123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370 |
- #ifndef UNITY_COMMON_MATERIAL_INCLUDED
- #define UNITY_COMMON_MATERIAL_INCLUDED
- #if SHADER_API_MOBILE || SHADER_API_GLES || SHADER_API_GLES3
- #pragma warning (disable : 3205) // conversion of larger type to smaller
- #endif
- //-----------------------------------------------------------------------------
- // Define constants
- //-----------------------------------------------------------------------------
- #define DEFAULT_SPECULAR_VALUE 0.04
- // Following constant are used when we use clear coat properties that can't be store in the Gbuffer (with the Lit shader)
- #define CLEAR_COAT_IOR 1.5
- #define CLEAR_COAT_IETA (1.0 / CLEAR_COAT_IOR) // IETA is the inverse eta which is the ratio of IOR of two interface
- #define CLEAR_COAT_F0 0.04 // IORToFresnel0(CLEAR_COAT_IOR)
- #define CLEAR_COAT_ROUGHNESS 0.01
- #define CLEAR_COAT_PERCEPTUAL_SMOOTHNESS RoughnessToPerceptualSmoothness(CLEAR_COAT_ROUGHNESS)
- #define CLEAR_COAT_PERCEPTUAL_ROUGHNESS RoughnessToPerceptualRoughness(CLEAR_COAT_ROUGHNESS)
- #define CLEAR_COAT_SSR_PERCEPTUAL_ROUGHNESS 0.0 // For screen space reflections and ray traced reflections, we want to have a purely smooth surface to map the envrionement light behavior
- //-----------------------------------------------------------------------------
- // Helper functions for roughness
- //-----------------------------------------------------------------------------
- #ifndef BUILTIN_TARGET_API
- real PerceptualRoughnessToRoughness(real perceptualRoughness)
- {
- return perceptualRoughness * perceptualRoughness;
- }
- real RoughnessToPerceptualRoughness(real roughness)
- {
- return sqrt(roughness);
- }
- #endif
- real RoughnessToPerceptualSmoothness(real roughness)
- {
- return 1.0 - sqrt(roughness);
- }
- real PerceptualSmoothnessToRoughness(real perceptualSmoothness)
- {
- return (1.0 - perceptualSmoothness) * (1.0 - perceptualSmoothness);
- }
- real PerceptualSmoothnessToPerceptualRoughness(real perceptualSmoothness)
- {
- return (1.0 - perceptualSmoothness);
- }
- // Beckmann to GGX roughness "conversions":
- //
- // As also noted for NormalVariance in this file, Beckmann microfacet models use a Gaussian distribution of slopes
- // and the roughness parameter absorbs constants in the canonical Gaussian formula and is thus not exactly the variance.
- // The relationship is:
- //
- // roughnessBeckmann^2 = 2 variance (where variance is usually denoted sigma^2 but some comp gfx papers use sigma for
- // variance or even sigma for roughness itself.)
- //
- // Microfacet BRDF models with a GGX NDF implies a Cauchy distribution of slopes (also corresponds to the distribution
- // of slopes on an ellipsoid). Cauchy distributions don't have second moments, which precludes having a variance,
- // but chopping the far tails of GGX and keeping 94% of the mass yields a distribution with a defined variance where
- // we can then relate the roughness of GGX to a variance (see Ray Tracing Gems p153 - the reference is wrong though,
- // the Conty paper doesn't mention this at all, but it can be found in stats using quantiles):
- //
- // roughnessGGX^2 = variance / 2
- //
- // From the two previous, if we want roughly comparable variances of slopes between a Beckmann and a GGX NDF, we can
- // equate the variances and get a conversion of their roughnesses:
- //
- // 2 * roughnessGGX^2 = roughnessBeckmann^2 / 2 <==>
- // 4 * roughnessGGX^2 = roughnessBeckmann^2 <==>
- // 2 * roughnessGGX = roughnessBeckmann
- //
- // (Note that the Ray Tracing Gems paper makes an error on p154 writing sqrt(2) * roughnessGGX = roughnessBeckmann;
- // Their validation study using ray tracing and LEADR - which looks good - is for the *variance to GGX* roughness mapping,
- // not the Beckmann to GGX roughness "conversion")
- real BeckmannRoughnessToGGXRoughness(real roughnessBeckmann)
- {
- return 0.5 * roughnessBeckmann;
- }
- real PerceptualRoughnessBeckmannToGGX(real perceptualRoughnessBeckmann)
- {
- //sqrt(a_ggx) = sqrt(0.5) sqrt(a_beckmann)
- return sqrt(0.5) * perceptualRoughnessBeckmann;
- }
- real GGXRoughnessToBeckmannRoughness(real roughnessGGX)
- {
- return 2.0 * roughnessGGX;
- }
- real PerceptualRoughnessToPerceptualSmoothness(real perceptualRoughness)
- {
- return (1.0 - perceptualRoughness);
- }
- // WARNING: this has been deprecated, and should not be used!
- // Using roughness values of 0 leads to INFs and NANs. The only sensible place to use the roughness
- // value of 0 is IBL, so we do not modify the perceptual roughness which is used to select the MIP map level.
- // Note: making the constant too small results in aliasing.
- real ClampRoughnessForAnalyticalLights(real roughness)
- {
- return max(roughness, 1.0 / 1024.0);
- }
- // Given that the GGX model is invalid for a roughness of 0.0. This values have been experimentally evaluated to be the limit for the roughness
- // for integration.
- real ClampRoughnessForRaytracing(real roughness)
- {
- return max(roughness, 0.001225);
- }
- real ClampPerceptualRoughnessForRaytracing(real perceptualRoughness)
- {
- return max(perceptualRoughness, 0.035);
- }
- void ConvertValueAnisotropyToValueTB(real value, real anisotropy, out real valueT, out real valueB)
- {
- // Use the parametrization of Sony Imageworks.
- // Ref: Revisiting Physically Based Shading at Imageworks, p. 15.
- valueT = value * (1 + anisotropy);
- valueB = value * (1 - anisotropy);
- }
- void ConvertAnisotropyToRoughness(real perceptualRoughness, real anisotropy, out real roughnessT, out real roughnessB)
- {
- real roughness = PerceptualRoughnessToRoughness(perceptualRoughness);
- ConvertValueAnisotropyToValueTB(roughness, anisotropy, roughnessT, roughnessB);
- }
- void ConvertRoughnessTAndAnisotropyToRoughness(real roughnessT, real anisotropy, out real roughness)
- {
- roughness = roughnessT / (1 + anisotropy);
- }
- real ConvertRoughnessTAndBToRoughness(real roughnessT, real roughnessB)
- {
- return 0.5 * (roughnessT + roughnessB);
- }
- void ConvertRoughnessToAnisotropy(real roughnessT, real roughnessB, out real anisotropy)
- {
- anisotropy = ((roughnessT - roughnessB) / max(roughnessT + roughnessB, 0.0001));
- }
- // WARNING: this has been deprecated, and should not be used!
- // Same as ConvertAnisotropyToRoughness but
- // roughnessT and roughnessB are clamped, and are meant to be used with punctual and directional lights.
- void ConvertAnisotropyToClampRoughness(real perceptualRoughness, real anisotropy, out real roughnessT, out real roughnessB)
- {
- ConvertAnisotropyToRoughness(perceptualRoughness, anisotropy, roughnessT, roughnessB);
- roughnessT = ClampRoughnessForAnalyticalLights(roughnessT);
- roughnessB = ClampRoughnessForAnalyticalLights(roughnessB);
- }
- // Use with stack BRDF (clear coat / coat) - This only used same equation to convert from Blinn-Phong spec power to Beckmann roughness
- real RoughnessToVariance(real roughness)
- {
- return 2.0 / Sq(roughness) - 2.0;
- }
- real VarianceToRoughness(real variance)
- {
- return sqrt(2.0 / (variance + 2.0));
- }
- // Normal Map Filtering - This must match HDRP\Editor\AssetProcessors\NormalMapFilteringTexturePostprocessor.cs - highestVarianceAllowed (TODO: Move in core)
- #define NORMALMAP_HIGHEST_VARIANCE 0.03125
- float DecodeVariance(float gradientW)
- {
- return gradientW * NORMALMAP_HIGHEST_VARIANCE;
- }
- // Return modified perceptualSmoothness based on provided variance (get from GeometricNormalVariance + TextureNormalVariance)
- float NormalFiltering(float perceptualSmoothness, float variance, float threshold)
- {
- float roughness = PerceptualSmoothnessToRoughness(perceptualSmoothness);
- // Ref: Geometry into Shading - http://graphics.pixar.com/library/BumpRoughness/paper.pdf - equation (3)
- float squaredRoughness = saturate(roughness * roughness + min(2.0 * variance, threshold * threshold)); // threshold can be really low, square the value for easier control
- return RoughnessToPerceptualSmoothness(sqrt(squaredRoughness));
- }
- float ProjectedSpaceNormalFiltering(float perceptualSmoothness, float variance, float threshold)
- {
- float roughness = PerceptualSmoothnessToRoughness(perceptualSmoothness);
- // Ref: Stable Geometric Specular Antialiasing with Projected-Space NDF Filtering - https://yusuketokuyoshi.com/papers/2021/Tokuyoshi2021SAA.pdf
- float squaredRoughness = roughness * roughness;
- float projRoughness2 = squaredRoughness / (1.0 - squaredRoughness);
- float filteredProjRoughness2 = saturate(projRoughness2 + min(2.0 * variance, threshold * threshold));
- squaredRoughness = filteredProjRoughness2 / (filteredProjRoughness2 + 1.0f);
- return RoughnessToPerceptualSmoothness(sqrt(squaredRoughness));
- }
- // Reference: Error Reduction and Simplification for Shading Anti-Aliasing
- // Specular antialiasing for geometry-induced normal (and NDF) variations: Tokuyoshi / Kaplanyan et al.'s method.
- // This is the deferred approximation, which works reasonably well so we keep it for forward too for now.
- // screenSpaceVariance should be at most 0.5^2 = 0.25, as that corresponds to considering
- // a gaussian pixel reconstruction kernel with a standard deviation of 0.5 of a pixel, thus 2 sigma covering the whole pixel.
- float GeometricNormalVariance(float3 geometricNormalWS, float screenSpaceVariance)
- {
- float3 deltaU = ddx(geometricNormalWS);
- float3 deltaV = ddy(geometricNormalWS);
- return screenSpaceVariance * (dot(deltaU, deltaU) + dot(deltaV, deltaV));
- }
- // Return modified perceptualSmoothness
- float GeometricNormalFiltering(float perceptualSmoothness, float3 geometricNormalWS, float screenSpaceVariance, float threshold)
- {
- float variance = GeometricNormalVariance(geometricNormalWS, screenSpaceVariance);
- return NormalFiltering(perceptualSmoothness, variance, threshold);
- }
- float ProjectedSpaceGeometricNormalFiltering(float perceptualSmoothness, float3 geometricNormalWS, float screenSpaceVariance, float threshold)
- {
- float variance = GeometricNormalVariance(geometricNormalWS, screenSpaceVariance);
- return ProjectedSpaceNormalFiltering(perceptualSmoothness, variance, threshold);
- }
- // Normal map filtering based on The Order : 1886 SIGGRAPH course notes implementation.
- // Basically Toksvig with an intermediate single vMF lobe induced dispersion (Han et al. 2007)
- //
- // This returns 2 times the variance of the induced "mesoNDF" lobe (an NDF induced from a section of
- // the normal map) from the level 0 mip normals covered by the "current texel".
- //
- // avgNormalLength gives the dispersion information for the covered normals.
- //
- // Note that hw filtering on the normal map should be trilinear to be conservative, while anisotropic
- // risk underfiltering. Could also compute average normal on the fly with a proper normal map format,
- // like Toksvig.
- float TextureNormalVariance(float avgNormalLength)
- {
- float variance = 0.0;
- if (avgNormalLength < 1.0)
- {
- float avgNormLen2 = avgNormalLength * avgNormalLength;
- float kappa = (3.0 * avgNormalLength - avgNormalLength * avgNormLen2) / (1.0 - avgNormLen2);
- // Ref: Frequency Domain Normal Map Filtering - http://www.cs.columbia.edu/cg/normalmap/normalmap.pdf (equation 21)
- // Relationship between between the standard deviation of a Gaussian distribution and the roughness parameter of a Beckmann distribution.
- // is roughness^2 = 2 variance (note: variance is sigma^2)
- // (Ref: Filtering Distributions of Normals for Shading Antialiasing - Equation just after (14))
- // Relationship between gaussian lobe and vMF lobe is 2 * variance = 1 / (2 * kappa) = roughness^2
- // (Equation 36 of Normal map filtering based on The Order : 1886 SIGGRAPH course notes implementation).
- // So to get variance we must use variance = 1 / (4 * kappa)
- variance = 0.25 / kappa;
- }
- return variance;
- }
- float TextureNormalFiltering(float perceptualSmoothness, float avgNormalLength, float threshold)
- {
- float variance = TextureNormalVariance(avgNormalLength);
- return NormalFiltering(perceptualSmoothness, variance, threshold);
- }
- // ----------------------------------------------------------------------------
- // Helper for Disney parametrization
- // ----------------------------------------------------------------------------
- float3 ComputeDiffuseColor(float3 baseColor, float metallic)
- {
- return baseColor * (1.0 - metallic);
- }
- float3 ComputeFresnel0(float3 baseColor, float metallic, float dielectricF0)
- {
- return lerp(dielectricF0.xxx, baseColor, metallic);
- }
- // ----------------------------------------------------------------------------
- // Helper for normal blending
- // ----------------------------------------------------------------------------
- // ref https://www.gamedev.net/topic/678043-how-to-blend-world-space-normals/#entry5287707
- // assume compositing in world space
- // Note: Using vtxNormal = real3(0, 0, 1) give the BlendNormalRNM formulation.
- // TODO: Untested
- real3 BlendNormalWorldspaceRNM(real3 n1, real3 n2, real3 vtxNormal)
- {
- // Build the shortest-arc quaternion
- real4 q = real4(cross(vtxNormal, n2), dot(vtxNormal, n2) + 1.0) / sqrt(2.0 * (dot(vtxNormal, n2) + 1));
- // Rotate the normal
- return n1 * (q.w * q.w - dot(q.xyz, q.xyz)) + 2 * q.xyz * dot(q.xyz, n1) + 2 * q.w * cross(q.xyz, n1);
- }
- // ref http://blog.selfshadow.com/publications/blending-in-detail/
- // ref https://gist.github.com/selfshadow/8048308
- // Reoriented Normal Mapping
- // Blending when n1 and n2 are already 'unpacked' and normalised
- // assume compositing in tangent space
- real3 BlendNormalRNM(real3 n1, real3 n2)
- {
- real3 t = n1.xyz + real3(0.0, 0.0, 1.0);
- real3 u = n2.xyz * real3(-1.0, -1.0, 1.0);
- real3 r = (t / t.z) * dot(t, u) - u;
- return r;
- }
- // assume compositing in tangent space
- real3 BlendNormal(real3 n1, real3 n2)
- {
- return normalize(real3(n1.xy * n2.z + n2.xy * n1.z, n1.z * n2.z));
- }
- // ----------------------------------------------------------------------------
- // Helper for triplanar
- // ----------------------------------------------------------------------------
- // Ref: http://http.developer.nvidia.com/GPUGems3/gpugems3_ch01.html / http://www.slideshare.net/icastano/cascades-demo-secrets
- real3 ComputeTriplanarWeights(real3 normal)
- {
- // Determine the blend weights for the 3 planar projections.
- real3 blendWeights = abs(normal);
- // Tighten up the blending zone
- blendWeights = (blendWeights - 0.2);
- blendWeights = blendWeights * blendWeights * blendWeights; // pow(blendWeights, 3);
- // Force weights to sum to 1.0 (very important!)
- blendWeights = max(blendWeights, real3(0.0, 0.0, 0.0));
- blendWeights /= dot(blendWeights, 1.0);
- return blendWeights;
- }
- // Planar/Triplanar convention for Unity in world space
- void GetTriplanarCoordinate(float3 position, out float2 uvXZ, out float2 uvXY, out float2 uvZY)
- {
- // Caution: This must follow the same rule as what is use for SurfaceGradient triplanar
- // TODO: Currently the normal mapping looks wrong without SURFACE_GRADIENT option because we don't handle corretly the tangent space
- uvXZ = float2(position.x, position.z);
- uvXY = float2(position.x, position.y);
- uvZY = float2(position.z, position.y);
- }
- // ----------------------------------------------------------------------------
- // Helper for detail map operation
- // ----------------------------------------------------------------------------
- real LerpWhiteTo(real b, real t)
- {
- real oneMinusT = 1.0 - t;
- return oneMinusT + b * t;
- }
- #ifndef BUILTIN_TARGET_API
- real3 LerpWhiteTo(real3 b, real t)
- {
- real oneMinusT = 1.0 - t;
- return real3(oneMinusT, oneMinusT, oneMinusT) + b * t;
- }
- #endif
- #if SHADER_API_MOBILE || SHADER_API_GLES || SHADER_API_GLES3
- #pragma warning (enable : 3205) // conversion of larger type to smaller
- #endif
- #endif // UNITY_COMMON_MATERIAL_INCLUDED
|