123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- function [dz,vdz,Adz]=two_group_test_coherence(J1c1,J2c1,J1c2,J2c2,p,plt,f)
- % function [dz,vdz,Adz]=two_group_test_coherence(J1c1,J2c1,J1c2,J2c2,p,plt,f)
- % Test the null hypothesis (H0) that data sets J1c1,J2c1,J1c2,J2c2 in
- % two conditions c1,c2 have equal population coherence
- %
- % Usage:
- % [dz,vdz,Adz]=two_sample_test_coherence(J1c1,J2c1,J1c2,J2c2,p)
- %
- % Inputs:
- % J1c1 tapered fourier transform of dataset 1 in condition 1
- % J2c1 tapered fourier transform of dataset 1 in condition 1
- % J1c2 tapered fourier transform of dataset 1 in condition 2
- % J2c2 tapered fourier transform of dataset 1 in condition 2
- % p p value for test (default: 0.05)
- % plt 'y' for plot and 'n' for no plot
- % f frequencies (useful for plotting)
- %
- %
- % Dimensions: J1c1,J2c2: frequencies x number of samples in condition 1
- % J1c2,J2c2: frequencies x number of samples in condition 2
- % number of samples = number of trials x number of tapers
- % Outputs:
- % dz test statistic (will be distributed as N(0,1) under H0
- % vdz Arvesen estimate of the variance of dz
- % Adz 1/0 for accept/reject null hypothesis of equal population
- % coherences based dz ~ N(0,1)
- %
- % Note: all outputs are functions of frequency
- %
- % References: Arvesen, Jackkknifing U-statistics, Annals of Mathematical
- % Statisitics, vol 40, no. 6, pg 2076-2100 (1969)
- if nargin < 4; error('Need four sets of Fourier transforms'); end;
- if nargin < 6 || isempty(plt); plt='n'; end;
- %
- % Test for matching dimensionalities
- %
- if size(J1c1)~=size(J2c1) | size(J1c2)~=size(J2c2) | size(J1c1,1)~=size(J1c2,1);
- error('Need matching dimensionalities for the Fourier transforms: Check the help file for correct dimensionalities');
- else;
- m1=size(J1c1,2); % number of samples, condition 1
- m2=size(J1c2,2); % number of samples, condition 2
- dof1=2*m1; % number of degrees of freedom in the first condition estimates
- dof2=2*m2; % number of degrees of freedom in the second condition estimates
- end;
- if nargin < 7 || isempty(f); f=size(J1c1,1); end;
- if nargin < 5 || isempty(p); p=0.05; end; % set the default p value
- %
- % Compute the individual condition spectra, coherences
- %
- S12c1=conj(J1c1).*J2c1; % individual sample cross-spectrum, condition 1
- S12c2=conj(J1c2).*J2c2; % individual sample cross-spectrum, condition 2
- S1c1=conj(J1c1).*J1c1; % individual sample spectrum, data 1, condition 1
- S2c1=conj(J2c1).*J2c1; % individual sample spectrum, data 2, condition 1
- S1c2=conj(J1c2).*J1c2; % individual sample spectrum, data 1, condition 2
- S2c2=conj(J2c2).*J2c2; % individual sample spectrum, data 2, condition 2
- Sm12c1=squeeze(mean(S12c1,2)); % mean cross spectrum, condition 1
- Sm12c2=squeeze(mean(S12c2,2)); % mean cross spectrum, condition 2
- Sm1c1=squeeze(mean(S1c1,2)); % mean spectrum, data 1, condition 1
- Sm2c1=squeeze(mean(S2c1,2)); % mean spectrum, data 2, condition 1
- Sm1c2=squeeze(mean(S1c2,2)); % mean spectrum, data 1, condition 1
- Sm2c2=squeeze(mean(S2c2,2)); % mean spectrum, data 2, condition 1
- Cm12c1=abs(Sm12c1./sqrt(Sm1c1.*Sm2c1)); % mean coherence, condition 1
- Cm12c2=abs(Sm12c2./sqrt(Sm1c2.*Sm2c2)); % mean coherence, condition 2
- Ccm12c1=Cm12c1; % mean coherence saved for output
- Ccm12c2=Cm12c2; % mean coherence saved for output
- %
- % Compute the statistic dz, and the probability of observing the value dz
- % given an N(0,1) distribution i.e. under the null hypothesis
- %
- z1=atanh(Cm12c1)-1/(dof1-2); % Bias-corrected Fisher z, condition 1
- z2=atanh(Cm12c2)-1/(dof2-2); % Bias-corrected Fisher z, condition 2
- dz=(z1-z2)/sqrt(1/(dof1-2)+1/(dof2-2)); % z statistic
- %
- % The remaining portion of the program computes Jackknife estimates of the mean (mdz) and variance (vdz) of dz
- %
- samples1=[1:m1];
- samples2=[1:m2];
- %
- % Leave one out of one sample
- %
- for i=1:m1;
- ikeep=setdiff(samples1,i); % all samples except i
- Sm12c1=squeeze(mean(S12c1(:,ikeep),2)); % 1 drop mean cross-spectrum, condition 1
- Sm1c1=squeeze(mean(S1c1(:,ikeep),2)); % 1 drop mean spectrum, data 1, condition 1
- Sm2c1=squeeze(mean(S2c1(:,ikeep),2)); % 1 drop mean spectrum, data 2, condition 1
- Cm12c1(:,i)=abs(Sm12c1./sqrt(Sm1c1.*Sm2c1)); % 1 drop coherence, condition 1
- z1i(:,i)=atanh(Cm12c1(:,i))-1/(dof1-4); % 1 drop, bias-corrected Fisher z, condition 1
- dz1i(:,i)=(z1i(:,i)-z2)/sqrt(1/(dof1-4)+1/(dof2-2)); % 1 drop, z statistic, condition 1
- ps1(:,i)=m1*dz-(m1-1)*dz1i(:,i);
- % ps1(:,i)=dof1*dz-(dof1-2)*dz1i(:,i);
- end;
- ps1m=mean(ps1,2);
- for j=1:m2;
- jkeep=setdiff(samples2,j); % all samples except j
- Sm12c2=squeeze(mean(S12c2(:,jkeep),2)); % 1 drop mean cross-spectrum, condition 2
- Sm1c2=squeeze(mean(S1c2(:,jkeep),2)); % 1 drop mean spectrum, data 1, condition 2
- Sm2c2=squeeze(mean(S2c2(:,jkeep),2)); % 1 drop mean spectrum, data 2, condition 2
- Cm12c2(:,j)=abs(Sm12c2./sqrt(Sm1c2.*Sm2c2)); % 1 drop coherence, condition 2
- z2j(:,j)=atanh(Cm12c2(:,j))-1/(dof2-4); % 1 drop, bias-corrected Fisher z, condition 2
- dz2j(:,j)=(z1-z2j(:,j))/sqrt(1/(dof1-2)+1/(dof2-4)); % 1 drop, z statistic, condition 2
- ps2(:,j)=m2*dz-(m2-1)*dz2j(:,j);
- % ps2(:,j)=dof2*dz-(dof2-2)*dz2j(:,j);
- end;
- %
- % Leave one out, both samples
- % and pseudo values
- % for i=1:m1;
- % for j=1:m2;
- % dzij(:,i,j)=(z1i(:,i)-z2j(:,j))/sqrt(1/(dof1-4)+1/(dof2-4));
- % dzpseudoval(:,i,j)=m1*m2*dz-(m1-1)*m2*dz1i(:,i)-m1*(m2-1)*dz2j(:,j)+(m1-1)*(m2-1)*dzij(:,i,j);
- % % dzpseudoval(:,i,j)=dof1*dof2*dz-(dof1-2)*dof2*dz1i(:,i)-dof1*(dof2-2)*dz2j(:,j)+(dof1-2)*(dof2-2)*dzij(:,i,j);
- % end;
- % end;
- % dzah=sum(sum(dzpseudoval,3),2)/(m1*m2);
- ps2m=mean(ps2,2);
- % dzar=(sum(ps1,2)+sum(ps2,2))/(m1+m2);
- vdz=sum((ps1-ps1m(:,ones(1,m1))).*(ps1-ps1m(:,ones(1,m1))),2)/(m1*(m1-1))+sum((ps2-ps2m(:,ones(1,m2))).*(ps2-ps2m(:,ones(1,m2))),2)/(m2*(m2-1));
- % vdzah=sum(sum((dzpseudoval-dzah(:,ones(1,m1),ones(1,m2))).*(dzpseudoval-dzah(:,ones(1,m1),ones(1,m2))),3),2)/(m1*m2);
- %
- % Test whether H0 is accepted at the specified p value
- %
- Adz=zeros(size(dz));
- x=norminv([p/2 1-p/2],0,1);
- indx=find(dz>=x(1) & dz<=x(2));
- Adz(indx)=1;
- if strcmp(plt,'y');
- if isempty(f) || nargin < 6;
- f=linspace(0,1,length(dz));
- end;
- %
- % Compute the coherences
- %
- S121=mean(conj(J1c1).*J2c1,2);
- S122=mean(conj(J1c2).*J2c2,2);
- S111=mean(conj(J1c1).*J1c1,2);
- S221=mean(conj(J2c1).*J2c1,2);
- S112=mean(conj(J1c2).*J1c2,2);
- S222=mean(conj(J2c2).*J2c2,2);
- C121=abs(S121)./sqrt(S111.*S221);
- C122=abs(S122)./sqrt(S112.*S222);
- %
- % Plot the coherence
- %
- subplot(311);
- plot(f,C121,f,C122); legend('Data 1','Data 2');
- set(gca,'FontName','Times New Roman','Fontsize', 16);
- ylabel('Coherence');
- title('Two group test for coherence');
- subplot(312);
- plot(f,dz);
- set(gca,'FontName','Times New Roman','Fontsize', 16);
- ylabel('Test statistic');
- conf=norminv(1-p/2,0,1);
- line(get(gca,'xlim'),[conf conf]);
- line(get(gca,'xlim'),[-conf -conf]);
- subplot(313);
- plot(f,vdz);
- set(gca,'FontName','Times New Roman','Fontsize', 16);
- xlabel('frequency'); ylabel('Jackknifed variance');
- end;
- % Adzar=zeros(size(dzar));
- % indx=find(dzar>=x(1) & dzar<=x(2));
- % Adzar(indx)=1;
- %
- % Adzah=zeros(size(dzah));
- % indx=find(dzah>=x(1) & dzah<=x(2));
- % Adzah(indx)=1;
|