Bootstrap: docker From: continuumio/miniconda3:latest %files %post export PATH=/opt/conda/bin:$PATH mkdir -p /opt/scripts mkdir /opt/src/ wget https://gin.g-node.org/juaml/brainage/raw/master/More/entrypoint.sh -O /opt/scripts/entrypoint.sh wget https://gin.g-node.org/juaml/brainage/raw/master/More/setup.py -O /opt/src/setup.py wget https://gin.g-node.org/juaml/brainage/raw/master/More/pyproject.toml -O /opt/src/pyproject.toml wget https://gin.g-node.org/juaml/brainage/raw/master/More/predict_age_sing.py -O /opt/scripts/predict_age_sing.py mkdir -p /opt/masks wget https://gin.g-node.org/juaml/brainage/raw/master/More/masks/brainmask_12.8.nii -O /opt/masks/brainmask_12.8.nii mkdir -p /opt/trained_models wget https://gin.g-node.org/juaml/brainage/raw/master/More/trained_models/brainageR_S4_R4.gauss.models -O /opt/trained_models/brainageR.S4_R4.gauss.models wget https://gin.g-node.org/juaml/brainage/raw/master/More/trained_models/brainageR_S4_R4_pca.gauss.models -O /opt/trained_models/brainageR.S4_R4_pca.gauss.models wget https://gin.g-node.org/juaml/brainage/raw/master/More/trained_models/4sites.S0_R4.lasso.models -O /opt/trained_models/4sites.S0_R4.lasso.models wget https://gin.g-node.org/juaml/brainage/raw/master/More/trained_models/4sites.S4_R4.gauss.models -O /opt/trained_models/4sites.S4_R4.gauss.models wget https://gin.g-node.org/juaml/brainage/raw/master/More/trained_models/4sites.S4_R4_pca.gauss.models -O /opt/trained_models/4sites.S4_R4_pca.gauss.models wget https://gin.g-node.org/juaml/brainage/raw/master/More/trained_models/9datasets.S4_R4.gauss.models -O /opt/trained_models/9datasets.S4_R4.gauss.models wget https://gin.g-node.org/juaml/brainage/raw/master/More/trained_models/9datasets.S4_R4_pca.gauss.models -O /opt/trained_models/9datasets.S4_R4_pca.gauss.models mkdir /opt/src/brainage/ wget https://gin.g-node.org/juaml/brainage/raw/master/More/brainage/__init__.py -O /opt/src/brainage/__init__.py wget https://gin.g-node.org/juaml/brainage/raw/master/More/brainage/calculate_features.py -O /opt/src/brainage/calculate_features.py wget https://gin.g-node.org/juaml/brainage/raw/master/More/brainage/create_splits.py -O /opt/src/brainage/create_splits.py wget https://gin.g-node.org/juaml/brainage/raw/master/More/brainage/define_models.py -O /opt/src/brainage/define_models.py wget https://gin.g-node.org/juaml/brainage/raw/master/More/brainage/performance_metric.py -O /opt/src/brainage/performance_metric.py wget https://gin.g-node.org/juaml/brainage/raw/master/More/brainage/read_data.py -O /opt/src/brainage/read_data.py wget https://gin.g-node.org/juaml/brainage/raw/master/More/brainage/xgboost_adapted.py -O /opt/src/brainage/xgboost_adapted.py wget https://gin.g-node.org/juaml/brainage/raw/master/More/brainage/zscore.py -O /opt/src/brainage/zscore.py chmod 777 /tmp/ chmod 777 /opt/scripts/entrypoint.sh chmod 777 /opt/scripts/predict_age_sing.py chmod 777 /opt/masks/brainmask_12.8.nii apt-get update --allow-releaseinfo-change apt-get install -y --fix-missing libgomp1 wget dpkg NOW=`date` # Initialize conda conda --version conda create --name BA_env -c conda-forge python=3.9.1 numpy==1.22.3 matplotlib==3.5.1 nibabel==3.2.2 nilearn==0.9.1 pandas==1.4.2 scipy==1.8.0 seaborn==0.11.2 xgboost==1.6.1 scikit-learn==1.0.2 glmnet . /opt/conda/etc/profile.d/conda.sh conda activate BA_env pip install "julearn==0.2.5" pip install git+https://github.com/JamesRitchie/scikit-rvm.git@master cd /opt/src && pip install -e . %environment export PYTHONPATH=/opt/src %runscript echo "Container was created $NOW" echo "Arguments received: $*" # Activate environment conda init . /opt/conda/etc/profile.d/conda.sh conda activate BA_env # Running entrypoint.sh /opt/scripts/entrypoint.sh "$1" "$2" "$3" "$4" "$5" "$6" "$7" "$8" echo "Computation finished!"