This repository contains all data and program files to reproduce the results of my bachelor thesis with the title: 'Statistical Analysis of Asymmetrically Coupled Leech Neurons based on Voltage Traces'. Please read the 'README' file and the Wiki for further information.

Bjarne Schultze 7eacff9aee gin commit from YogaS7-BLS vor 2 Jahren
AdditionalFiles 805504ebb5 gin commit from YogaS7-BLS vor 2 Jahren
CleanDatasets e967ed74fa gin commit from YogaS7-BLS vor 2 Jahren
DataAnalysisToolbox 7eacff9aee gin commit from YogaS7-BLS vor 2 Jahren
DoubleRecordings e967ed74fa gin commit from YogaS7-BLS vor 2 Jahren
Decision_trees_plus_dataset_IDs.pdf 8f3f5dccfc gin commit from YogaS7-BLS vor 2 Jahren
LICENSE e967ed74fa gin commit from YogaS7-BLS vor 2 Jahren
README.md 4d980e0771 'README.md' ändern vor 2 Jahren

README.md

Statistical Analysis of Asymmetrically Coupled Leech Neurons based on Voltage Traces

This repository contains all data and code to reproduce the results and figures of the analysis that I performed for my bachelor thesis with the title: 'Statistical Analysis of Asymmetrically Coupled Leech Neurons based on Voltage Traces'. The data analysed here were recorded by Ihor Arkhypchuk and were kindly provided for this project. All electrophysiological recordings in this repositiory are double recordings of mechanosensory touch cells (type T3) and interneurons in the medicinal leech (Hirudo verbana). For further describtions of the contents in this repository please take a look at the according section below or visit the Wiki.

Abstract

Starting with a set of already existing intracellular double recordings the objective of this project was to develop a method to identify neurons based on simple criteria. Although often difficult, a clear cell identification is a central element for a meaningful interpretation of recordings. The method developed here uses criteria that were directly derived from the electrophysiological recordings as they provide a rather easily accessible piece of data. The datasets were recorded from touch (T) cells and various interneurons of the medicinal leech (Hirudo verbana). The leech has a simple and easily accessible nervous system which is nevertheless able to exhibit functionalities like those of complex vertebrate nervous systems. Additionally, many neurons of the leech can be identified almost reliably based on their size and location. To identify neurons in an anonymised dataset, a hierarchical cluster analysis was performed using five criteria: 1) the spike height of the interneuron, 2) the T cell response to a stimulation of the interneuron with negative current, 3) the presence of an interneuron response to T cell spikes, 4) the presence of electrical coupling from the T cell to the interneuron, and 5) the latency of the interneuron response after a T cell spike. The analysis showed that these five electrophysiological criteria were not sufficient to identify more than a few interneurons, but also the anatomical identification based on size and location of the cell somata had weak spots. However, combining the electrophysiological criteria with the rough location of the interneuron yielded a method that was able to identify most of the examined interneurons. Similar results were obtained with graphical clustering approaches using the three most prominent criteria: 1) the interneuron spike height, 2) the T cell response to a stimulation of the interneuron with negative current, and 3) the latency of the interneuron response after a T cell spike. The results of this project can support leech researchers in identifying interneurons as the criteria presented here are simple enough to apply them already during the recording. Moreover, due to its formalized and systemized approach the method established here can facilitate the learning of neuron identification for students or researchers who are new to the leech nervous system. An application of such simple identifications aids is believed to be possible and reasonable for other species as well.

Zusammenfassung

Ausgehend von einem bereits existierenden Datensatz mit intrazellulären Zellableitungen, war das Ziel dieses Projektes aus einfachen Kriterien eine Methode zu entwickeln, um Nervenzellen zu identifizieren. Eine eindeutige Identifizierung von Nervenzelltypen ist oft schwierig, aber zentral für eine aussagekräftige Interpretation von Zellableitungen. Da elektrophysiologischen Aufnahmen eher einfach zu erhalten sind, wurden die Kriterien für die hier entwickelte Methode direkt aus diesen Aufnahmen abgeleitet. Die Ableitungen stammen von Touch-Zellen (T-Zellen) und verschiedenen Interneuronen des medizinischen Blutegels (Hirudo verbana). Der Blutegel hat ein einfach gebautes und leicht zugängliches Nervensystem, welches trotzdem Funktionalitäten vergleichbar mit denen von komplexen Vertebraten Nervensystemen aufweist. Zusätzlich von Vorteil ist, dass viele Nervenzellen im Blutegel annährend zuverlässig durch ihre Größe und ihre Position identifiziert werden können. Für die Identifikation der Nervenzellen in einem anonymisierten Datensatz wurde eine hierarchische Cluster-Analyse mit den folgenden fünf Kriterien durchgeführt: 1) die Höhe der Aktionspotentiale des Interneurons, 2) die T-Zell Reaktion auf eine Stimulierung des Interneurons mit einem negativen Strom, 3) das Vorhandensein einer Reaktion des Interneurons auf Aktionspotentiale in der T-Zelle, 4) das Vorhandensein von einer elektrischen Verbindung von der T-Zelle zum Interneuron und 5) die Latenz der Interneuron Antwort auf ein T-Zell-Aktionspotential. Die Analyse ergab, dass die fünf genannten elektrophysiologischen Kriterien nicht hinreichend waren, um die Interneurone zu identifizieren und auch die anatomische Bestimmung basierend auf Größe und Position der Neurone zeigte Schwächen. Durch die Kombination der elektrophysiologischen Kriterien mit einer groben Positionsangabe entstand allerdings eine Methode, mit der die meisten Interneurone identifiziert werden konnten. Ähnliche Ergebnisse konnten mit graphischen Ansätzen erreicht werden, die auf den drei wichtigsten Kriterien beruhten: 1) der Höhe der Interneuron-Aktionspotentiale, 2) der T-Zell Reaktion auf eine Stimulierung des Interneurons mit einem negativen Strom und 3) der Latenz der Interneuron Antwort auf ein T-Zell-Aktionspotential. Die Ergebnisse dieses Projektes können Forschenden helfen Interneurone im Blutegel zu identifizieren, da die hier vorgestellten Kriterien unkompliziert genug sind, um bereits während der Zellableitung angewendet werden zu können. Darüber hinaus kann die hier entwickelte Methode dank ihres systematischen und formalisierten Ansatzes Studierenden und Forschenden helfen die Identifizierung von Nervenzellen zu erlernen. Die Anwendung solcher einfachen Identifizierungshilfen dürfte auch für andere Spezies möglich und sinnvoll sein.

Repository content

  • DoubleRecordings - contains the original data files like they were created during the recording. All datasets are anonymized regarding the information about wich cell was recorded.
  • CleanDatasets - contains the data files which are used by the analysis functions. Each data file in this directory is obtained from one datafile in the 'DoubleRecordings' directory, but the files in 'CleanDatasets' are adapted to the analysis and therefor have a simpler structure. Additionally, the files in this directory are free from test trials or obviously non-physiological behaviours. The code for the function to convert the original data files into the simpler version can be found in 'DataAnalysisToolbox' as 'clean_datasets.m'.
  • DataAnalysisToolbox - contains all MATLAB code files. Every method used in this project was implemented as a function and saved in a seperate file. For more detailed information about the code take a look at the Wiki.
  • AdditionalFiles - contains additional files which are needed for the analysis, i.e. information to enable different levels of deanonymisation and information to seleect the right trials when creating the 'clean' datasets. For information about all files please have a look at the Wiki.

Reproduction of the analysis

If you wish to reproduce and comprehend the analysis of this project, you need the whole content of this repository, but at least the three folders 'CleanDatasets', 'DataAnalysisToolbox' and 'AdditionalFiles'. The directory structure should be obtained and all functions should be called from the 'DataAnalysisToolbox' since all paths are relative. If you additionally want to re-create the simple datasets ('CleanDatasets'), you also need the folder 'DoubleRecordings'.

Reuse and license

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License. This applies to the whole content provided in this repository, i.e. all data files and the whole MATLAB code.

Author and contributors

The datasets were recorded and provided by Ihor Arkhypchuk. All MATLAB programs and functions were written by me, Bjarne Schultze, except for the function to remove the hum noise from the recordings (see 'DataAnalysisToolbox'), which was written by Go Ashida. For questions concerning the contents of this repository please contact me at bjarne.schultze@uni-oldenburg.de