coherencypt.m 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115
  1. function [C,phi,S12,S1,S2,f,zerosp,confC,phistd,Cerr]=coherencypt(data1,data2,params,fscorr,t)
  2. % Multi-taper coherency - point process times
  3. %
  4. % Usage:
  5. %
  6. % [C,phi,S12,S1,S2,f,zerosp,confC,phistd,Cerr]=coherencypt(data1,data2,params,fscorr,t)
  7. % Input:
  8. % data1 (structure array of spike times with dimension trials; also accepts 1d array of spike times) -- required
  9. % data2 (structure array of spike times with dimension trials; also accepts 1d array of spike times) -- required
  10. % params: structure with fields tapers, pad, Fs, fpass, err, trialave
  11. % - optional
  12. % tapers : precalculated tapers from dpss or in the one of the following
  13. % forms:
  14. % (1) A numeric vector [TW K] where TW is the
  15. % time-bandwidth product and K is the number of
  16. % tapers to be used (less than or equal to
  17. % 2TW-1).
  18. % (2) A numeric vector [W T p] where W is the
  19. % bandwidth, T is the duration of the data and p
  20. % is an integer such that 2TW-p tapers are used. In
  21. % this form there is no default i.e. to specify
  22. % the bandwidth, you have to specify T and p as
  23. % well. Note that the units of W and T have to be
  24. % consistent: if W is in Hz, T must be in seconds
  25. % and vice versa. Note that these units must also
  26. % be consistent with the units of params.Fs: W can
  27. % be in Hz if and only if params.Fs is in Hz.
  28. % The default is to use form 1 with TW=3 and K=5
  29. %
  30. % pad (padding factor for the FFT) - optional (can take values -1,0,1,2...).
  31. % -1 corresponds to no padding, 0 corresponds to padding
  32. % to the next highest power of 2 etc.
  33. % e.g. For N = 500, if PAD = -1, we do not pad; if PAD = 0, we pad the FFT
  34. % to 512 points, if pad=1, we pad to 1024 points etc.
  35. % Defaults to 0.
  36. % Fs (sampling frequency) - optional. Default 1.
  37. % fpass (frequency band to be used in the calculation in the form
  38. % [fmin fmax])- optional.
  39. % Default all frequencies between 0 and Fs/2
  40. % err (error calculation [1 p] - Theoretical error bars; [2 p] - Jackknife error bars
  41. % [0 p] or 0 - no error bars) - optional. Default 0.
  42. % trialave (average over trials when 1, don't average when 0) - optional. Default 0
  43. % fscorr (finite size corrections, 0 (don't use finite size corrections)
  44. % or 1 (use finite size corrections) - optional
  45. % (available only for spikes). Defaults 0.
  46. % t (time grid over which the tapers are to be calculated:
  47. % this argument is useful when calling the spectrum
  48. % calculation routine from a moving window spectrogram
  49. % calculation routine). If left empty, the spike times
  50. % are used to define the grid.
  51. % Output:
  52. % C (magnitude of coherency - frequencies x trials if trialave=0; dimension frequencies if trialave=1)
  53. % phi (phase of coherency - frequencies x trials if trialave=0; dimension frequencies if trialave=1)
  54. % S12 (cross spectrum - frequencies x trials if trialave=0; dimension frequencies if trialave=1)
  55. % S1 (spectrum 1 - frequencies x trials if trialave=0; dimension frequencies if trialave=1)
  56. % S2 (spectrum 2 - frequencies x trials if trialave=0; dimension frequencies if trialave=1)
  57. % f (frequencies)
  58. % zerosp (1 for trials where no spikes were found, 0 otherwise)
  59. % confC (confidence level for C at 1-p %) - only for err(1)>=1
  60. % phistd - theoretical/jackknife (depending on err(1)=1/err(1)=2) standard deviation for phi
  61. % Note that phi + 2 phistd and phi - 2 phistd will give 95% confidence
  62. % bands for phi - only for err(1)>=1
  63. % Cerr (Jackknife error bars for C - use only for Jackknife - err(1)=2)
  64. if nargin < 2; error('Need data1 and data2'); end;
  65. if nargin < 3; params=[]; end;
  66. [tapers,pad,Fs,fpass,err,trialave,params]=getparams(params);
  67. clear params
  68. if nargin < 4 || isempty(fscorr); fscorr=0; end;
  69. if nargin < 5 || isempty(t);
  70. [mintime1,maxtime1]=minmaxsptimes(data1);
  71. [mintime2,maxtime2]=minmaxsptimes(data2);
  72. mintime=min(mintime1,mintime2);
  73. maxtime=max(maxtime1,maxtime2);
  74. dt=1/Fs;
  75. t=mintime:dt:maxtime+dt; % time grid for prolates
  76. end;
  77. if nargout > 9 && err(1)~=2;
  78. error('Cerr computed only for Jackknife. Correct inputs or outputs and run again');
  79. end;
  80. if nargout > 7 && err(1)==0;
  81. error('Errors computed only if err(1) is not equal to zero');
  82. end;
  83. [N,Ch]=check_consistency(data1,data2);
  84. N=length(t); % number of points in grid for dpss
  85. nfft=max(2^(nextpow2(N)+pad),N); % number of points in fft of prolates
  86. [f,findx]=getfgrid(Fs,nfft,fpass);
  87. tapers=dpsschk(tapers,N,Fs); % check tapers
  88. [J1,Msp1,Nsp1]=mtfftpt(data1,tapers,nfft,t,f,findx);
  89. [J2,Msp2,Nsp2]=mtfftpt(data2,tapers,nfft,t,f,findx);
  90. zerosp=zeros(1,Ch); % initialize the zerosp variable
  91. zerosp(Nsp1==0 | Nsp2==0)=1; % set the zerosp variable
  92. S12=squeeze(mean(conj(J1).*J2,2));
  93. S1=squeeze(mean(conj(J1).*J1,2));
  94. S2=squeeze(mean(conj(J2).*J2,2));
  95. if trialave; S12=squeeze(mean(S12,2)); S1=squeeze(mean(S1,2)); S2=squeeze(mean(S2,2)); end;
  96. C12=S12./sqrt(S1.*S2);
  97. C=abs(C12);
  98. phi=angle(C12);
  99. if nargout==10;
  100. if fscorr==1;
  101. [confC,phistd,Cerr]=coherr(C,J1,J2,err,trialave,Nsp1,Nsp2);
  102. else
  103. [confC,phistd,Cerr]=coherr(C,J1,J2,err,trialave);
  104. end;
  105. elseif nargout==9;
  106. if fscorr==1;
  107. [confC,phistd]=coherr(C,J1,J2,err,trialave,Nsp1,Nsp2);
  108. else
  109. [confC,phistd]=coherr(C,J1,J2,err,trialave);
  110. end;
  111. end;
  112. clear Msp1 Msp2