123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 |
- function [SS,tau]=mtspectrum_of_spectrumc(data,win,tapers2spec,params)
- % Multi-taper segmented, second spectrum (spectrum of the log spectrum) for a continuous process
- % This routine computes the second spectrum by explicitly evaluating the
- % Fourier transform (since the spectrum is symmetric in frequency, it uses
- % a cosine transform)
- %
- % Usage:
- %
- % [SS,tau]=mtspectrum_of_spectrumc(data,win,tapers2spec,params)
- % Input:
- % Note units have to be consistent. See chronux.m for more information.
- % data (single channel) -- required
- % win (duration of the segments) - required.
- % tapers2spec (tapers used for the spectrum of spectrum computation) -
- % required in the form [use TW K] - Note that spectrum of the
- % spectrum involves computing two Fourier transforms. While the first
- % transform (of the original data) is always computed using the
- % multi-taper method, the current routine allows the user to specify
- % whether or not to use this method for the second transform. use=1
- % means use tapers, use=anything other than 1 means do not use the
- % multitaper method. If use=1, then tapers2spec controls the
- % smoothing for the second Fourier transform. Otherwise, a direct
- % Fourier transform is computed.
- % params: structure with fields tapers, pad, Fs, fpass, err, trialave
- % - optional
- % tapers : precalculated tapers from dpss or in the one of the following
- % forms:
- % (1) A numeric vector [TW K] where TW is the
- % time-bandwidth product and K is the number of
- % tapers to be used (less than or equal to
- % 2TW-1).
- % (2) A numeric vector [W T p] where W is the
- % bandwidth, T is the duration of the data and p
- % is an integer such that 2TW-p tapers are used. In
- % this form there is no default i.e. to specify
- % the bandwidth, you have to specify T and p as
- % well. Note that the units of W and T have to be
- % consistent: if W is in Hz, T must be in seconds
- % and vice versa. Note that these units must also
- % be consistent with the units of params.Fs: W can
- % be in Hz if and only if params.Fs is in Hz.
- % The default is to use form 1 with TW=3 and K=5
- %
- % pad (padding factor for the FFT) - optional (can take values -1,0,1,2...).
- % -1 corresponds to no padding, 0 corresponds to padding
- % to the next highest power of 2 etc.
- % e.g. For N = 500, if PAD = -1, we do not pad; if PAD = 0, we pad the FFT
- % to 512 points, if pad=1, we pad to 1024 points etc.
- % Defaults to 0.
- % Fs (sampling frequency) - optional. Default 1.
- % fpass (frequency band to be used in the calculation in the form
- % [fmin fmax])- optional.
- % Default all frequencies between 0 and
- % Fs/2
- % Output:
- % SS (second spectrum in form frequency x segments x trials x channels
- % if segave=0; in the form frequency x trials x channels if segave=1)
- % tau (frequencies)
- if nargin < 3; error('Need data,segment duration and taper information'); end;
- if nargin < 4 ; params=[]; end;
- [tapers,pad,Fs,fpass,err,trialave,params]=getparams(params);
- [N,Ntr,NC]=size(data);
- if Ntr==1; error('cannot compute second spectrum with just one trial'); end;
- dt=1/Fs; % sampling interval
- T=N*dt; % length of data in seconds
- E=0:win:T-win; % fictitious event triggers
- datatmp=createdatamatc(data(:,1,1),E,Fs,[0 win]); % segmented data
- Ninseg=size(datatmp,1); % number of samples in segments
- nfft=max(2^(nextpow2(Ninseg)+pad),Ninseg);
- [f,findx]=getfgrid(Fs,nfft,fpass);
- NF=length(findx);
- S=zeros(NF,Ntr,NC);
- for nc=1:NC;
- for ntr=1:Ntr;
- datatmp=change_row_to_column(data(:,ntr,nc));
- s=mtspectrumsegc(datatmp,win,params,1);
- S(:,ntr,nc)=s;
- end
- end;
- Sm=mean(S,2);
- if use==1;
- params.tapers=tapers2spec;
- params.Fs=1/(f(2)-f(1));
- params.fpass=[0 params.Fs/2];
- else;
- tau=[0:NF-1]/max(f);
- cosinefunc=cos(2*pi*f'*tau);
- end;
- for nc=1:NC;
- for ntr=1:Ntr;
- s=S(:,ntr,nc)./Sm(:,nc);
- s=log(s);
- if use==1;
- sflip=flipdim(s,1);
- s=[sflip(1:NF-1);s];
- [ss,tau]=mtspectrumc(s,params);
- SS(:,ntr,nc)=ss;
- else;
- s=repmat(s,[1 NF]).*cosinefunc;
- % subplot(221); plot(s(:,1));
- % subplot(222); plot(s(:,10));
- % subplot(223); plot(s(:,100));
- % subplot(224); plot(s(:,120));
- % pause
- s=trapz(f,s,1)';
- ss=s.*conj(s);
- % plot(tau,s)
- % pause
- end
- SS(:,ntr,nc)=ss;
- end
- end;
- SS=mean(SS,2);
|