Scheduled service maintenance on November 22


On Friday, November 22, 2024, between 06:00 CET and 18:00 CET, GIN services will undergo planned maintenance. Extended service interruptions should be expected. We will try to keep downtimes to a minimum, but recommend that users avoid critical tasks, large data uploads, or DOI requests during this time.

We apologize for any inconvenience.

Bläddra i källkod

raster plots for each drive difference in the micronetwork

Paul Pfeiffer 4 år sedan
förälder
incheckning
972edd1b08
1 ändrade filer med 45 tillägg och 37 borttagningar
  1. 45 37
      scripts/competition_gain/analyse_micro_network.py

+ 45 - 37
scripts/competition_gain/analyse_micro_network.py

@@ -14,58 +14,66 @@ if __name__ == "__main__":
     firing_rates_frame["delta_f"] = firing_rates_frame["f_1"] - firing_rates_frame["f_2"]
 
     fig, ax = plt.subplots(1, 1, figsize=(3, 4))
-    colors = ["grey", "blue", "orange"]
+    colors = {NO_CONNECTIONS: "grey", RECIPROCAL: "blue", UNI_DIRECTIONAL: "orange"}
 
     labels = {
         NO_CONNECTIONS: "no inh",
-        RECIPROCAL: "bidir inh",
-        UNI_DIRECTIONAL: "unidir inh"
+        RECIPROCAL: "hub inh",
+        UNI_DIRECTIONAL: "relay inh"
     }
 
-    for architecture, color in zip([NO_CONNECTIONS, RECIPROCAL, UNI_DIRECTIONAL], colors):
+    for architecture in [UNI_DIRECTIONAL, RECIPROCAL, NO_CONNECTIONS]:
         df = firing_rates_frame[firing_rates_frame["architecture"] == architecture]
-        ax.plot(df["I_1"].values, df["delta_f"].values, label=labels[architecture], color=color, lw=1.5, zorder=10)
-        ax.plot(df["I_1"].values, df["f_1"].values, linestyle='--', color=color, alpha=0.6, zorder=5)
-        ax.plot(df["I_1"].values, df["f_2"].values, linestyle=':', color=color, alpha=0.6, zorder=5)
+        ax.plot(df["I_1"].values, df["delta_f"].values, label=labels[architecture], color=colors[architecture], lw=1.5,
+                zorder=10)
+        ax.plot(df["I_1"].values, df["f_1"].values, linestyle='--', color=colors[architecture], alpha=0.6, zorder=5)
+        ax.plot(df["I_1"].values, df["f_2"].values, linestyle=':', color=colors[architecture], alpha=0.6, zorder=5)
     ax.set_xlabel("I$_1$ - I$_2$ (nA)")
     ax.set_ylabel("firing rate (Hz)")
     ax.legend()
+    ax.text(0.1, 55, "f$_1$", ha="right", va="bottom")
+    ax.text(0.23, 10, "f$_2$", ha="right", va="top")
+    ax.text(0.55, 75, "f$_1$-f$_2$", ha="right", va="top")
+
     fig.tight_layout()
     fig.savefig("../../figures/competition_gain/rate_gain.png", dpi=300)
 
+    N_E = traj.par.network.N_E
+    N_I = traj.par.network.N_I
+
+    ex_index_mappings = {
+        RECIPROCAL: (lambda idx: N_E + N_I + 2 - idx if idx < int(N_E / 2.0) else N_E - idx),
+        UNI_DIRECTIONAL: (lambda idx: N_E + 2 * N_I + 2 - idx if idx < int(N_E / 2.0) else N_E - idx)
+    }
+
+    in_index_mappings = {
+        RECIPROCAL: (lambda idx: int(N_E / 2.0) + 2 + idx),
+        UNI_DIRECTIONAL: (lambda idx: N_E + 2 * N_I + 2 - int(N_E / 2.0) - idx)
+    }
 
+    for input_to_1 in firing_rates_frame["I_1"].values:
+        df = firing_rates_frame[
+            (firing_rates_frame["I_1"] == input_to_1) & (firing_rates_frame["architecture"] != NO_CONNECTIONS)]
 
+        fig, axes = plt.subplots(2, 1, sharex=True)
+        for architecture, run_idx in zip(df["architecture"].values, df["run"].values):
+            ax_idx = 0 if architecture == RECIPROCAL else 1
+            ax = axes[ax_idx]
 
+            traj.v_idx = run_idx
 
-    hub_interneuron_idx = 4
-    relay_interneuron_idx = 7
+            neuron_indices = traj.results.crun.spikes.e.i
+            spike_times = traj.results.crun.spikes.e.t
+            ax.plot(spike_times*1000, list(map(ex_index_mappings[architecture], neuron_indices)), 'r|')
 
-    N_E = traj.par.network.N_E
-    N_I = traj.par.network.N_I
+            if traj.results.crun.spikes.i.num_spikes > 0:
+                neuron_indices = traj.results.crun.spikes.i.i
+                spike_times = traj.results.crun.spikes.i.t
+
+                ax.plot(spike_times*1000, list(map(in_index_mappings[architecture], neuron_indices)), 'b|')
+            ax.set_xlim(0,100)
+            ax.yaxis.set_ticks([])
+        axes[1].set_xlabel("t (ms)")
+        fig.suptitle("I$_1$-I$_2$ = {:.1f} nA".format(input_to_1))
 
-    fig, axes = plt.subplots(2, 1)
-
-    ax = axes[0]
-    traj.v_idx = hub_interneuron_idx
-    neuron_indices = traj.results.crun.spikes.e.i
-    spike_times = traj.results.crun.spikes.e.t
-    ax.plot(spike_times, [N_E + N_I - idx if idx < int(N_E / 2.0) else N_E - idx for idx in neuron_indices], 'r|')
-    if traj.results.crun.spikes.i.num_spikes > 0:
-        neuron_indices = traj.results.crun.spikes.i.i
-        spike_times = traj.results.crun.spikes.i.t
-        ax.plot(spike_times, [int(N_E / 2.0) + 1 + idx for idx in
-                              neuron_indices], 'b|')
-
-    ax = axes[1]
-    traj.v_idx = relay_interneuron_idx
-    neuron_indices = traj.results.crun.spikes.e.i
-    spike_times = traj.results.crun.spikes.e.t
-    ax.plot(spike_times, [N_E + 2*N_I - idx if idx < int(N_E / 2.0) else N_E - idx for idx in neuron_indices], 'r|')
-    if traj.results.crun.spikes.i.num_spikes > 0:
-        neuron_indices = traj.results.crun.spikes.i.i
-        spike_times = traj.results.crun.spikes.i.t
-        ax.plot(spike_times, [int(N_E / 2.0) + 1 + idx for idx in
-                              neuron_indices], 'b|')
-
-
-    fig.savefig("../../figures/competition_gain/spike_raster.png", dpi=300)
+        fig.savefig("../../figures/competition_gain/spike_raster_delta_I_{:.1f}.png".format(input_to_1), dpi=300)