GlossyEnvironmentCubeMap, sampler_GlossyEnvironmentCubeMap, originalReflectVector, mip));
- #if defined(UNITY_USE_NATIVE_HDR) || defined(UNITY_DOTS_INSTANCING_ENABLED)
- irradiance += (1.0f - totalWeight) * encodedIrradiance.rbg;
- #else
- irradiance += (1.0f - totalWeight) * DecodeHDREnvironment(encodedIrradiance, _GlossyEnvironmentCubeMap_HDR);
- #endif // UNITY_USE_NATIVE_HDR || UNITY_DOTS_INSTANCING_ENABLED
- }
- return irradiance;
- }
- half3 GlossyEnvironmentReflection(half3 reflectVector, float3 positionWS, half perceptualRoughness, half occlusion)
- {
- #if !defined(_ENVIRONMENTREFLECTIONS_OFF)
- half3 irradiance;
- #ifdef _REFLECTION_PROBE_BLENDING
- irradiance = CalculateIrradianceFromReflectionProbes(reflectVector, positionWS, perceptualRoughness);
- #else
- #ifdef _REFLECTION_PROBE_BOX_PROJECTION
- reflectVector = BoxProjectedCubemapDirection(reflectVector, positionWS, unity_SpecCube0_ProbePosition, unity_SpecCube0_BoxMin, unity_SpecCube0_BoxMax);
- #endif // _REFLECTION_PROBE_BOX_PROJECTION
- half mip = PerceptualRoughnessToMipmapLevel(perceptualRoughness);
- half4 encodedIrradiance = half4(SAMPLE_TEXTURECUBE_LOD(unity_SpecCube0, samplerunity_SpecCube0, reflectVector, mip));
- #if defined(UNITY_USE_NATIVE_HDR)
- irradiance = encodedIrradiance.rgb;
- #else
- irradiance = DecodeHDREnvironment(encodedIrradiance, unity_SpecCube0_HDR);
- #endif // UNITY_USE_NATIVE_HDR
- #endif // _REFLECTION_PROBE_BLENDING
- return irradiance * occlusion;
- #else
- return _GlossyEnvironmentColor.rgb * occlusion;
- #endif // _ENVIRONMENTREFLECTIONS_OFF
- }
- half3 GlossyEnvironmentReflection(half3 reflectVector, half perceptualRoughness, half occlusion)
- {
- #if !defined(_ENVIRONMENTREFLECTIONS_OFF)
- half3 irradiance;
- half mip = PerceptualRoughnessToMipmapLevel(perceptualRoughness);
- half4 encodedIrradiance = half4(SAMPLE_TEXTURECUBE_LOD(unity_SpecCube0, samplerunity_SpecCube0, reflectVector, mip));
- #if defined(UNITY_USE_NATIVE_HDR)
- irradiance = encodedIrradiance.rgb;
- #else
- irradiance = DecodeHDREnvironment(encodedIrradiance, unity_SpecCube0_HDR);
- #endif // UNITY_USE_NATIVE_HDR
- return irradiance * occlusion;
- #else
- return _GlossyEnvironmentColor.rgb * occlusion;
- #endif // _ENVIRONMENTREFLECTIONS_OFF
- }
- half3 SubtractDirectMainLightFromLightmap(Light mainLight, half3 normalWS, half3 bakedGI)
- {
- // Let's try to make realtime shadows work on a surface, which already contains
- // baked lighting and shadowing from the main sun light.
- // Summary:
- // 1) Calculate possible value in the shadow by subtracting estimated light contribution from the places occluded by realtime shadow:
- // a) preserves other baked lights and light bounces
- // b) eliminates shadows on the geometry facing away from the light
- // 2) Clamp against user defined ShadowColor.
- // 3) Pick original lightmap value, if it is the darkest one.
- // 1) Gives good estimate of illumination as if light would've been shadowed during the bake.
- // We only subtract the main direction light. This is accounted in the contribution term below.
- half shadowStrength = GetMainLightShadowStrength();
- half contributionTerm = saturate(dot(mainLight.direction, normalWS));
- half3 lambert = mainLight.color * contributionTerm;
- half3 estimatedLightContributionMaskedByInverseOfShadow = lambert * (1.0 - mainLight.shadowAttenuation);
- half3 subtractedLightmap = bakedGI - estimatedLightContributionMaskedByInverseOfShadow;
- // 2) Allows user to define overall ambient of the scene and control situation when realtime shadow becomes too dark.
- half3 realtimeShadow = max(subtractedLightmap, _SubtractiveShadowColor.xyz);
- realtimeShadow = lerp(bakedGI, realtimeShadow, shadowStrength);
- // 3) Pick darkest color
- return min(bakedGI, realtimeShadow);
- }
- half3 GlobalIllumination(BRDFData brdfData, BRDFData brdfDataClearCoat, float clearCoatMask,
- half3 bakedGI, half occlusion, float3 positionWS,
- half3 normalWS, half3 viewDirectionWS)
- {
- half3 reflectVector = reflect(-viewDirectionWS, normalWS);
- half NoV = saturate(dot(normalWS, viewDirectionWS));
- half fresnelTerm = Pow4(1.0 - NoV);
- half3 indirectDiffuse = bakedGI;
- half3 indirectSpecular = GlossyEnvironmentReflection(reflectVector, positionWS, brdfData.perceptualRoughness, 1.0h);
- half3 color = EnvironmentBRDF(brdfData, indirectDiffuse, indirectSpecular, fresnelTerm);
- if (IsOnlyAOLightingFeatureEnabled())
- {
- color = half3(1,1,1); // "Base white" for AO debug lighting mode
- }
- #if defined(_CLEARCOAT) || defined(_CLEARCOATMAP)
- half3 coatIndirectSpecular = GlossyEnvironmentReflection(reflectVector, positionWS, brdfDataClearCoat.perceptualRoughness, 1.0h);
- // TODO: "grazing term" causes problems on full roughness
- half3 coatColor = EnvironmentBRDFClearCoat(brdfDataClearCoat, clearCoatMask, coatIndirectSpecular, fresnelTerm);
- // Blend with base layer using khronos glTF recommended way using NoV
- // Smooth surface & "ambiguous" lighting
- // NOTE: fresnelTerm (above) is pow4 instead of pow5, but should be ok as blend weight.
- half coatFresnel = kDielectricSpec.x + kDielectricSpec.a * fresnelTerm;
- return (color * (1.0 - coatFresnel * clearCoatMask) + coatColor) * occlusion;
- #else
- return color * occlusion;
- #endif
- }
- // Backwards compatiblity
- half3 GlobalIllumination(BRDFData brdfData, half3 bakedGI, half occlusion, float3 positionWS, half3 normalWS, half3 viewDirectionWS)
- {
- const BRDFData noClearCoat = (BRDFData)0;
- return GlobalIllumination(brdfData, noClearCoat, 0.0, bakedGI, occlusion, positionWS, normalWS, viewDirectionWS);
- }
- half3 GlobalIllumination(BRDFData brdfData, BRDFData brdfDataClearCoat, float clearCoatMask,
- half3 bakedGI, half occlusion,
- half3 normalWS, half3 viewDirectionWS)
- {
- half3 reflectVector = reflect(-viewDirectionWS, normalWS);
- half NoV = saturate(dot(normalWS, viewDirectionWS));
- half fresnelTerm = Pow4(1.0 - NoV);
- half3 indirectDiffuse = bakedGI;
- half3 indirectSpecular = GlossyEnvironmentReflection(reflectVector, brdfData.perceptualRoughness, half(1.0));
- half3 color = EnvironmentBRDF(brdfData, indirectDiffuse, indirectSpecular, fresnelTerm);
- #if defined(_CLEARCOAT) || defined(_CLEARCOATMAP)
- half3 coatIndirectSpecular = GlossyEnvironmentReflection(reflectVector, brdfDataClearCoat.perceptualRoughness, half(1.0));
- // TODO: "grazing term" causes problems on full roughness
- half3 coatColor = EnvironmentBRDFClearCoat(brdfDataClearCoat, clearCoatMask, coatIndirectSpecular, fresnelTerm);
- // Blend with base layer using khronos glTF recommended way using NoV
- // Smooth surface & "ambiguous" lighting
- // NOTE: fresnelTerm (above) is pow4 instead of pow5, but should be ok as blend weight.
- half coatFresnel = kDielectricSpec.x + kDielectricSpec.a * fresnelTerm;
- return (color * (1.0 - coatFresnel * clearCoatMask) + coatColor) * occlusion;
- #else
- return color * occlusion;
- #endif
- }
- half3 GlobalIllumination(BRDFData brdfData, half3 bakedGI, half occlusion, half3 normalWS, half3 viewDirectionWS)
- {
- const BRDFData noClearCoat = (BRDFData)0;
- return GlobalIllumination(brdfData, noClearCoat, 0.0, bakedGI, occlusion, normalWS, viewDirectionWS);
- }
- void MixRealtimeAndBakedGI(inout Light light, half3 normalWS, inout half3 bakedGI)
- {
- #if defined(LIGHTMAP_ON) && defined(_MIXED_LIGHTING_SUBTRACTIVE)
- bakedGI = SubtractDirectMainLightFromLightmap(light, normalWS, bakedGI);
- #endif
- }
- // Backwards compatibility
- void MixRealtimeAndBakedGI(inout Light light, half3 normalWS, inout half3 bakedGI, half4 shadowMask)
- {
- MixRealtimeAndBakedGI(light, normalWS, bakedGI);
- }
- void MixRealtimeAndBakedGI(inout Light light, half3 normalWS, inout half3 bakedGI, AmbientOcclusionFactor aoFactor)
- {
- if (IsLightingFeatureEnabled(DEBUGLIGHTINGFEATUREFLAGS_AMBIENT_OCCLUSION))
- {
- bakedGI *= aoFactor.indirectAmbientOcclusion;
- }
- MixRealtimeAndBakedGI(light, normalWS, bakedGI);
- }
- #endif
|