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Exercises for Dimensionality Reduction

The dataset for the following problems is contained in data for exercises.mat. You will
find the following variables:

Xplan: a 728 × 97 matrix of real data, where each row is a spike count vector across 97
simultaneously-recorded neurons in dorsal premotor cortex (PMd) of a macaque monkey1.
Spike counts are taken in a 200 ms bin while the monkey is planning to make an arm reach.
There are 91 trials for each of 8 reaching angles, for a total of 728 trials. Trials 1 to 91
correspond to reaching angle 1, trials 92 to 182 correspond to reach angle 2, etc.

Xsim: a 8× 2 matrix of simulated data, where each row is a data point.

1. Visualization of high-dimensional neural activity using PCA

First, we will apply PCA to Xplan to gain some intuition about plan activity in PMd.
The data points are xn ∈ RD (n = 1, ..., N), where D = 97 is the data dimensionality
and N = 728 is the number of data points.

(a) (5 points) Plot the square-rooted eigenvalue spectrum. If you had to identify an
elbow in the eigenvalue spectrum, how many dominant eigenvalues would there
be? What percentage of the overall variance is captured by the top 3 principal
components?

(b) (10 points) For the purposes of visualization, we’ll consider the PC space defined
by the top M = 3 eigenvectors. Project the data into the three-dimensional PC
space. Plot the projected points in Matlab using ‘plot3’, and color each dot
appropriately according to reaching angle (there should be a total of 728 dots).
Use your mouse to rotate the three-dimensional plot in Matlab. Show a view in
which the clusters are well-separated.

(c) (5 points) Define a matrix UM ∈ RD×M containing the top three eigenvectors
(i.e., PC directions), where UM(d, m) indicates the contribution of the dth neuron
to the mth principal component. Show the values in UM by calling ‘imagesc(UM )’.
(Note: Also call ‘colorbar’ to show the scale.) Are there are any obvious group-
ings among the neurons in each column of UM?

2. From PCA to PPCA and FA

1The neural data have been generously provided by the laboratory of Prof. Krishna Shenoy at Stanford

University. The data are to be used exclusively for educational purposes in this course.
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We will compare PCA, PPCA, and FA on a toy problem using the data in Xsim. The
data points are xn ∈ RD (n = 1, ..., N), where D = 2 is the data dimensionality and
N = 8 is the number of data points. We will project the data into a M = 1 dimensional
space.

(a) (10 points) Create one plot containing all of the following for PCA:

• Plot each data point xn as a black dot in a two-dimensional space.

• Plot the mean of the data µ as a big green point.

• Plot the PC space defined by u1 as a black line. (Hint: This line should pass
through µ.)

• Project each data point into the PC space, and plot each projected data point
x̂n as a red dot. (Hint: The projected points should lie on the u1 line.)

• Connect each data point xn with its projection x̂n using a red line. (Hint:
The red lines should be orthogonal to the PC space. To see this, you will
need to call ‘axis equal’ in Matlab.)

(b) (30 points) Implement the EM algorithm for PPCA in Matlab, and run the
algorithm on the data in Xsim. Plot the log data likelihood (

∑
N

n=1
logP (xn))

versus EM iteration. (Hint: The log data likelihood should increase monotonically
with EM iteration. You should run enough EM iterations to see a long, flat
plateau.)

(c) (5 points) Using the parameters found in part (b), what is the PPCA covariance
(WWT+σ2I)? If you did part (b) correctly, the PPCA covariance should be very
similar to the sample covariance.

(d) (10 points) Create one plot containing all of the following for PPCA:

• Plot each data point xn as a black dot in a two-dimensional space.

• Plot the mean of the data µ as a big green point.

• The PC space found by PPCA is defined by W , which in this case is a two-
dimensional vector. Check that PC space defined by W is identical to that
found by PCA. Plot the PC space as a black line. (Hint: If there is some small
discrepancy between the PC spaces found by PCA and PPCA, run more EM
iterations for PPCA.)

• Project each data point into the PC space using PPCA, and plot each pro-
jected data point x̂n = WE[zn | xn] + µ as a red dot. (Hint: The projected
points should lie on the line defined by W .)

• Connect each data point xn with its projection x̂n using a red line. Why are
the red lines no longer orthogonal to the PC space?

(e) (10 points) Implement EM algorithm for FA. You should be able to do this with
only a small modification to your PPCA code. Run the algorithm on the data in
Xsim. Plot the log data likelihood (

∑
N

n=1
logP (xn)) versus EM iteration. (Hint:
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The log data likelihood should increase monotonically with EM iteration. You
should run enough EM iterations to see a long, flat plateau.)

(f) (5 points) Using the parameters found in part (e), what is the FA covariance
(WWT + Ψ)? If you did part (e) correctly, the FA covariance should be very
similar to the sample covariance.

(g) (10 points) Create one plot containing all of the following for FA:

• Plot each data point xn as a black dot in a two-dimensional space.

• Plot the mean of the data µ as a big green point.

• The low-dimensional space found by FA is defined by W , which in this case
is a two-dimensional vector. Plot the low-dimensional space as a black line.
(Hint: This line should pass through µ.) Why is the low-dimensional space
found by FA different from that found by PCA and PPCA?

• Project each data point into the low-dimensional space using FA, and plot
each projected data point x̂n = WE[zn | xn] + µ as a red dot. (Hint: The
projected points should lie on the line defined by W .)

• Connect each data point xn with its projection x̂n using a red line.


