123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273 |
- function ellipse_t = fit_ellipse( x,y,plot_opt )
- %
- % fit_ellipse - finds the best fit to an ellipse for the given set of points.
- %
- % Format: ellipse_t = fit_ellipse( x,y,axis_handle )
- %
- % Input: x,y - a set of points in 2 column vectors. AT LEAST 5 points are needed !
- % axis_handle - optional. a handle to an axis, at which the estimated ellipse
- % will be drawn along with it's axes
- %
- % Output: ellipse_t - structure that defines the best fit to an ellipse
- % a - sub axis (radius) of the X axis of the non-tilt ellipse
- % b - sub axis (radius) of the Y axis of the non-tilt ellipse
- % phi - orientation in radians of the ellipse (tilt)
- % X0 - center at the X axis of the non-tilt ellipse
- % Y0 - center at the Y axis of the non-tilt ellipse
- % X0_in - center at the X axis of the tilted ellipse
- % Y0_in - center at the Y axis of the tilted ellipse
- % long_axis - size of the long axis of the ellipse
- % short_axis - size of the short axis of the ellipse
- % status - status of detection of an ellipse
- %
- % Note: if an ellipse was not detected (but a parabola or hyperbola), then
- % an empty structure is returned
- % =====================================================================================
- % Ellipse Fit using Least Squares criterion
- % =====================================================================================
- % We will try to fit the best ellipse to the given measurements. the mathematical
- % representation of use will be the CONIC Equation of the Ellipse which is:
- %
- % Ellipse = a*x^2 + b*x*y + c*y^2 + d*x + e*y + f = 0
- %
- % The fit-estimation method of use is the Least Squares method (without any weights)
- % The estimator is extracted from the following equations:
- %
- % g(x,y;A) := a*x^2 + b*x*y + c*y^2 + d*x + e*y = f
- %
- % where:
- % A - is the vector of parameters to be estimated (a,b,c,d,e)
- % x,y - is a single measurement
- %
- % We will define the cost function to be:
- %
- % Cost(A) := (g_c(x_c,y_c;A)-f_c)'*(g_c(x_c,y_c;A)-f_c)
- % = (X*A+f_c)'*(X*A+f_c)
- % = A'*X'*X*A + 2*f_c'*X*A + N*f^2
- %
- % where:
- % g_c(x_c,y_c;A) - vector function of ALL the measurements
- % each element of g_c() is g(x,y;A)
- % X - a matrix of the form: [x_c.^2, x_c.*y_c, y_c.^2, x_c, y_c ]
- % f_c - is actually defined as ones(length(f),1)*f
- %
- % Derivation of the Cost function with respect to the vector of parameters "A" yields:
- %
- % A'*X'*X = -f_c'*X = -f*ones(1,length(f_c))*X = -f*sum(X)
- %
- % Which yields the estimator:
- %
- % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- % | A_least_squares = -f*sum(X)/(X'*X) ->(normalize by -f) = sum(X)/(X'*X) |
- % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- %
- % (We will normalize the variables by (-f) since "f" is unknown and can be accounted for later on)
- %
- % NOW, all that is left to do is to extract the parameters from the Conic Equation.
- % We will deal the vector A into the variables: (A,B,C,D,E) and assume F = -1;
- %
- % Recall the conic representation of an ellipse:
- %
- % A*x^2 + B*x*y + C*y^2 + D*x + E*y + F = 0
- %
- % We will check if the ellipse has a tilt (=orientation). The orientation is present
- % if the coefficient of the term "x*y" is not zero. If so, we first need to remove the
- % tilt of the ellipse.
- %
- % If the parameter "B" is not equal to zero, then we have an orientation (tilt) to the ellipse.
- % we will remove the tilt of the ellipse so as to remain with a conic representation of an
- % ellipse without a tilt, for which the math is more simple:
- %
- % Non tilt conic rep.: A`*x^2 + C`*y^2 + D`*x + E`*y + F` = 0
- %
- % We will remove the orientation using the following substitution:
- %
- % Replace x with cx+sy and y with -sx+cy such that the conic representation is:
- %
- % A(cx+sy)^2 + B(cx+sy)(-sx+cy) + C(-sx+cy)^2 + D(cx+sy) + E(-sx+cy) + F = 0
- %
- % where: c = cos(phi) , s = sin(phi)
- %
- % and simplify...
- %
- % x^2(A*c^2 - Bcs + Cs^2) + xy(2A*cs +(c^2-s^2)B -2Ccs) + ...
- % y^2(As^2 + Bcs + Cc^2) + x(Dc-Es) + y(Ds+Ec) + F = 0
- %
- % The orientation is easily found by the condition of (B_new=0) which results in:
- %
- % 2A*cs +(c^2-s^2)B -2Ccs = 0 ==> phi = 1/2 * atan( b/(c-a) )
- %
- % Now the constants c=cos(phi) and s=sin(phi) can be found, and from them
- % all the other constants A`,C`,D`,E` can be found.
- %
- % A` = A*c^2 - B*c*s + C*s^2 D` = D*c-E*s
- % B` = 2*A*c*s +(c^2-s^2)*B -2*C*c*s = 0 E` = D*s+E*c
- % C` = A*s^2 + B*c*s + C*c^2
- %
- % Next, we want the representation of the non-tilted ellipse to be as:
- %
- % Ellipse = ( (X-X0)/a )^2 + ( (Y-Y0)/b )^2 = 1
- %
- % where: (X0,Y0) is the center of the ellipse
- % a,b are the ellipse "radiuses" (or sub-axis)
- %
- % Using a square completion method we will define:
- %
- % F`` = -F` + (D`^2)/(4*A`) + (E`^2)/(4*C`)
- %
- % Such that: a`*(X-X0)^2 = A`(X^2 + X*D`/A` + (D`/(2*A`))^2 )
- % c`*(Y-Y0)^2 = C`(Y^2 + Y*E`/C` + (E`/(2*C`))^2 )
- %
- % which yields the transformations:
- %
- % X0 = -D`/(2*A`)
- % Y0 = -E`/(2*C`)
- % a = sqrt( abs( F``/A` ) )
- % b = sqrt( abs( F``/C` ) )
- %
- % And finally we can define the remaining parameters:
- %
- % long_axis = 2 * max( a,b )
- % short_axis = 2 * min( a,b )
- % Orientation = phi
- %
- %
- % initialize
- orientation_tolerance = 1e-3;
- % empty warning stack
- warning( '' );
- % prepare vectors, must be column vectors
- x = x(:);
- y = y(:);
- % remove bias of the ellipse - to make matrix inversion more accurate. (will be added later on).
- mean_x = mean(x);
- mean_y = mean(y);
- x = x-mean_x;
- y = y-mean_y;
- % the estimation for the conic equation of the ellipse
- X = [x.^2, x.*y, y.^2, x, y ];
- a = sum(X)/(X'*X);
- % check for warnings
- if ~isempty( lastwarn )
- disp( 'stopped because of a warning regarding matrix inversion' );
- ellipse_t = [];
- return
- end
- % extract parameters from the conic equation
- [a,b,c,d,e] = deal( a(1),a(2),a(3),a(4),a(5) );
- % remove the orientation from the ellipse
- if ( min(abs(b/a),abs(b/c)) > orientation_tolerance )
-
- orientation_rad = 1/2 * atan( b/(c-a) );
- cos_phi = cos( orientation_rad );
- sin_phi = sin( orientation_rad );
- [a,b,c,d,e] = deal(...
- a*cos_phi^2 - b*cos_phi*sin_phi + c*sin_phi^2,...
- 0,...
- a*sin_phi^2 + b*cos_phi*sin_phi + c*cos_phi^2,...
- d*cos_phi - e*sin_phi,...
- d*sin_phi + e*cos_phi );
- [mean_x,mean_y] = deal( ...
- cos_phi*mean_x - sin_phi*mean_y,...
- sin_phi*mean_x + cos_phi*mean_y );
- else
- orientation_rad = 0;
- cos_phi = cos( orientation_rad );
- sin_phi = sin( orientation_rad );
- end
- % check if conic equation represents an ellipse
- test = a*c;
- switch (1)
- case (test>0), status = '';
- case (test==0), status = 'Parabola found'; warning( 'fit_ellipse: Did not locate an ellipse' );
- case (test<0), status = 'Hyperbola found'; warning( 'fit_ellipse: Did not locate an ellipse' );
- end
- % if we found an ellipse return it's data
- if (test>0)
-
- % make sure coefficients are positive as required
- if (a<0), [a,c,d,e] = deal( -a,-c,-d,-e ); end
-
- % final ellipse parameters
- X0 = mean_x - d/2/a;
- Y0 = mean_y - e/2/c;
- F = 1 + (d^2)/(4*a) + (e^2)/(4*c);
- [a,b] = deal( sqrt( F/a ),sqrt( F/c ) );
- long_axis = 2*max(a,b);
- short_axis = 2*min(a,b);
- % rotate the axes backwards to find the center point of the original TILTED ellipse
- R = [ cos_phi sin_phi; -sin_phi cos_phi ];
- P_in = R * [X0;Y0];
- X0_in = P_in(1);
- Y0_in = P_in(2);
-
- % pack ellipse into a structure
- ellipse_t = struct( ...
- 'a',a,...
- 'b',b,...
- 'phi',orientation_rad,...
- 'X0',X0,...
- 'Y0',Y0,...
- 'X0_in',X0_in,...
- 'Y0_in',Y0_in,...
- 'long_axis',long_axis,...
- 'short_axis',short_axis,...
- 'status','' );
- else
- % report an empty structure
- ellipse_t = struct( ...
- 'a',[],...
- 'b',[],...
- 'phi',[],...
- 'X0',[],...
- 'Y0',[],...
- 'X0_in',[],...
- 'Y0_in',[],...
- 'long_axis',[],...
- 'short_axis',[],...
- 'status',status );
- end
- % check if we need to plot an ellipse with it's axes.
- %if (nargin>2) & ~isempty( axis_handle ) & (test>0)
-
- % rotation matrix to rotate the axes with respect to an angle phi
- R = [ cos_phi sin_phi; -sin_phi cos_phi ];
-
- % the axes
- ver_line = [ [X0 X0]; Y0+b*[-1 1] ];
- horz_line = [ X0+a*[-1 1]; [Y0 Y0] ];
- new_ver_line = R*ver_line;
- new_horz_line = R*horz_line;
-
- % the ellipse
- theta_r = linspace(0,2*pi);
- ellipse_x_r = X0 + a*cos( theta_r );
- ellipse_y_r = Y0 + b*sin( theta_r );
- xaligned_ellipse = [ellipse_x_r;ellipse_y_r];
- rotated_ellipse = R * [ellipse_x_r;ellipse_y_r];
-
- if (strcmp(plot_opt,'y'))
- % draw
- hold on
- plot( rotated_ellipse(1,:),rotated_ellipse(2,:),'r' );
- drawnow
- end
-
- ellipse_t.xaligned_ellipse = xaligned_ellipse;
- ellipse_t.rotated_ellipse = rotated_ellipse;
- ellipse_t.ellipse_x_r = ellipse_x_r;
- ellipse_t.ellipse_y_r = ellipse_y_r;
- ellipse_t.R = R;
|