12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- function [dS,t,f]=mtdspecgrampt(data,movingwin,phi,params)
- % Multi-taper derivative time-frequency spectrum - point process times
- %
- % Usage:
- %
- % [dS,t,f]=mtdspecgrampt(data,movingwin,phi,params)
- % Input:
- % Note that all times can be in arbitrary units. But the units have to be
- % consistent. So, if E is in secs, win, t have to be in secs, and Fs has to
- % be Hz. If E is in samples, so are win and t, and Fs=1. In case of spike
- % times, the units have to be consistent with the units of data as well.
- % data (structure array of spike times with dimension channels/trials;
- % also accepts 1d array of spike times) -- required
- % movingwin (in the form [window winstep] i.e length of moving
- % window and step size.
- % Note that units here have
- % to be consistent with
- % units of Fs
- % phi (angle for evaluation of derivative) -- required.
- % e.g. phi=[0,pi/2] giving the time and frequency
- % derivatives
- % params: structure with fields tapers, pad, Fs, fpass, trialave
- % -optional
- % tapers : precalculated tapers from dpss or in the one of the following
- % forms:
- % (1) A numeric vector [TW K] where TW is the
- % time-bandwidth product and K is the number of
- % tapers to be used (less than or equal to
- % 2TW-1).
- % (2) A numeric vector [W T p] where W is the
- % bandwidth, T is the duration of the data and p
- % is an integer such that 2TW-p tapers are used. In
- % this form there is no default i.e. to specify
- % the bandwidth, you have to specify T and p as
- % well. Note that the units of W and T have to be
- % consistent: if W is in Hz, T must be in seconds
- % and vice versa. Note that these units must also
- % be consistent with the units of params.Fs: W can
- % be in Hz if and only if params.Fs is in Hz.
- % The default is to use form 1 with TW=3 and K=5
- % Note that T has to be equal to movingwin(1).
- %
- % pad (padding factor for the FFT) - optional (can take values -1,0,1,2...).
- % -1 corresponds to no padding, 0 corresponds to padding
- % to the next highest power of 2 etc.
- % e.g. For N = 500, if PAD = -1, we do not pad; if PAD = 0, we pad the FFT
- % to 512 points, if pad=1, we pad to 1024 points etc.
- % Defaults to 0.
- % Fs (sampling frequency) - optional. Default 1.
- % fpass (frequency band to be used in the calculation in the form
- % [fmin fmax])- optional.
- % Default all frequencies between 0 and
- % Fs/2
- % trialave (average over trials when 1, don't average when 0) -
- % optional. Default 0
- % Output:
- % dS (spectral derivative in form phi x time x frequency x channels/trials if trialave=0;
- % in form phi x time x frequency if trialave=1)
- % t (times)
- % f (frequencies)
- if nargin < 3; error('Need data, window parameters and angle'); end;
- if nargin < 4; params=[]; end;
- if length(params.tapers)==3 & movingwin(1)~=params.tapers(2);
- error('Duration of data in params.tapers is inconsistent with movingwin(1), modify params.tapers(2) to proceed')
- end
- [tapers,pad,Fs,fpass,err,trialave,params]=getparams(params);
- clear err
- [mintime,maxtime]=minmaxsptimes(data);
- tn=(mintime+movingwin(1)/2:movingwin(2):maxtime-movingwin(1)/2);
- Nwin=round(Fs*movingwin(1)); % number of samples in window
- % Nstep=round(movingwin(2)*Fs); % number of samples to step through
- nfft=max(2^(nextpow2(Nwin)+pad),Nwin);
- f=getfgrid(Fs,nfft,fpass); Nf=length(f);
- params.tapers=dpsschk(tapers,Nwin,Fs); % check tapers
- %K=size(params.tapers,2);
- nw=length(tn);
- if trialave==0; dS=zeros(length(phi),nw,Nf,C); else dS=zeros(length(phi),nw,Nf); end;
- for n=1:nw;
- t=linspace(tn(n)-movingwin(1)/2,tn(n)+movingwin(1)/2,Nwin);
- datawin=extractdatapt(data,[t(1) t(end)]);
- [ds,f]=mtdspectrumpt(datawin,phi,params,t);
- dS(:,n,:,:)=ds;
- end;
- sz=size(ds);
- dS=squeeze(dS);
- % if length(sz)==3;
- % dS=permute(dS,[2 1 3 4]);
- % elseif length(phi)>1
- % dS=permute(dS,[2 1 3]);
- % end;
- t=tn;
|