123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 |
- %function [NNeighPerf, NormCpxty, NormPQCpxty]= WNNetsOverPQ_Kmeans(kk,mm,nRecall,Npeaks)
- clear all
- close all
- clc
- addpath('./SIFTs Library');
- addpath('./PQ Library');
- addpath('./WNN Library');
- addpath('./PQ Library/Yael Library');
- set(0,'defaulttextinterpreter','latex');
- % ---- Quantities of interest for the input Data Set --------------
- nDim=128; % Dimensionality of the Data
- NLearn=1e5; % Number of descriptors learn set
- Ntrain=1e6; % Number of descriptors train set
- Ntests=1e4; % Number of descriptors test set
- % ---- Quantities of interest for Fine Product Quantization -------
- kkf=256; % Number of clusters kmeans
- mmf=16; % Number of splits for PQ (divides 128)
- mDimf=nDim/mmf; % Dimensionality of splitted vectors
- nRecall=100;
- recAtR=[1 2 5 10 20 50 100 200 500 1000 2000 5000 10000];
- recAtR=recAtR(recAtR<=nRecall);
-
- % ---- Quantities of interest for Coarse Product Quantization -----
- kkc=10; % Number of clusters kmeans
- mmc=2; % Number of splits for PQ (divides 128)
- mDimc=nDim/mmc; % Dimensionality of splitted vectors
- % ---- Quantities of interest for Willshaw Networks ---------------
- nn=1e4; % Number of vectors per WNN
- qq=Ntrain/nn; % Number of different WNNs
- Npeaks=round([1, qq./[10 5 4 3 2 4/3 1]]); % Number of peaks to select
-
- resultsFileName=sprintf('./Result Sets/finePQ_m%d_k%d_coarseWNN_n%d_m%d_k%d.mat',mmf,kkf,nn,mmc,kkc);
-
- if 0%exist(resultsFileName,'file')==2
- %% LOADING RESULTS SECTION
- load(resultsFileName);
- else
- %% LOADING DATA SECTION
-
- bVSetMat=double(fvecs_read('../Data/sift/sift_learn.fvecs'));
- bWSetMat=double(fvecs_read('../Data/sift/sift_base.fvecs'));
- bZSetMat=double(fvecs_read('../Data/sift/sift_query.fvecs'));
- iMinDistExh=ivecs_read('../Data/sift/sift_groundtruth.ivecs')+1;
-
- %% COARSE PRODUCT QUANTIZATION SECTION
-
- coarseFileName=sprintf('./Coarse Quantization Indices and Dissimilarities/coarse_CWidx_sZSetMat_k%d_m%d.mat',kkc,mmc);
- if exist(coarseFileName,'file')==2
- load(coarseFileName);
- else
- str=sprintf('Coarse PQ: computing m=%1.0f, k=%1.0f subcentroids ',mmc,kkc);
- fprintf('%s%s ',str,('.')*ones(1,55-length(str)));
- CSubSetMatc=zeros(mDimc,kkc,mmc);
- CWidxc=zeros(Ntrain,mmc);
- sZSetMatc=zeros(kkc*mmc,Ntests);
- pperc=[];
- for jj=1:mmc
- [CSubSetMatc(:,:,jj), ~ ]=yael_kmeans(...
- single(bVSetMat((jj-1)*mDimc+1:jj*mDimc,:)),kkc, 'niter', 100, 'verbose', 0);
- ZDistMatc=EuclideanDistancesMat(bZSetMat((jj-1)*mDimc+1:jj*mDimc,:),CSubSetMatc(:,:,jj));
- [~,CWidxc(:,jj)]=Quantization(bWSetMat((jj-1)*mDimc+1:jj*mDimc,:),CSubSetMatc(:,:,jj));
- sZSetMatc((jj-1)*kkc+1:jj*kkc,:)=exp(-sqrt(ZDistMatc)');
- perc=sprintf('%2.2f%%',jj/mmc*100);
- fprintf(1,'%s',sprintf('\b')*ones(1,length(pperc)));
- fprintf(1,'%s',perc); pperc=perc;
- end
- clearvars CSubSetMatc ZDistMatc
- fprintf(1,'%s',sprintf('\b')*ones(1,length(pperc)));
- fprintf('Done.\n');
- save(coarseFileName,'CWidxc','sZSetMatc');
- end
-
- %% FINE PRODUCT QUANTIZATION SECTION
-
- fineFileName=sprintf('./Fine Quantization Indices and Distances/fine_CWidx_ZDistMat_k%d_m%d.mat',kkf,mmf);
- if exist(fineFileName,'file')==2
- load(fineFileName);
- else
- str=sprintf('Fine PQ: computing m=%1.0f, k=%1.0f subcentroids ',mmf,kkf);
- fprintf('%s%s ',str,('.')*ones(1,55-length(str)));
- CSubSetMatf=zeros(mDimf,kkf,mmf);
- CWidxf=zeros(Ntrain,mmf);
- ZDistMatf=zeros(Ntests,kkf,mmf);
- pperc=[];
- for jj=1:mmf
- [CSubSetMatf(:,:,jj), ~ ]=yael_kmeans(...
- single(bVSetMat((jj-1)*mDimf+1:jj*mDimf,:)),kkf, 'niter', 100, 'verbose', 0);
- ZDistMatf(:,:,jj)=EuclideanDistancesMat(bZSetMat((jj-1)*mDimf+1:jj*mDimf,:),CSubSetMatf(:,:,jj));
- [~,CWidxf(:,jj)]=Quantization(bWSetMat((jj-1)*mDimf+1:jj*mDimf,:),CSubSetMatf(:,:,jj));
- perc=sprintf('%2.2f%%',jj/mmf*100);
- fprintf(1,'%s',sprintf('\b')*ones(1,length(pperc)));
- fprintf(1,'%s',perc);pperc=perc;
- end
- clearvars CSubSetMatf bZSetMat
- fprintf(1,'%s',sprintf('\b')*ones(1,length(pperc)));
- fprintf('Done.\n');
- save(fineFileName,'CWidxf','ZDistMatf');
- end
- clearvars bWSetMat bVSetMat
- %% PREPROCESSING DATA TO STORE IN WNNets SECTION
- str=sprintf('Building Learning Data Sets ');
- fprintf('%s%s ',str,('.')*ones(1,55-length(str)));
- %permRand=randperm(Ntrain,qq);
-
- %% JUST FOR kkc=10 mmc=4
- %AllCentSet=[arrayfun(@(ll)ceil(ll/1000),1:10000);
- % repmat(arrayfun(@(ll)ceil(ll/100),1:1000),1,10);
- % repmat(arrayfun(@(ll)ceil(ll/10),1:100),1,100); repmat([1:10],1,1000)]';
- %% JUST FOR kkc=10 mmc=2
- AllCentSet=[arrayfun(@(ll)ceil(ll/10),1:100); repmat([1:10],1,10)]';
-
- learningNetsIdx=QuantHammingAllOfTheCanonicalIndices(CWidxc,AllCentSet);
-
- %learningNetsIdx=QuantHammingCanonicalIndices(CWidxc,permRand);
-
- LearningDistribution=hist(learningNetsIdx,1:qq);
- fprintf('Done.\n');
-
- eWDiffFeatsSplittedRpi(1:100)=struct('RunPermIndices',[]);
- eWDiffFeatsSplittedRci(1:100)=struct('RunCentroidsIndices',[]);
- multiCount=ones(1,qq);
- str=sprintf('Preprocessing Data for Learning ');
- fprintf('%s%s ',str,('.')*ones(1,55-length(str)));
- pperc=[];
- for ii=1:Ntrain
- eWDiffFeatsSplittedRpi(learningNetsIdx(ii)).RunPermIndices(multiCount(learningNetsIdx(ii)))=ii;
- eWDiffFeatsSplittedRci(learningNetsIdx(ii)).RunCentroidsIndices(:,multiCount(learningNetsIdx(ii)))=CWidxc(ii,:);
- multiCount(learningNetsIdx(ii))=multiCount(learningNetsIdx(ii))+1;
- perc=sprintf('%2.2f%%',ii/Ntrain*100);
- fprintf(1,'%s',sprintf('\b')*ones(1,length(pperc)));
- fprintf(1,'%s',perc); pperc=perc;
- end
- fprintf(1,'%s',sprintf('\b')*ones(1,length(pperc)));
- fprintf('Done.\n');
- clearvars eWSetMat permRand CWidxc %multiCount nStoredVec
- %% BUILDING WNNets AND SCORES COMPUTATION SECTION
-
- str=sprintf('Building %d Willshaw NNets and Computing Scores ',qq);
- fprintf('%s%s ',str,('.')*ones(1,55-length(str)));
- II=eye(kkc);
- P0=0;
- %Ntests=1;
- sX0=zeros(Ntests,qq);
- pperc=[];
- for jj=1:qq
- uniqCent=unique(eWDiffFeatsSplittedRci(jj).RunCentroidsIndices','rows');
- if ~isempty(uniqCent)
- WXsmatrix=BuildNetworkfromIdxs(uniqCent',II);
- P0=P0+mean(mean(WXsmatrix));
- sX0(:,jj)=diag(sZSetMatc(:,1:Ntests)'*double(WXsmatrix)*sZSetMatc(:,1:Ntests));
- end
- perc=sprintf('%2.2f%%',jj/qq*100);
- fprintf(1,'%s',sprintf('\b')*ones(1,length(pperc)));
- fprintf(1,'%s',perc);pperc=perc;
- end
- fprintf(1,'%s',sprintf('\b')*ones(1,length(pperc)));
- fprintf('Done.\n');
- avgP0=P0/qq;
- clearvars sZSetMatc eWDiffFeatsSplittedRsm WXsmatrix eWDiffFeatsSplittedRci uniqCent
-
- %% ADC COMPUTATION FOR PERFORMANCES COMPUTATION SECTION
-
- str=sprintf('Computing Performances: L=[%d:%d], recalls@[%d:%d] ',Npeaks(1),Npeaks(end),recAtR(1),recAtR(end));
- fprintf('%s%s ',str,('.')*ones(1,55-length(str)));
- NNeighPerf=zeros(length(recAtR),length(Npeaks));
- iXMinDistADC=zeros(1,nRecall);
- actIXMinDistADC=zeros(1,nRecall);
- [~,sortemp]=sort(sX0,2,'descend');
- NNmostLikely=sortemp(:,1:Npeaks(end))';
- clearvars sortemp
- pperc=[];
- for jj=1:Ntests
- for tt=1:length(Npeaks)
- if tt>1
- retIdxs=actIXMinDistADC;
- for ll=Npeaks(tt-1)+1:Npeaks(tt)
- retIdxs=[retIdxs, eWDiffFeatsSplittedRpi(NNmostLikely(ll,jj)).RunPermIndices];
- end
- usedVec(jj,tt)=length(retIdxs)-length(actIXMinDistADC);
- else
- retIdxs=[];
- for ll=1:Npeaks(tt)
- retIdxs=[retIdxs, eWDiffFeatsSplittedRpi(NNmostLikely(ll,jj)).RunPermIndices];
- end
- usedVec(jj,1)=length(retIdxs);
- end
- iXMinDistADC=AsymmetricDistanceComputationWDist(CWidxf(retIdxs,:)', ZDistMatf(jj,:,:), nRecall);
- numRetIdxs=length(retIdxs);
- if numRetIdxs >= nRecall
- actIXMinDistADC=retIdxs(iXMinDistADC);
- else
- actIXMinDistADC(1:numRetIdxs)=retIdxs(iXMinDistADC(1:numRetIdxs));
- actIXMinDistADC(numRetIdxs+1:end)=ones(1,nRecall-numRetIdxs);
- end
- NNeighPerf(:,tt) = NNeighPerf(:,tt)+ RecallTest(actIXMinDistADC,nRecall,iMinDistExh(:,jj))';
- perc=sprintf('%2.2f%%',((jj-1)*length(Npeaks)+tt)/(Ntests*length(Npeaks))*100);
- fprintf(1,'%s',sprintf('\b')*ones(1,length(pperc)));
- fprintf(1,'%s',perc);pperc=perc;
- end
- end
- NNeighPerf=NNeighPerf/Ntests;
- fprintf(1,'%s',sprintf('\b')*ones(1,length(pperc)));
- fprintf('Done.\n');
-
- clearvars SortQueryNetIdx actIXMinDistADC RetrievedIdxs bZSetMat CWidxf NNMostLikely eWDiffFeatsSplittedRpi sX0
-
- %% COMPUTATIONAL COST EVALUATION SECTION
-
- actNpeaks=mean(cumsum(usedVec')'./nn);
-
- Cpxty=kkf*nDim+kkc*nDim+avgP0*(mmc*kkc)^2*qq+actNpeaks*nn*mmf;
- NormCpxty=Cpxty/(nDim*Ntrain);
- NormPQCpxty=(kkf*nDim+mmf*Ntrain)/(nDim*Ntrain);
- NormNormCpxty=NormCpxty/NormPQCpxty;
-
- %% SAVING RESULTS SECTION
-
- save(resultsFileName,'NormCpxty','NormPQCpxty','NNeighPerf','Npeaks','actNpeaks','avgP0');
- end
-
- %% RESULTS VISUALIZATION SECTION
-
- figure();
- plot([NormCpxty(1:end-1) NormPQCpxty],NNeighPerf','x-'); hold on;
- for jj=1:length(actNpeaks)-1
- text(NormCpxty(jj),1.05,sprintf('L=%2.0f',actNpeaks(jj)*nn),'interpreter','latex');
- end
- plot(NormPQCpxty,NNeighPerf(:,end),'*');
- text(NormPQCpxty,1.05,'PQ','interpreter','latex');
- title(sprintf('Fine PQ $(k_f=%d, m_f=%d)$ + Coarse WNNets $(k_c=%d,m_c=%d,q=%d,n=%d)$',kkf,mmf,kkc,mmc,qq,nn));
- ylabel('Nearest Neighbour Search Performances','interpreter','latex');
- xlabel('Computational Cost (Normalized to Exhaustive Search)','interpreter','latex');
- h=legend('recall @1','recall @2','recall @5','recall @10','recall @20',...
- 'recall @50','recall @100','Location','southeast');
- grid on; grid minor;
- set(h,'interpreter','latex');
- ylim([0 1.1]);
- xlim([0 NormCpxty(end)+.005])
|