123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- import brian2 as br
- from brian2 import umetre, ufarad, cm, siemens, mV, msiemens, nS, ms
- # Hodgkin Huxley model from Brian2 documentation
- # The model
- area = 20000 * umetre ** 2
- hodgkin_huxley_params = {
- "Cm": 1 * ufarad * cm ** -2 * area,
- "gl": 5e-5 * siemens * cm ** -2 * area,
- "El": -65 * mV,
- "EK": -90 * mV,
- "ENa": 50 * mV,
- "g_na": 100 * msiemens * cm ** -2 * area,
- "g_kd": 30 * msiemens * cm ** -2 * area,
- "VT": -63 * mV
- }
- hodgkin_huxley_eqs = br.Equations('''
- dv/dt = (gl*(El-v) - g_na*(m*m*m)*h*(v-ENa) - g_kd*(n*n*n*n)*(v-EK) + I + ih)/Cm : volt
- dm/dt = 0.32*(mV**-1)*(13.*mV-v+VT)/
- (exp((13.*mV-v+VT)/(4.*mV))-1.)/ms*(1-m)-0.28*(mV**-1)*(v-VT-40.*mV)/
- (exp((v-VT-40.*mV)/(5.*mV))-1.)/ms*m : 1
- dn/dt = 0.032*(mV**-1)*(15.*mV-v+VT)/
- (exp((15.*mV-v+VT)/(5.*mV))-1.)/ms*(1.-n)-.5*exp((10.*mV-v+VT)/(40.*mV))/ms*n : 1
- dh/dt = 0.128*exp((17.*mV-v+VT)/(18.*mV))/ms*(1.-h)-4./(1+exp((40.*mV-v+VT)/(5.*mV)))/ms*h : 1
- I : amp
- ''')
- hodgkin_huxley_cond_synapse_weak_noise_eqs = br.Equations('''
- dv/dt = (gl*(El-v) - g_na*(m*m*m)*h*(v-ENa) - g_kd*(n*n*n*n)*(v-EK) + I + ih - g_syn*(v-E_i))/Cm + sigma_noise*sqrt(1./tau_noise)*xi : volt
- dm/dt = 0.32*(mV**-1)*(13.*mV-v+VT)/
- (exp((13.*mV-v+VT)/(4.*mV))-1.)/ms*(1-m)-0.28*(mV**-1)*(v-VT-40.*mV)/
- (exp((v-VT-40.*mV)/(5.*mV))-1.)/ms*m : 1
- dn/dt = 0.032*(mV**-1)*(15.*mV-v+VT)/
- (exp((15.*mV-v+VT)/(5.*mV))-1.)/ms*(1.-n)-.5*exp((10.*mV-v+VT)/(40.*mV))/ms*n : 1
- dh/dt = 0.128*exp((17.*mV-v+VT)/(18.*mV))/ms*(1.-h)-4./(1+exp((40.*mV-v+VT)/(5.*mV)))/ms*h : 1
- I : amp
- g_syn: siemens
- ''')
- hodgkin_huxley_with_external_input_eqs = br.Equations('''
- dv/dt = (gl*(El-v) - g_na*(m*m*m)*h*(v-ENa) - g_kd*(n*n*n*n)*(v-EK) + I + ih)/Cm
- : volt
- dm/dt = 0.32*(mV**-1)*(13.*mV-v+VT)/
- (exp((13.*mV-v+VT)/(4.*mV))-1.)/ms*(1-m)-0.28*(mV**-1)*(v-VT-40.*mV)/
- (exp((v-VT-40.*mV)/(5.*mV))-1.)/ms*m : 1
- dn/dt = 0.032*(mV**-1)*(15.*mV-v+VT)/
- (exp((15.*mV-v+VT)/(5.*mV))-1.)/ms*(1.-n)-.5*exp((10.*mV-v+VT)/(40.*mV))/ms*n : 1
- dh/dt = 0.128*exp((17.*mV-v+VT)/(18.*mV))/ms*(1.-h)-4./(1+exp((40.*mV-v+VT)/(5.*mV)))/ms*h : 1
- I = I_ext_const + stimulus(t) : amp (constant over dt)
- I_ext_const : amp
- ''')
- hodgkin_huxley_eqs_with_synaptic_conductance = br.Equations('''
- dv/dt = (gl*(El-v) - g_na*(m*m*m)*h*(v-ENa) - g_kd*(n*n*n*n)*(v-EK) + I + ih - g_syn*(v-E_i))/Cm : volt
- dm/dt = 0.32*(mV**-1)*(13.*mV-v+VT)/
- (exp((13.*mV-v+VT)/(4.*mV))-1.)/ms*(1-m)-0.28*(mV**-1)*(v-VT-40.*mV)/
- (exp((v-VT-40.*mV)/(5.*mV))-1.)/ms*m : 1
- dn/dt = 0.032*(mV**-1)*(15.*mV-v+VT)/
- (exp((15.*mV-v+VT)/(5.*mV))-1.)/ms*(1.-n)-.5*exp((10.*mV-v+VT)/(40.*mV))/ms*n : 1
- dh/dt = 0.128*exp((17.*mV-v+VT)/(18.*mV))/ms*(1.-h)-4./(1+exp((40.*mV-v+VT)/(5.*mV)))/ms*h : 1
- I : amp
- g_syn: siemens
- ''')
- # # First H-current from Izhikevich p. 48
- # ghbar = 40. * nS #Other values would be 0.5, 2, 3.5, 20 depending on neuron type (Rothman, Manis)
- # Eh = -43*mV
- # V_half_h = -75.0
- # k_h = -5.5
- # V_max_h = -75.
- # sigma_h = 15.
- # C_amp_h = 1000.
- # C_base_h = 100.
- # eqs_ih = """
- # ih = ghbar*r*(Eh-v) : amp
- # dr/dt= (rinf-r)/rtau : 1
- # rinf = 1. / (1+exp((V_half_h - v/mV) / k_h)) : 1
- # rtau = (C_base_h + C_amp_h * exp(-(V_max_h-v/mV)**2./sigma_h**2)) * ms : second
- # """
- # Second H-current from Izhikevich p. 48
- # eqs_ih = """
- # ih = ghbar*r*(Eh-v) : amp
- # dr/dt=(rinf-r)/rtau : 1
- # rinf = 1. / (1+exp((v/mV + 90.) / 7.)) : 1
- # # rtau = ((100000. / (237.*exp((v/mV+60.) / 12.) + 17.*exp(-(v/mV+60.) / 14.))) + 25.)*ms : second
- # rtau = 0.01*(100. + 1000. * exp(-(-76.-v/mV)**2./15.**2)) * ms : second #From Izhikevich
- # """
- ih_params = {
- "ghbar": 40. * nS, # Other values would be 0.5, 2, 3.5, 20 depending on neuron type (Rothman, Manis)
- "Eh": -1. * mV,
- "V_half_h": -95.0,
- "k_h": -5.5,
- "V_max_h": -75.,
- "sigma_h": 20.,
- "C_amp_h": 50.,
- "C_base_h": 10.,
- }
- eqs_ih = """
- ih = ghbar*r*(Eh-v) : amp
- dr/dt= (rinf-r)/rtau : 1
- rinf = 1. / (1+exp((V_half_h - v/mV) / k_h)) : 1
- rtau = 0.1*(C_base_h + C_amp_h * exp(-(V_max_h-v/mV)**2./sigma_h**2)) * ms : second
- """
- lif_eqs = """
- dv/dt =1.0/tau* (-v + u_ext) :volt (unless refractory)
- u_ext = u_ext_const : volt
- """
- lif_params = {
- "tau": 7 * ms,
- "v_threshold": -40 * mV,
- "v_reset": -60 * mV,
- "tau_refractory": 0.0 * ms,
- "u_ext_const": -50 * mV
- }
- lif_options = {
- "threshold": "v>v_threshold",
- "reset": "v=v_reset",
- "refractory": "tau_refractory",
- 'method': 'euler'
- }
- delta_synapse_model = 'synaptic_strength: volt'
- delta_synapse_on_pre = 'v+=synaptic_strength'
- delta_synapse_param = {}
- exponential_synapse = """
- dg/dt = -g/tau_syn : siemens (clock-driven)
- g_syn_post = g :siemens (summed)
- synaptic_strength : siemens
- """
- exponential_synapse_on_pre = "g+=synaptic_strength"
- exponential_synapse_params = {
- "tau_syn": 1 * ms
- }
- noise_params = {
- 'sigma_noise': 1.0 * mV,
- 'tau_noise': 10. * ms
- }
|