Pro Git

Scott Chacon <<schacon@nui | . cone>

Table of Contents

IR 11 €00 1 (o o PP RPRTURPS 2
A €T (] o TS = = o S 2
2.1, ADOUL VEISION COMNEIOLouviiiiiitisiieieeieee ettt bbbttt nb e b enas 2
A AN 0o Al o [o YA«) T S 5
PG T € R =T S o TSP TSRSPPPPN 6
1 = | 1T o T RS 8
2.5, FIrSt-TIME GIt SELUD ..veeiveeeeiieitieieeie st esiesee s e ete s e ste e tesaeesteesesseesseeneesseesseensesseenseeneenseenes 10
P2 ST € o T o [T o TS 12
A U 010017 PSPPSR 12
G €L =T L o USSP 12
3.1. Getting @ Git REPOSITONYcciveeieeeesieeieseesieeieseese e tesreesseessesseesseeseesseesseesesseessesnessseensenns 12
3.2. Recording Changes to the REPOSITONYccveeerieiieiieseee e see e ae e eee s 14
3.3. Viewing the COMMIt HISIOMYcoiiiiiiee et 22
30 S 1o (o1 0o R I 1 LSS 27
3.5. WOrking With REMOLESocueiieiecie ettt n e sne e sneenes 29
30 T I o [oo RS 33
G A T o LS 3= 1 R o 36
G AU 0100172 PRSPPSO 38
T = o 11 o S 38
4.1, What @ BranCh ISoouoiiiiieee s 38
4.2. Basic Branching and MErQiNgccceveeieeeereeieseesieesieseesteeseeseessesseesseessesssesseessesssssseesees 42
4.3. BranCh ManaQEMENLcccceieeiuriierieeieseesteeeeseesteeseeseesseessesseesseesesseesseessesseesseessessenssennees 48
4.4, BranChing WOIKFIOWSc.ooiiiiiiicce ettt sne e 49
4.5. REMOLE BIaNChESceiiiiiiiiiieiiieeee ettt ettt e et sb et sne e 51
T L o= o SR 56
S N 11 010 0! YOS RTTR 61
5. GIt ON T8 SEIVEN ..ottt st bbbt bt st et e e et et e benbenae b 62
5.1, TNHE PrOIOCOIS ..ottt sttt st b e bbbt s bbb b ne e 62
5.2, GEtING GIt ON @ SEIVEN ...cveeieceesieee et ese et e et te e sse e e e e e steetesseesaeeeesneesseeneesnes 66
5.3. Generating Your SSH PUBIIC K@Ycuveeeiee et 67
5.4. Setting UP the SEIVEY ..ottt enneenns 68
5.5, PUDITC ACCESS ..ottt bbbttt b bbbttt b b nnis 70
5.6, GIWED ..ttt bbbt a bbb nb b b ne e 71
I A €1 (S SRS 72
ST €1 (o[=SSP 76
5.9. Gt DBEIMON ...ttt bbbt b et et et et et et e s beebeebe e e e ens 81
ST O [0S <o [TP SRS PPTRRN 83
5.10. SUMIMBIY ..ottt sttt ettt b e st e e s bt e e s ase e e s ase e e sase e e nsseeeanseeebneesabeeesnbeeennneeens 91
6. DISIIDULEA Gt ...ttt bbbt bt bt et e et b e e b 91
6.1. DiStributed WOTKFIOWSoouiiiiiiieieieeie s s 91
6.2. CoNtributing t0 @ PrOJECLoiueeiecieeee ettt nnn 93
6.3. MaintaiNiNg @ PrOJECEeoiiieieiieice ettt e s e e e e e reennenneens 109

6.4, SUMIMBIY ..veiieeieiteeeeitteestee e st e e st e sttt e bt e sbe e e s be e e sabe e e e sbe e e as b e e e bt e e e asbe e ebeeeeabeeennseeenareeenanee s 120
8 S I o PSSP 120
7.1, REVISION SEIECHION ..ottt bbb s s 121
7.2, INEIACtIVE SEAGING .veeveeeeieeesieeieeteesteeee st e e e e s te e e e e s reeaesaeesseesesseesseansesseesseeneesneensenneens 126
AR TS = 1 o USRS 129
A L= Y (T o I T (o S 132
7.5. DebUGOING WIth Gtoeeeeceeeceeee et st ae e sneenreennens 137
7.6, SUDMOAUIES ...ttt bbb b b ens 139
AV o)1= =LY, = o 1 oo S 145
AR S U 111107 Y PRSP 146
LI O (0] 1.4 T4 oo [SRS 146
8.1. Git CONFIQUIBLIONveeuveieeeiteeieeeese et e sttt e sr e e saeesbeeaeesreesseessesaeenseeneesneensennnens 147
8.2, Gt ALIITIDULES ...ttt bbbttt ettt bbb nenne e 154
8.3, G HOOKS ...ttt sttt e bbb aeene e e 160
8.4. An Example Git-Enforced POLICYccocveeeiiieie et 162
LRSI U 01010 7= PSRRI 170
9. Git aNd OLher SYSLEIMSccveciecieceee et r et e e e beeteeseesreeaeeneesseennas 170
O.1. Git N0 SUDVEISIONveiiiiiiiieieiesie ettt st be et et e st e sb e besbesbeeneeneenens 170
S IV 1T = (] o I (o TN OSSR 179
S TR U 010101 7= PRSP 186
O L A T 1= 1 7= KRS PPN 186
10.1. Plumbing and POICEIAINccoiieiieeecece ettt s 187
10.2. Gt ODJECES ...vevieiieiieiesie ettt bbb bttt et e b e nbesbennenneas 188
10.3. Git REFEIEINCES ...ttt st b ettt et et bbb e s enes 194
O o 1= TSRS 197
10.5. THE REFSPEC ...cveiiieieiesie ettt b bbbttt ettt bt nneens 199
10.6. TransSter PrOtOCOISccveieiiiisie sttt ettt nne e 201
10.7. Maintenance and Dala RECOVENYccvcieieeiieeieeieesieceesteeste e ste e sre e e s 205
FO.8. SUMIMEIYeiiiiiiieitie ettt ettt st e et e s e e st e e s ssbe e s abbe e sbeeesbeeesabeeesaneessabeeennreeens 210

1. Introduction

The introduction for the book could go here.

2. Getting Started

This chapter will be about getting started with Git. We will begin at the beginning by explaining some
background on version control tools, then move on to how to get Git running on your system and
finally how to get it setup to start working with. At the end of this chapter you should understand why
Git isaround, why you should use it and you should be all setup to do so.

2.1. About Version Control

What is version control, and why should you care? Version control is a system that records changes
to afile or set of files over time so that you can recall specific versions later. For the examplesin this
book you will use software source code as the files being version controlled, though in reality you can
do thiswith nearly any type of file on a computer.

Pro Git

If you are a graphic or web designer and want to keep every version of an image or layout (which you
would most certainly want to), aVersion Control System (VCS) isavery wise thing to use. It allows
you to revert files back to a previous state, revert the entire project back to a previous state, compare
changes over time, see who last modified something that might be causing a problem, who introduced
an issue and when, and more. Using a VCS also generally means that if you screw things up or lose
files, you can easily recover. In addition, you get all thisfor very little overhead.

2.1.1. Local Version Control Systems

Many peopl€’' s version-control method of choice isto copy files into another directory (perhaps a
time-stamped directory, if they’re clever). This approach is very common because it is so simple, but
itisaso incredibly error prone. It is easy to forget which directory you're in and accidentally write to
the wrong file or copy over files you don’t mean to.

To deal with thisissue, programmers long ago developed local VCSs that had a simple database that
kept all the changesto files under revision control (see Figure 1-1).

Local Computer

Checkout Version Database

One of the more popular VCS tools was a system called rcs, which is still distributed with many
computers today. Even the popular Mac OS X operating system includes the rcs command when you
install the Developer Tools. Thistool basicaly works by keeping patch sets (that is, the differences
between files) from one change to another in a special format on disk; it can then re-create what any
file looked like at any point in time by adding up all the patches.

2.1.2. Centralized Version Control Systems

The next major issue that people encounter is that they need to collaborate with devel opers on other
systems. To deal with this problem, Centralized Version Control Systems (CV CSs) were devel oped.
These systems, such as CV'S, Subversion, and Perforce, have asingle server that contains all the
versioned files, and a number of clients that check out files from that central place. For many years,
this has been the standard for version control (see Figure 1-2).

Pro Git

Computer A Central VCS Server

Checkout

Version Database
™ m

Checkout - m
/

This setup offers many advantages, especially over local VCSs. For example, everyone knowsto a
certain degree what everyone else on the project is doing. Administrators have fine-grained control
over who can do what; and it’sfar easier to administer a CVCSthan it isto deal with local databases
on every client.

However, this setup aso has some serious downsides. The most obvious is the single point of
failure that the centralized server represents. If that server goes down for an hour, then during that
hour nobody can collaborate at all or save versioned changes to anything they’ re working on. If

the hard disk the central database is on becomes corrupted, and proper backups haven't been kept,
you lose absolutely everything—the entire history of the project except whatever single snapshots
people happen to have on their local machines. Local VCS systems suffer from this same problem—
whenever you have the entire history of the project in asingle place, you risk losing everything.

2.1.3. Distributed Version Control Systems

Thisiswhere Distributed Version Control Systems (DVCSs) step in. InaDVCS (such as Git,
Mercurial, Bazaar or Darcs), clients don’t just check out the latest snapshot of the files: they fully
mirror the repository. Thusif any server dies, and these systems were collaborating viait, any of the
client repositories can be copied back up to the server to restore it. Every checkout isreally afull
backup of all the data (see Figure 1-3).

Pro Git

Server Computer

Version Database

version 2

version 1

Computer A Computer B
Version Database Version Database

version 3

A
Y

version 3
version 2

Furthermore, many of these systems deal pretty well with having several remote repositories they can
work with, so you can collaborate with different groups of peoplein different ways simultaneously
within the same project. This allows you to set up several types of workflows that aren’t possible in
centralized systems, such as hierarchical models.

2.2. A Short History of Git

Aswith many great thingsin life, Git began with a bit of creative destruction and fiery controversy.
The Linux kernel is an open source software project of fairly large scope. For most of the lifetime of
the Linux kernel maintenance (1991-2002), changes to the software were passed around as patches
and archived files. In 2002, the Linux kernel project began using a proprietary DV CS system called
BitKeeper.

In 2005, the relationship between the community that developed the Linux kernel and the commercial
company that developed BitKeeper broke down, and the tool’ s free-of-charge status was revoked.
This prompted the Linux development community (and in particular Linus Torvalds, the creator of
Linux) to develop their own tool based on some of the lessons they learned while using BitK eeper.
Some of the goals of the new system were as follows:

« Speed

* Simpledesign

 Strong support for non-linear development (thousands of parallel branches)

* Fully distributed

» Ableto handle large projects like the Linux kernel efficiently (speed and data size)

Sinceits birth in 2005, Git has evolved and matured to be easy to use and yet retain these initial
qualities. It’sincredibly fast, it’s very efficient with large projects, and it has an incredible branching
system for non-linear development (See Chapter 3).

Pro Git

2.3. Git Basics

So, what is Git in anutshell? Thisis an important section to absorb, because if you understand what
Git is and the fundamentals of how it works, then using Git effectively will probably be much easier
for you. Asyou learn Git, try to clear your mind of the things you may know about other VCSs,
such as Subversion and Perforce; doing so will help you avoid subtle confusion when using the tool.
Git stores and thinks about information much differently than these other systems, even though the
user interface isfairly similar; understanding those differences will help prevent you from becoming
confused while using it.

2.3.1. Snapshots, Not Differences

The major difference between Git and any other VCS (Subversion and friends included) is the way
Git thinks about its data. Conceptually, most other systems store information as alist of file-based
changes. These systems (CV'S, Subversion, Perforce, Bazaar, and so on) think of the information they
keep as a set of files and the changes made to each file over time, asillustrated in Figure 1-4.

Checkins over time -

(Version 1) (Version 2) (Version 3) (Version 4) (Version 5)

@
@ —G
GO —®)

Git doesn’'t think of or store its datathisway. Instead, Git thinks of its data more like a set of
snapshots of amini filesystem. Every time you commit, or save the state of your project in Git, it
basically takes a picture of what all your files ook like at that moment and stores a reference to that
snapshot. To be efficient, if files have not changed, Git doesn’t store the file again—just alink to the
previousidentical fileit has already stored. Git thinks about its data more like Figure 1-5.

Checkins over time »

Thisis an important distinction between Git and nearly al other VCSs. It makes Git reconsider almost
every aspect of version control that most other systems copied from the previous generation. This
makes Git more like amini filesystem with some incredibly powerful tools built on top of it, rather
than simply aVCS. We'll explore some of the benefits you gain by thinking of your data this way
when we cover Git branching in Chapter 3.

2.3.2. Nearly Every Operation Is Local

Most operationsin Git only need local files and resources to operate — generally no information is
needed from another computer on your network. If you’' re used to a CV CS where most operations

Pro Git

have that network latency overhead, this aspect of Git will make you think that the gods of speed have
blessed Git with unworldly powers. Because you have the entire history of the project right there on
your local disk, most operations seem almost instantaneous.

For example, to browse the history of the project, Git doesn’t need to go out to the server to get

the history and display it for you—it simply reads it directly from your local database. This means
you see the project history almost instantly. If you want to see the changes introduced between the
current version of afile and the file amonth ago, Git can look up the file a month ago and do alocal
difference calculation, instead of having to either ask aremote server to do it or pull an older version
of the file from the remote server to do it locally.

This also means that there is very little you can’'t do if you're offline or off VPN. If you get on an
airplane or atrain and want to do alittle work, you can commit happily until you get to a network
connection to upload. If you go home and can’'t get your VPN client working properly, you can still
work. In many other systems, doing so is either impossible or painful. In Perforce, for example, you
can’'t do much when you aren’t connected to the server; and in Subversion and CV'S, you can edit
files, but you can’t commit changes to your database (because your database is offline). This may not
seem like a huge deal, but you may be surprised what a big difference it can make.

2.3.3. Git Has Integrity

Everything in Git is check-summed beforeit is stored and is then referred to by that checksum. This
means it’ s impossible to change the contents of any file or directory without Git knowing about it.
Thisfunctionality is built into Git at the lowest levels and isintegral to its philosophy. You can't lose
information in transit or get file corruption without Git being able to detect it.

The mechanism that Git uses for this checksumming is called a SHA-1 hash. Thisis a 40-character
string composed of hexadecimal characters (0-9 and a—f) and calculated based on the contents of afile
or directory structure in Git. A SHA-1 hash looks something like this:

24b9da6552252987aa493b52f 8696cd6d3b00373

Y ou will seethese hash values al over the place in Git because it uses them so much. In fact, Git
stores everything not by file name but in the Git database addressabl e by the hash value of its
contents.

2.3.4. Git Generally Only Adds Data

When you do actions in Git, nearly all of them only add data to the Git database. It is very difficult to
get the system to do anything that is not undoable or to make it erase datain any way. Asin any VCS,
you can lose or mess up changes you haven’t committed yet; but after you commit a snapshot into Git,
itisvery difficult to lose, especially if you regularly push your database to another repository.

This makes using Git ajoy because we know we can experiment without the danger of severely
screwing things up. For amore in-depth look at how Git storesits data and how you can recover data
that seems lost, see “Under the Covers’ in Chapter 9.

2.3.5. The Three States

Now, pay attention. Thisis the main thing to remember about Git if you want the rest of your learning
process to go smoothly. Git has three main states that your files can reside in: committed, modified,
and staged. Committed means that the datais safely stored in your local database. Modified means

Pro Git

that you have changed the file but have not committed it to your database yet. Staged means that you
have marked a modified filein its current version to go into your next commit snapshot.

This leads us to the three main sections of a Git project: the Git directory, the working directory, and
the staging area.

Local Operations

working staging git directory
directory area (repository)

The Git directory iswhere Git stores the metadata and object database for your project. Thisis
the most important part of Git, and it iswhat is copied when you clone arepository from another
computer.

The working directory is a single checkout of one version of the project. These files are pulled out of
the compressed database in the Git directory and placed on disk for you to use or modify.

The staging areaisasimplefile, generally contained in your Git directory, that stores information
about what will go into your next commit. It's sometimes referred to as the index, but it’s becoming
standard to refer to it as the staging area.

The basic Git workflow goes something like this:
1. You modify filesin your working directory.
2. You stage the files, adding snapshots of them to your staging area.

3. You do acommit, which takes the files as they are in the staging area and stores that snapshot
permanently to your Git directory.

If aparticular version of afileisin the git directory, it's considered committed. If it’s modified but
has been added to the staging area, it is staged. And if it was changed since it was checked out but has
not been staged, it is modified. In Chapter 2, you' |l learn more about these states and how you can
either take advantage of them or skip the staged part entirely.

2.4. Installing Git

Let’s get into using some Git. First things first—you have to install it. Y ou can get it a number
of ways; the two major ones are to install it from source or to install an existing package for your
platform.

Pro Git

2.4.1. Installing from Source

If you can, it's generally useful to install Git from source, because you' |l get the most recent version.
Each version of Git tends to include useful Ul enhancements, so getting the latest version is often
the best route if you feel comfortable compiling software from source. It is also the case that many
Linux distributions contain very old packages; so unless you're on avery up-to-date distro or are
using backports, installing from source may be the best bet.

To install Git, you need to have the following libraries that Git depends on: curl, zlib, openssl, expat,
and libiconv. For example, if you’' re on a system that has yum (such as Fedora) or apt-get (such asa
Debian based system), you can use one of these commands to install all of the dependencies:

$ yuminstall curl-devel expat-devel gettext-devel \
openssl -devel zlib-devel

$ apt-get install Iibcurl4-gnutls-dev |ibexpatl-dev gettext \
libz-dev libssl-dev

When you have all the necessary dependencies, you can go ahead and grab the latest snapshot from
the Git web site:

http://git-scm con downl oad

Then, compile and install:

$ tar -zxf git-1.7.2. 2. tar.gz
$cdgit-1.7.2.2

$ make prefix=/usr/local al

$ sudo make prefix=/usr/local instal

After thisis done, you can aso get Git via Git itself for updates:

$ git clone git://git.kernel.org/pub/scmgit/git.git
2.4.2. Installing on Linux

If you want to install Git on Linux viaa binary installer, you can generally do so through the basic
package-management tool that comes with your distribution. If you' re on Fedora, you can use yum:

$ yuminstall git-core
Or if you're on a Debian-based distribution like Ubuntu, try apt-get:
$ apt-get install git-core

2.4.3. Installing on Mac

There are two easy waysto install Git on aMac. The easiest isto use the graphical Git installer, which
you can download from the Google Code page (see Figure 1-7):

http://code. googl e. coml p/ git-osx-installer

Pro Git

Custam Install on “Scotts Computar
Facksge hams AgTion
& Inbrodwction # Cir Iretnall

¥ amend PATH and MANPATH for git Iritall
i Deaticaticon Sal ¥

o insLallation Typs

Spgre REgebed: 108 i Aerrneg 14.8CE

" Continge |

The other major way isto install Git viaMacPorts (ht t p: / / www. macports. or g). If you have
MacPortsinstalled, install Git via

$ sudo port install git-core +svn +doc +bash_conpl etion +gitweb

You don't haveto add al the extras, but you'll probably want to include +svn in case you ever have to
use Git with Subversion repositories (see Chapter 8).

2.4.4. Installing on Windows

Installing Git on Windows is very easy. The msysGit project has one of the easier installation
procedures. Simply download the installer exe file from the Google Code page, and run it:

http:// code. googl e. conl p/ nsysgi t

After it'sinstalled, you have both a command-line version (including an SSH client that will come in
handy later) and the standard GUI.

2.5. First-Time Git Setup

Now that you have Git on your system, you'll want to do afew things to customize your Git
environment. Y ou should have to do these things only once; they’ Il stick around between upgrades.
Y ou can also change them at any time by running through the commands again.

Git comeswith atool called git config that lets you get and set configuration variables that control all
aspects of how Git looks and operates. These variables can be stored in three different places:

» /etc/gitconfigfile: Contains valuesfor every user on the system and all their repositories. If you
pass the option™ --system” togit confi g, it reads and writes from thisfile specifically.

» ~/.gitconfig file: Specific to your user. Y ou can make Git read and write to this file specifically
by passing the - - gl obal option.

10

Pro Git

» configfilein the git directory (that is, . gi t / conf i g) of whatever repository you' re currently using:
Specific to that single repository. Each level overrides valuesin the previous level, so valuesin
.git/configtrumpthosein/etc/gitconfig.

On Windows systems, Git looks for the . gi t confi g file in the $HOVE directory (C: \ Docunment s and
Set t i ngs\ $USER for most people). It also still looks for /etc/gitconfig, although it’ s relative to the
M Sys root, which is wherever you decide to install Git on your Windows system when you run the
instaler.

2.5.1. Your ldentity

The first thing you should do when you install Git isto set your user name and e-mail address. Thisis
important because every Git commit uses this information, and it’s immutably baked into the commits
you pass around:

$ git config --global user.name "John Doe"
$ git config --global user.enmil johndoe@xanple.com

Again, you need to do this only onceif you passthe - - gl obal option, because then Git will aways
use that information for anything you do on that system. If you want to override this with a different
name or e-mail address for specific projects, you can run the command without the - - gl obal option
when you'rein that project.

2.5.2. Your Editor

Now that your identity is set up, you can configure the default text editor that will be used when Git
needs you to type in amessage. By default, Git uses your system’s default editor, which is generally
Vi or Vim. If you want to use a different text editor, such as Emacs, you can do the following:

$ git config --global core.editor emacs

2.5.3. Your Diff Tool

Another useful option you may want to configure is the default diff tool to use to resolve merge
conflicts. Say you want to use vimdiff:

$ git config --global nerge.tool vindiff

Git accepts kdiff3, tkdiff, meld, xxdiff, emerge, vimdiff, gvimdiff, ecmerge, and opendiff asvalid
merge tools. Y ou can also set up a custom tool; see Chapter 7 for more information about doing that.

2.5.4. Checking Your Settings

If you want to check your settings, you can usethegit config --1ist commandtolist all the
settings Git can find at that point:

$ git config --1ist

user. nanme=Scott Chacon

user. enmi | =schacon@nmai | . com
col or. status=auto

col or. branch=aut o

11

Pro Git

color.interactive=auto
color.diff=auto

Y ou may see keys more than once, because Git reads the same key from different files (/ et c/
gi tconfigand~/.gitconfig, for example). In this case, Git uses the last value for each unique key
it sees.

Y ou can also check what Git thinks a specific key’svalueisby typinggi t config {key}:

$ git config user.nane
Scott Chacon

2.6. Getting Help

If you ever need help while using Git, there are three ways to get the manual page (manpage) help for
any of the Git commands:

$ git help <verb>
$ git <verb> --help
$ man git-<verb>

For example, you can get the manpage help for the config command by running
$ git help config

These commands are nice because you can access them anywhere, even offline. If the manpages and
this book aren’t enough and you need in-person help, you can try the #gi t or #gi t hub channel on the
Freenode IRC server (irc.freenode.net). These channels are regularly filled with hundreds of people
who are all very knowledgeable about Git and are often willing to help.

2.7. Summary

Y ou should have a basic understanding of what Git is and how it’s different from the CVCS you may
have been using. Y ou should also now have aworking version of Git on your system that’s set up
with your personal identity. It’s now time to learn some Git basics.

3. Git Basics

If you can read only one chapter to get going with Git, thisisit. This chapter covers every basic
command you need to do the vast majority of the things you'll eventually spend your time doing with
Git. By the end of the chapter, you should be able to configure and initialize a repository, begin and
stop tracking files, and stage and commit changes. We'll also show you how to set up Git to ignore
certain files and file patterns, how to undo mistakes quickly and easily, how to browse the history of
your project and view changes between commits, and how to push and pull from remote repositories.

3.1. Getting a Git Repository

Y ou can get a Git project using two main approaches. The first takes an existing project or directory
and importsit into Git. The second clones an existing Git repository from another server.

12

Pro Git

3.1.1. Initializing a Repository in an Existing Directory

If you're starting to track an existing project in Git, you need to go to the project’ s directory and type
$git init

This creates a new subdirectory named .git that contains all of your necessary repository files— a
Git repository skeleton. At this point, nothing in your project is tracked yet. (See Chapter 9 for more
information about exactly what files are contained in the . gi t directory you just created.)

If you want to start version-controlling existing files (as opposed to an empty directory), you should
probably begin tracking those files and do an initial commit. Y ou can accomplish that with afew git
add commands that specify the files you want to track, followed by a commit:

$git add *.c
$ git add READVE
$ git commt -m'initial project version

WEe'll go over what these commands do in just aminute. At this point, you have a Git repository with
tracked filesand an initial commit.

3.1.2. Cloning an Existing Repository

If you want to get a copy of an existing Git repository — for example, a project you'd like to
contribute to — the command you need is git clone. If you're familiar with other VCS systems such as
Subversion, you'll notice that the command is clone and not checkout. Thisis an important distinction
— Git receives a copy of nearly all datathat the server has. Every version of every file for the history
of the project is pulled down whenyou rungi t cl one. Infact, if your server disk gets corrupted,

you can use any of the clones on any client to set the server back to the state it was in when it was
cloned (you may lose some server-side hooks and such, but all the versioned data would be there —
see Chapter 4 for more details).

You clone arepository withgit cl one [url]. For example, if you want to clone the Ruby Git
library called Grit, you can do so like this:

$ git clone git://github.con schacon/grit.git

That creates a directory named "grit", initializesa. gi t directory insideit, pulls down al the data
for that repository, and checks out a working copy of the latest version. If you go into the new gri t
directory, you'll seethe project filesin there, ready to be worked on or used. If you want to clone
the repository into a directory named something other than grit, you can specify that as the next
command-line option:

$ git clone git://github.com schacon/grit.git nygrit
That command does the same thing as the previous one, but the target directory is called myqgrit.

Git has a number of different transfer protocols you can use. The previous example usesthegit://
protocol, but you may also seehttp(s):// or user @er ver: / pat h. gi t, which usesthe SSH transfer
protocol. Chapter 4 will introduce all of the available options the server can set up to access your Git
repository and the pros and cons of each.

13

Pro Git

3.2. Recording Changes to the Repository

Y ou have abonafide Git repository and a checkout or working copy of the filesfor that project. You
need to make some changes and commit snapshots of those changes into your repository each time the
project reaches a state you want to record.

Remember that each file in your working directory can be in one of two states: tracked or untracked.
Tracked files are files that were in the last snapshot; they can be unmodified, modified, or staged.
Untracked files are everything else - any filesin your working directory that were not in your last
snapshot and are not in your staging area. When you first clone arepository, al of your fileswill be
tracked and unmodified because you just checked them out and haven’t edited anything.

Asyou edit files, Git sees them as modified, because you’ ve changed them since your last commit.
Y ou stage these modified files and then commit al your staged changes, and the cycle repeats. This
lifecycleisillustrated in Figure 2-1.

File Status Lifecycle

= (=) (=) @D

3.2.1. Checking the Status of Your Files

The main tool you use to determine which files are in which state is the git status command. If you run
this command directly after a clone, you should see something like this:

$ git status
On branch naster
nothing to conmmit (working directory clean)

This means you have a clean working directory — in other words, there are no tracked and modified
files. Git also doesn’t see any untracked files, or they would be listed here. Finally, the command tells
you which branch you' re on. For now, that is always master, which is the default; you won't worry
about it here. The next chapter will go over branches and references in detail.

Let’s say you add a new file to your project, asimple README file. If thefile didn’t exist before, and
yourungit status, you seeyour untracked file like so:

$ vi m READVE

$ git status

On branch master

Untracked files:

(use "git add <file>..." to include in what will be comitted)
#

README

14

Pro Git

not hi ng added to commit but untracked files present (use "git add" to track)

Y ou can see that your new README file is untracked, because it’ s under the “Untracked files’
heading in your status output. Untracked basically means that Git sees afile you didn’'t havein the
previous snapshot (commit); Git won't start including it in your commit snapshots until you explicitly
tell it to do so. It does this so you don’t accidentally begin including generated binary files or other
filesthat you did not mean to include. Y ou do want to start including README, so let’s start tracking
thefile.

3.2.2. Tracking New Files

In order to begin tracking anew file, you use the command gi t add. To begin tracking the README
file, you can run this:

$ git add README

If you run your status command again, you can see that your README fileis now tracked and
staged:

$ git status

On branch naster

Changes to be commtted:

(use "git reset HEAD <file>..." to unstage)
#

#

#

new fil e: READVE

You can tell that it’s staged because it’s under the “ Changes to be committed” heading. If you
commit at this point, the version of the file at the time you ran git add is what will be in the historical
snapshot. Y ou may recall that when you ran git init earlier, you then ran git add (files) — that wasto
begin tracking filesin your directory. The git add command takes a path name for either afileor a
directory; if it'sadirectory, the command adds al the filesin that directory recursively.

3.2.3. Staging Modified Files

Let’s change afile that was already tracked. If you change a previoudly tracked file called
benchmar ks. r b and then run your st at us command again, you get something that looks like this:

$ git status
On branch master
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

Z new file: READMVE

z Changed but not updat ed:

(use "git add <file> .." to update what will be committed)
Z nodi fi ed: benchmarks. rb

#

The benchmarks.rb file appears under a section named “Changed but not updated” — which means
that afile that is tracked has been modified in the working directory but not yet staged. To stage it,
you runthegit add command (it's a multipurpose command — you use it to begin tracking new

15

Pro Git

files, to stage files, and to do other things like marking merge-conflicted files as resolved). Let’srun
gi t add now to stage the benchmarks.rb file, and then run gi t st at us again:

$ git add benchmarks.rb

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)
#

newfile: READNVE

nodified: benchmarks. rb

#

Both files are staged and will go into your next commit. At this point, suppose you remember one
little change that you want to make in benchmarks.rb before you commit it. Y ou open it again and
make that change, and you' re ready to commit. However, let’srungi t st at us one more time:

vi m benchmarks. rb
git status
On branch naster
Changes to be comm tted:
(use "git reset HEAD <file>..." to unstage)

new file: READIVE
nodi fi ed: benchmarks.rb

Changed but not updat ed:
(use "git add <file>. .." to update what will be commtted)

nodi fi ed: benchmarks.rb

HFHFRITHFHFIFEHRIFTHERHFHTHASD

What the heck? Now benchmarks.rb is listed as both staged and unstaged. How is that possible? It
turns out that Git stages afile exactly asit is when you run the git add command. If you commit now,
the version of benchmarks.rb asit was when you last ran the git add command is how it will go into
the commit, not the version of the file asit looks in your working directory when you run git commit.
If you modify afile after yourungit add, you havetorungit add again to stage the latest version
of thefile:

$ git add benchmarks.rb

$ git status

On branch naster

Changes to be commtted:

(use "git reset HEAD <file>..." to unstage)
#

new file: READIVE

nodified: benchmarks. rb

#

3.2.4. Ignoring Files

Often, you'll have aclass of files that you don’t want Git to automatically add or even show you
as being untracked. These are generally automatically generated files such aslog files or files
produced by your build system. In such cases, you can create afile listing patterns to match them
named .gitignore. Here is an example .gitignore file:

$ cat .gitignore

16

Pro Git

*. [oa]

*

Thefirst line tells Git to ignore any files ending in .0 or .a— object and archive files that may be the
product of building your code. The second line tells Git to ignore al files that end with atilde (~),
which is used by many text editors such as Emacs to mark temporary files. Y ou may also include a
log, tmp, or pid directory; automatically generated documentation; and so on. Setting up a.gitignore
file before you get going is generally a good idea so you don’t accidentally commit files that you
really don’t want in your Git repository.

The rulesfor the patterns you can put in the .gitignore file are as follows:

Blank lines or lines starting with # are ignored.

Standard glob patterns work.

Y ou can end patterns with aforward slash (/) to specify a directory.

Y ou can hegate a pattern by starting it with an exclamation point (!).

Glob patterns are like simplified regular expressions that shells use. An asterisk (*) matches zero or
more characters; [abc] matches any character inside the brackets (in this case a, b, or ¢); aquestion
mark (?) matches a single character; and brackets enclosing characters separated by a hyphen([0- 9])
matches any character between them (in this case O through 9) .

Here is another example .gitignore file:

a comrent - this is ignored

*.a #no .a files

Ilib.a # but do track lib.a, even though you're ignoring .a files above
/ TODO # only ignore the root TODO file, not subdir/TODO

bui | d/ # ignore all files in the build/ directory

doc/ *.txt # ignore doc/notes.txt, but not doc/server/arch.txt

3.2.5. Viewing Your Staged and Unstaged Changes

If thegit status command istoo vague for you — you want to know exactly what you changed,
not just which files were changed — you can usethegi t di ff command. We'll cover git diff

in more detail later; but you'll probably use it most often to answer these two questions: What have
you changed but not yet staged? And what have you staged that you are about to commit? Although
git status answersthose questions very generally, gi t di ff shows you the exact lines added and
removed — the patch, asit were.

Let’s say you edit and stage the README file again and then edit the benchmarks.rb file without
staging it. If you run your st at us command, you once again see something like this:

$ git status

On branch naster

Changes to be comm tted:

(use "git reset HEAD <file>..." to unstage)
#

new file: READVE

#

#

Changed but not updat ed:

17

Pro Git

(use "git add <file>. .." to update what will be commtted)

#
#
nodified: benchmarks.rb
#

To see what you' ve changed but not yet staged, typegi t di f f with no other arguments:

$git diff
diff --git a/benchmarks.rb b/benchmarks.rb
i ndex 3cb747f..da65585 100644
--- albenchmarks.rb
+++ b/ benchmarks.rb
@ -36,6 +36,10 @@ def mmin
@ommi t. parents[0].parents[0]. parents[O0]
end

run_code(x, 'conmits 1') do
git.conmits. size
end

+ 4+ + +

run_code(x, 'conmits 2') do
log = git.conmits(' naster', 15)
| 0g. si ze

That command compares what is in your working directory with what isin your staging area. The
result tells you the changes you’' ve made that you haven't yet staged.

If you want to see what you’ ve staged that will go into your next commit, you canusegit diff --
cached. (In Git versions 1.6.1 and later, you can alsousegit diff --staged, which may be easier
to remember.) This command compares your staged changes to your last commit:

$ git diff --cached

diff --git a/ READVE b/ READVE

new file node 100644

i ndex 0000000. .03902a1

--- [dev/nul

+++ b/ README2

@-0,0 +1,5 @@

+grit

+ by Tom Preston-Werner, Chris Wanstrath
+ http://github. com noj ombo/ grit

+

+Git is a Ruby library for extracting information froma Gt repository

It'simportant to notethat gi t di ff by itself doesn’t show all changes made since your last commit
— only changes that are still unstaged. This can be confusing, because if you' ve staged all of your
changes, gi t di ff will give you no output.

For another example, if you stage the benchmarks.rb file and then edit it, you can usegit diff to see
the changes in the file that are staged and the changes that are unstaged:

$ git add benchmarks.rb

$ echo '"# test line' >> benchmarks.rb
$ git status

On branch nmaster

#

#

#

Changes to be committed:

18

Pro Git

nodified: benchmarks.rb
#

Changed but not updat ed:

#

nodified: benchmarks.rb
#

Now you can usegit diff toseewhat isstill unstaged

$git diff
diff --git a/benchmarks.rb b/benchmarks.rb
i ndex e445e28..86b2f 7c 100644
--- albenchmarks.rb
+++ b/ benchmarks.rb
@-127,3 +127,4 @@ end
mai n()

##pp Git::d tRuby.cache client.stats
+# test line

andgit diff --cached toseewhat you've staged so far:

$ git diff --cached
diff --git a/benchmarks.rb b/benchmarks.rb
i ndex 3cb747f..e445e28 100644
--- albenchmarks.rb
+++ b/ benchmarks.rb
@-36,6 +36,10 @@ def main
@onmit. parents[0].parents[0]. parents[O0]
end

run_code(x, 'conmits 1') do
git.conmits. size
end

+ 4+ + +

run_code(x, 'conmits 2') do
log = git.conmits(' naster', 15)
| 0g. si ze

3.2.6. Committing Your Changes

Now that your staging areais set up the way you want it, you can commit your changes. Remember
that anything that is still unstaged — any files you have created or modified that you haven't run gi t
add on since you edited them — won't go into this commit. They will stay as modified files on your
disk. Inthiscase, thelast timeyourangit st at us, you saw that everything was staged, so you're
ready to commit your changes. The simplest way to commit istotypegit commit:

$ git commit

Doing so launches your editor of choice. (Thisis set by your shell’s $EDI TOR environment variable —
usually vim or emacs, although you can configure it with whatever you want using thegit config
--gl obal core. editor command asyou saw in Chapter 1).

The editor displays the following text (this exampleisaVim screen):

Pl ease enter the conmt nessage for your changes. Lines starting
with '# wll be ignored, and an enpty nmessage aborts the comit.

19

Pro Git

On branch master
Changes to be commtted:

(use "git reset HEAD <file>. .." to unstage)
#

new file: READVE

nodi fi ed: benchmarks. rb

".git/COW T_EDI TM5G' 10L, 283C

Y ou can see that the default commit message contains the latest output of thegi t st at us command
commented out and one empty line on top. Y ou can remove these comments and type your commit
message, or you can leave them there to help you remember what you’ re committing. (For an even
more explicit reminder of what you’ ve modified, you can passthe - v optiontogit commit . Doing so
also puts the diff of your change in the editor so you can see exactly what you did.) When you exit the
editor, Git creates your commit with that commit message (with the comments and diff stripped out).

Alternatively, you can type your commit message inline with the conmi t command by specifying it
after a-mflag, like this:

$ git coomit -m"Story 182: Fix benchmarks for speed"
[master]: created 463dc4f: "Fix benchmarks for speed"
2 files changed, 3 insertions(+), 0 deletions(-)
create node 100644 READVE

Now you’ve created your first commit! Y ou can see that the commit has given you some output about
itself: which branch you committed to (master), what SHA-1 checksum the commit has (463dc4f),
how many files were changed, and statistics about lines added and removed in the commit.

Remember that the commit records the snapshot you set up in your staging area. Anything you didn’t
stage is till sitting there modified; you can do another commit to add it to your history. Every time
you perform a commit, you’ re recording a snapshot of your project that you can revert to or compare
to later.

3.2.7. Skipping the Staging Area

Although it can be amazingly useful for crafting commits exactly how you want them, the staging
areais sometimes a bit more complex than you need in your workflow. If you want to skip the staging
area, Git provides a simple shortcut. Providing the - a option to thegi t conmi t command makes Git
automatically stage every filethat is aready tracked before doing the commit, letting you skip the gi t
add part:

git status

$
On branch nmster

#

Changed but not updat ed:

#

nodified: benchmarks.rb
#
$

git coomit -a -m'added new benchmar ks
[master 83e38c7] added new benchmar ks
1 files changed, 5 insertions(+), O deletions(-)

Notice how you don't haveto run gi t add on the benchmarks.rb file in this case before you commit.

20

Pro Git

3.2.8. Removing Files

To remove afile from Git, you have to remove it from your tracked files (more accurately, remove it
from your staging area) and then commit. Thegi t r mcommand does that and also removes the file
from your working directory so you don’t see it as an untracked file next time around.

If you simply remove the file from your working directory, it shows up under the “Changed but not
updated” (that is, unstaged) area of your gi t st at us output:

rmgrit.genspec
git status
On branch naster

(use "git add/rm<file> .." to update what will be conmitted)

$

$

#

#

Changed but not updat ed:
#

#

del et ed: grit.genspec
#

Then, if yourungit rm it stagesthefile’ sremoval:

$ git rmagrit.genspec
rm'grit.genspec’

$ git status

On branch naster

#

Changes to be commtted:

(use "git reset HEAD <file>..." to unstage)
#

del et ed: grit.genspec

#

The next time you commit, the file will be gone and no longer tracked. If you modified the file and
added it to the index already, you must force the removal with the - f option. Thisis a safety feature
to prevent accidental removal of data that hasn't yet been recorded in a snapshot and that can’t be
recovered from Git.

Another useful thing you may want to do isto keep the file in your working tree but remove it from
your staging area. In other words, you may want to keep the file on your hard drive but not have Git
track it anymore. Thisis particularly useful if you forgot to add something to your . gi ti gnor e file
and accidentally added it, like alarge log file or abunch of . a compiled files. To do this, use the - -

cached option:

$ git rm--cached readne. txt

Y ou can pass files, directories, and file-glob patternsto thegi t r mcommand. That means you can do
things such as

$git rmlog/*.10g

Note the backslash (\) in front of the . Thisis necessary because Git does its own filename expansion
in addition to your shell’ s filename expansion. This command removes all files that havethe. | og
extensioninthel og/ directory. Or, you can do something like this:

$git rm*~

21

Pro Git

This command removes dl files that end with ~.

3.2.9. Moving Files

Unlike many other VCS systems, Git doesn’'t explicitly track file movement. If you rename afilein
Git, no metadatais stored in Git that tells it you renamed the file. However, Git is pretty smart about
figuring that out after the fact — we' Il deal with detecting file movement a bit |ater.

Thusit’sabit confusing that Git has am/ command. If you want to rename afilein Git, you can run
something like

$git nv file fromfile_ to

and it works fine. In fact, if you run something like this and look at the status, you'll see that Git
considersit arenamed file:

git mv README. t xt README

git status

On branch master

Your branch is ahead of 'origin/nmaster' by 1 comit.

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

renanmed: README. t xt -> README

HHEHIFHHREHASS

However, thisis equivalent to running something like this:

$ nmv README. t xt README
$ git rm README. t xt
$ git add README

Git figures out that it’s arename implicitly, so it doesn’t matter if you rename afile that way or

with the mv command. The only real differenceisthat mv is one command instead of three— it'sa
convenience function. More important, you can use any tool you like to rename afile, and address the
add/rm later, before you commit.

3.3. Viewing the Commit History

After you have created several commits, or if you have cloned a repository with an existing commit
history, you'll probably want to look back to see what has happened. The most basic and powerful
tool to do thisisthegit |1 og command.

These examples use avery simple project called ssmplegit that | often use for demonstrations. To get
the project, run

git clone git://github.conlschacon/sinplegit-progit.git
Whenyourungit | og inthisproject, you should get output that |ooks something like this:
$git log

conmit ca82a6df f817ec66f44342007202690a93763949
Aut hor: Scott Chacon <schacon@ee-nail.conp

22

Pro Git

Dat e: Mon Mar 17 21:52:11 2008 -0700
changed the versi on nunber

conmit 085bb3bch608ele8451d4b2432f 8ecbe6306e7e7
Aut hor: Scott Chacon <schacon@ee-nuail.conp
Dat e: Sat Mar 15 16:40: 33 2008 -0700

renoved unnecessary test code

commit allbef 06a3f 659402f e7563abf 99ad00de2209e6
Aut hor: Scott Chacon <schacon@ee-mail.conp
Dat e: Sat Mar 15 10: 31:28 2008 -0700

first commt

By default, with no arguments, gi t | og lists the commits made in that repository in reverse
chronological order. That is, the most recent commits show up first. Asyou can see, this command
lists each commit with its SHA-1 checksum, the author’ s name and e-mail, the date written, and the

commit message.

A huge number and variety of optionstothegit | og command are available to show you exactly
what you' re looking for. Here, we'll show you some of the most-used options.

One of the more helpful optionsis - p, which shows the diff introduced in each commit. Y ou can also

use - 2, which limits the output to only the last two entries:

$git log -p -2

conmit ca82a6df f817ec66f44342007202690a93763949
Aut hor: Scott Chacon <schacon@ee-nuail.conp

Dat e: Mon Mar 17 21:52:11 2008 -0700

changed the versi on nunber

diff --git a/Rakefile b/Rakefile

i ndex a874b73..8f 94139 100644

--- al Rakefile

+++ b/ Rakefile

@-5,7 +5,7 @@require 'rake/ genmpackaget ask'
spec = Gem : Speci fication.new do |s|

- S.version = "0.1.0"
+ S.version = "0.1.1"
s. aut hor = "Scott Chacon"

commit 085bb3bch608e1e8451d4b2432f 8eche6306e7e7
Aut hor: Scott Chacon <schacon@ee-mail.conp
Dat e: Sat Mar 15 16:40:33 2008 -0700

renoved unnecessary test code

diff --git a/lib/sinplegit.rb b/lib/sinplegit.rb
i ndex aOa60ae.. 47c6340 100644
--- allib/sinplegit.rb
+++ b/lib/sinplegit.rb
@ -18,8 +18,3 @»class SinpleGt
end

end

-if $0 == __FILE__

23

Pro Git

- git = SimpleGt. new

- puts git.show

-end

\ No newine at end of file

This option displays the same information but with a diff directly following each entry. Thisis

very helpful for code review or to quickly browse what happened during a series of commits that a
collaborator has added. Y ou can also use a series of summarizing optionswith gi t | og. For example,
if you want to see some abbreviated stats for each commit, you can usethe - - st at option:

$ git log --stat

conmm t ca82a6df f817ec66f44342007202690a93763949
Aut hor: Scott Chacon <schacon@ee-nuail . conp

Dat e: Mon Mar 17 21:52:11 2008 -0700

changed the versi on nunber

Rakefile | 2 +-
1 files changed, 1 insertions(+), 1 deletions(-)

commit 085bb3bch608e1e8451d4bh2432f 8eche6306e7e7
Aut hor: Scott Chacon <schacon@ee-mail.conp
Dat e: Sat Mar 15 16:40:33 2008 -0700

renoved unnecessary test code

lib/sinplegit.rb | 5 -----
1 files changed, 0 insertions(+), 5 deletions(-)

comm t allbef 06a3f 659402f e7563abf 99ad00de2209e6
Aut hor: Scott Chacon <schacon@ee-nmuail . conp
Dat e: Sat Mar 15 10: 31:28 2008 -0700

first conmt

README | 6 ++++++
Rakefil e | 23 ++++++++++
lib/sinmplegit.rb | 25 ++++++++++

3 files changed, 54 insertions(+), O deletions(-)

Asyou can see, the - - st at option prints below each commit entry alist of modified files, how

many files were changed, and how many lines in those files were added and removed. It also puts a
summary of the information at the end. Another really useful optionis- - pr et t y. This option changes
the log output to formats other than the default. A few prebuilt options are available for you to use.
Theonel i ne option prints each commit on asingle line, which is useful if you'relooking at alot

of commits. In addition, theshort, ful I, and f ul | er options show the output in roughly the same
format but with less or more information, respectively:

$ git log --pretty=oneline

ca82a6df f 817ec66f 44342007202690a93763949 changed t he versi on nunber
085bb3bch608e1e8451d4b2432f 8ecbe6306e7e7 renpved unnecessary test code
allbef 06a3f 659402f e7563abf 99ad00de2209e6 first commit

The most interesting option isf or mat , which alows you to specify your own log output format. This
is especially useful when you’ re generating output for machine parsing — because you specify the
format explicitly, you know it won’t change with updates to Git:

$git log --pretty=format: "% - %n, %ar : %"
ca82a6d - Scott Chacon, 11 nonths ago : changed the versi on nunber

24

Pro Git

085bb3b - Scott Chacon, 11 nonths ago : renoved unnecessary test code
allbef0O - Scott Chacon, 11 nonths ago : first conmt

Table 2-1 lists some of the more useful options that format takes.

Option Description of Qutput
%1 Commt hash

% Abbreviated conmt hash
%I Tree hash

% Abbreviated tree hash

% Parent hashes

% Abbreviated parent hashes
% an Aut hor nane

% e Author e-nail

%d Author date (format respects the —date= option)
%r Author date, relative
%€n Committer name

%€e Committer enmil

%¢d Committer date

%r Committer date, relative
% Subj ect

Y ou may be wondering what the difference is between author and committer. The author is the person
who originally wrote the work, whereas the committer is the person who last applied the work. So, if
you send in a patch to a project and one of the core members applies the patch, both of you get credit
— you as the author and the core member as the committer. We'll cover this distinction abit morein
Chapter 5.

The oneline and format options are particularly useful with another | og option called - - gr aph. This
option adds a nice little ASCII graph showing your branch and merge history, which we can see our
copy of the Grit project repository:

$ git log --pretty=format: "% %" --graph
* 2d3acf9 ignore errors from SIGCHLD on trap
5e3eell Merge branch 'master' of git://github.comdustin/grit
\
* 420eac9 Added a nethod for getting the current branch
| 30e367c tinmeout code and tests
| 5a09431 add tineout protection to grit
| e1193f8 support for heads with slashes in them
/
d6016bc require time for xm schema
11d191e Merge branch 'defunkt' into |oca

*
*
*
*
*
*

Those are only some simple output-formatting optionsto gi t |1 og — there are many more. Table 2-2
lists the options we' ve covered so far and some other common formatting options that may be useful,
along with how they change the output of the log command.

Option Description

-p Show the patch introduced with each comit.

--stat Show statistics for files nodified in each conmt.

--shortstat Display only the changed/insertions/deletions Iine fromthe --stat command.
--nane-only Show the list of files nodified after the conmt information

--name-status Show the list of files affected with added/ nodified/deleted information a
--abbrev-commt Show only the first few characters of the SHA-1 checksuminstead of all
--relative-date Display the date in a relative format (for exanple, “2 weeks ago”) inst
--graph Display an ASCI| graph of the branch and nerge history beside the | og output.
--pretty Show conmmts in an alternate format. Options include oneline, short, full, ful

25

Pro Git

3.3.1. Limiting Log Output

In addition to output-formatting options, git log takes a number of useful limiting options — that is,
options that et you show only a subset of commits. Y ou’ ve seen one such option already — the - 2
option, which show only the last two commits. In fact, you can do - <n>, where n is any integer to
show the last n commits. In reality, you’'re unlikely to use that often, because Git by default pipes al
output through a pager so you see only one page of log output at atime.

However, the time-limiting options such as- - si nce and - - unt i | are very useful. For example, this
command gets the list of commits made in the last two weeks:

$ git log --since=2. weeks

This command works with lots of formats — you can specify a specific date (*2008-01-15") or a
relative date such as*“2 years 1 day 3 minutes ago”.

Y ou can also filter the list to commits that match some search criteria. The - - aut hor option alows
you to filter on a specific author, and the - - gr ep option lets you search for keywords in the commit
messages. (Note that if you want to specify both author and grep options, you haveto add - - al | -
mat ch or the command will match commits with either.)

Thelast really useful option to passtogit | og asafilterisapath. If you specify adirectory or file
name, you can limit the log output to commits that introduced a change to those files. Thisis always
the last option and is generally preceded by double dashes (- -) to separate the paths from the options.

In Table 2-3 we'll list these and afew other common options for your reference.

Option Description

-(n) Show only the last n commits

--since, --after Lint the conmts to those made after the specified date.
--until, --before Limt the commits to those nade before the specified date.
—-author Only show conmits in which the author entry matches the specified string.
--conmitter Only show conmits in which the conmitter entry nmatches the specified string

For example, if you want to see which commits modifying test files in the Git source code history
were committed by Junio Hamano and were not merges in the month of October 2008, you can run
something like this:

$ git log --pretty="% - %" --author=gitster --since="2008-10-01" \
- bef ore="2008-11-01" --no-nerges -- t/
5610e3b Fi x testcase fa|lure when extended attribute
acd3b9e - Enhance hold | ock file for_ {update, append}()
f563754 - denonstrate breakage of detached checkout wi
dlad43f2 - reset --hard/read-tree --reset -u: renove un
51a94af - Fix "checkout --track -b newbranch" on detac
bOadlle - pull: allow "git pull origin $sonething: $cur

Of the nearly 20,000 commitsin the Git source code history, this command shows the 6 that match
those criteria.

3.3.2. Using a GUI to Visualize History

If you like to use a more graphical tool to visualize your commit history, you may want to take alook
at aTcl/Tk program called gitk that is distributed with Git. Gitk isbasically avisual git | og tool, and

26

Pro Git

it accepts nearly all the filtering optionsthat gi t | og does. If you type gitk on the command linein

your project, you should see something like Figure 2-2.

AL gLk g
Maki the Fumber of Bytes 1o b rebd fram i | Jos Backus <pa@cainock. cof 2003-01-30 17:45:40 1+
remoles/ origin test for currant haad Josh Gonbel <dreamard®gmals FO08-08-26 D4:48:51
darrerit, this is the second time this has reverted Loott Chacon <schacon®gmail.c PO0E-08.29 10:55:11
madified indea to create refs/heads of it is not there Soott Chacon <schacon®gmail.c 2008-08-26 10:09:45
Add diff-bes dependendy Hans Engel cenpel@angel uk.to: J00E-08-23 11:00: 10
A dependancy Tor Dpend Hang Engel cengelSengel uk.to: 208-08-23 05115
eerged recent changes Loott Chacon <schacon@gmal.c MOE-08-22 14:51:56
wpdated the Manifest file Lrott Chacon «schacondgmall.c| 20080811 1000
fixed alfermates to acoent relative paths and changed 1| Scott Chacon <schacon®gmail.c 208-08-10 B
sdded shal) def 1o commit obijpesct Soott Chacon «<ichacon®gmail.c 2008-0B-0F 1
Marge brasch "idx2 Sealt Chaoon <schacon®gmal.c J008-08-06 1
reriged in Brpoes changes el fined some Testing is | Scotl Chacon <schacon®@gemall.c 2008-07-31
B Clarity how 1o gt a full count out of Repo#comm | Bryce Kerley -r.-r:.-rr-:-.-".r-'lw'l 0080731 1; #
1 K it St twnd Rt P Aaian ballianidl ot [TS T u areriibirasts A PAAG AT FE 4 Ll
[Z08c %07 1501 Cod T DOSIEE4 607D LEA4 SaTDEeDd & —¢ R 14 194
Wired | etV pwe | commdl | presgiving: 05 | T TR P P s |

S | =1 Padck [Tree

) e il weiiai [R v [Trrege e iy by '=' Igremr e npma v 1 Bargr Comements
bgthor: Jod Bockui «<josBcatnock Com- IORE-R1-38 1074340 LR L]
Commiter: SCott Ohaoos =5 n:.-'u-'-q-\al.l Coms DPS-@L-30 18:F31: B8
Parent; £ 10N T b e B L SR O Bl HES G (tedt Tor (wfrent Feod)
Eranch:
Falldmt! Al H
Frecedes

Make the mumber of bytei to B2 read from git' s dtdout contiguroble

slgned-Gf -y 06t (RadSn «SohSSinlgadl | <ims

. coeoe NiBAGRILAGIE.FD —one
ll'n '."I'.l?'ﬂl fﬂﬂ! m S

1 &L, 19 BLOUlE LFLY

inciude L tHUSy

flags <« Leld

end

Y ou can see the commit history in the top half of the window aong with a nice ancestry graph. The
diff viewer in the bottom half of the window shows you the changes introduced at any commit you
click.

3.4. Undoing Things

At any stage, you may want to undo something. Here, we'll review afew basic tools for undoing
changes that you' ve made. Be careful, because you can’'t always undo some of these undos. Thisis
one of the few areasin Git where you may lose some work if you do it wrong.

3.4.1. Changing Your Last Commit

One of the common undos takes place when you commit too early and possibly forget to add some
files, or you mess up your commit message. If you want to try that commit again, you can run commit
with the - - amend option:

$ git conmit --anend

This command takes your staging area and usesit for the commit. If you’ ve made no changes since
your last commit (for instance, you run this command immediately after your previous commit), then
your snapshot will look exactly the same and all you'll change is your commit message.

27

Pro Git

The same commit-message editor fires up, but it already contains the message of your previous
commit. Y ou can edit the message the same as always, but it overwrites your previous commit.

As an example, if you commit and then realize you forgot to stage the changesin afile you wanted to
add to this commit, you can do something like this:

$ git coomit -m'initial comit’

$ git add forgotten_ file

$ git comit --anend

All three of these commands end up with a single commit — the second commit replaces the results of
thefirst.

3.4.2. Unstaging a Staged File

The next two sections demonstrate how to wrangle your staging area and working directory changes.
The nice part is that the command you use to determine the state of those two areas also reminds you
how to undo changes to them. For example, let’ s say you’ ve changed two files and want to commit
them as two separate changes, but you accidentally typegit add * and stage them both. How can
you unstage one of thetwo? Thegi t st at us command reminds you:

$ git add

$ git status

On branch naster

Changes to be comm tted:

(use "git reset HEAD <file>..." to unstage)
#

nodi fi ed: README. t xt

nodi fi ed: benchmarks. rb

#

Right below the “Changes to be committed” text, it saysusegit reset HEAD <file>... tounstage.
So, let’ s use that advice to unstage the benchmarks.rb file:

$ git reset HEAD benchmarks.rb
benchnmarks.rb: locally nodified
$ git status

On branch naster

Changes to be comm tted:

(use "git reset HEAD <file>..." to unstage)

#

nodi fi ed: README. t xt

#

Changed but not updat ed:

(use "git add <file> .." to update what will be conmmitted)

(use "git checkout -- <file> .." to discard changes in working directory)
#

nodi fi ed: benchmarks. rb

#

The command is a bit strange, but it works. The benchmarks.rb file is modified but once again
unstaged.

3.4.3. Unmodifying a Modified File

What if you realize that you don’t want to keep your changes to the benchmarks.rb file? How can you
easily unmodify it — revert it back to what it looked like when you last committed (or initially cloned,

28

Pro Git

or however you got it into your working directory)? Luckily, git st at us tells you how to do that,
too. In the last example output, the unstaged area looks like this:

Changed but not updat ed:

(use "git add <file>. .." to update what will be committed)

(use "git checkout -- <file> .." to discard changes in working directory)
#

nodi fi ed: benchmarks. rb

#

It tells you pretty explicitly how to discard the changes you’' ve made (at least, the newer versions of
Git, 1.6.1 and later, do this— if you have an older version, we highly recommend upgrading it to get
some of these nicer usability features). Let’s do what it says:

$ git checkout -- benchmarks.rb

$ git status

On branch naster

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)
#

nodi fi ed: README. t xt

#

Y ou can see that the changes have been reverted. Y ou should also realize that thisis a dangerous
command: any changes you made to that file are gone — you just copied another file over it. Don't
ever use this command unless you absolutely know that you don’t want the file. If you just need to get
it out of the way, we'll go over stashing and branching in the next chapter; these are generally better
ways to go.

Remember, anything that is committed in Git can almost always be recovered. Even commits that
were on branches that were deleted or commits that were overwritten with an - - amend commit can be
recovered (see Chapter 9 for data recovery). However, anything you lose that was never committed is
likely never to be seen again.

3.5. Working with Remotes

To be able to collaborate on any Git project, you need to know how to manage your remote
repositories. Remote repositories are versions of your project that are hosted on the Internet or
network somewhere. Y ou can have several of them, each of which generally is either read-only
or read/write for you. Collaborating with others involves managing these remote repositories

and pushing and pulling data to and from them when you need to share work. Managing remote
repositories includes knowing how to add remote repositories, remove remotes that are no longer
valid, manage various remote branches and define them as being tracked or not, and more. In this
section, we' |l cover these remote-management skills.

3.5.1. Showing Your Remotes

To see which remote servers you have configured, you can run the git remote command. It lists the
shortnames of each remote handle you’ ve specified. If you’ ve cloned your repository, you should at
least see origin — that is the default name Git gives to the server you cloned from:

$ git clone git://github.com schacon/ticgit.git
Initialized enpty Gt repository in /private/tnp/ticgit/.git/

29

Pro Git

renote: Counting objects: 595, done.

renote: Conpressing objects: 100% (269/269), done.

renote: Total 595 (delta 255), reused 589 (delta 253)
Recei vi ng obj ects: 100% (595/595), 73.31 KiB| 1 KiB/s, done.
Resol ving deltas: 100% (255/255), done.

$cdticgit

$ git rennte

origin

Y ou can a'so specify - v, which shows you the URL that Git has stored for the shortname to be
expanded to:

$git renote -v
origin git://github.confschacon/ticgit.git

If you have more than one remote, the command lists them all. For example, my Grit repository looks
something like this.

$cdogrit
$ git renmote -v
bakkdoor git://github.com bakkdoor/grit.git

cho45 git://github.confchod45/grit.git
def unkt git://github.conidefunkt/grit.git
koke git://github.conf koke/grit.git

origin git @it hub. com noj onbo/ grit.git

This means we can pull contributions from any of these users pretty easily. But notice that only the
origin remoteisan SSH URL, so it’sthe only one | can push to (we'll cover why thisisin Chapter 4).

3.5.2. Adding Remote Repositories

I’ ve mentioned and given some demonstrations of adding remote repositories in previous sections, but
hereishow to do it explicitly. To add a new remote Git repository as a shortname you can reference
easily,rungit renote add [shortname] [url]:

$ git rennte

origin

$ git remote add pb git://github. com paul boone/ticgit.git
$ git remte -v

origin git://github.confschacon/ticgit.git

pb git://github. con paul boone/ticgit.git

Now you can use the string pb on the command linein lieu of the whole URL. For example, if you
want to fetch all the information that Paul has but that you don’t yet have in your repository, you can
run git fetch pb:

$ git fetch pb
renote: Counting objects: 58, done.
renote: Conpressing objects: 100% (41/41), done
renote: Total 44 (delta 24), reused 1 (delta 0)
Unpacki ng obj ects: 100% (44/44), done.
From git://github. com paul boone/ticgit

* [new branch] mast er -> pb/ mast er

* [new branch] ticgit -> pb/ticgit

Paul’ s master branch is accessible locally as pb/ mast er — you can merge it into one of your
branches, or you can check out alocal branch at that point if you want to inspect it.

30

Pro Git

3.5.3. Fetching and Pulling from Your Remotes

Asyou just saw, to get data from your remote projects, you can run:

$ git fetch [renote-nane]

The command goes out to that remote project and pulls down all the data from that remote project that
you don’'t have yet. After you do this, you should have referencesto al the branches from that remote,
which you can merge in or inspect at any time. (We'll go over what branches are and how to use them
in much more detail in Chapter 3.)

If you clone arepository, the command automatically adds that remote repository under the name
origin. So, git fetch origi n fetches any new work that has been pushed to that server since you
cloned (or last fetched from) it. It’simportant to note that the fetch command pulls the data to your
local repository — it doesn’t automatically merge it with any of your work or modify what you're
currently working on. Y ou have to merge it manually into your work when you' re ready.

If you have a branch set up to track a remote branch (see the next section and Chapter 3 for more
information), you can usethegit pul | command to automatically fetch and then merge aremote
branch into your current branch. This may be an easier or more comfortable workflow for you; and by
default, thegi t cl one command automatically sets up your local master branch to track the remote
master branch on the server you cloned from (assuming the remote has a master branch). Running

git pul | generaly fetches datafrom the server you originally cloned from and automatically triesto
merge it into the code you' re currently working on.

3.5.4. Pushing to Your Remotes

When you have your project at a point that you want to share, you have to push it upstream. The
command for thisissimple: git push [renote-nane] [branch-name] . If you want to push your
master branch to your or i gi n server (again, cloning generally sets up both of those names for you
automatically), then you can run thisto push your work back up to the server:

$ git push origin master

This command works only if you cloned from a server to which you have write access and if nobody
has pushed in the meantime. If you and someone else clone at the same time and they push upstream
and then you push upstream, your push will rightly be regjected. You'll have to pull down their work
first and incorporate it into yours before you'll be allowed to push. See Chapter 3 for more detailed
information on how to push to remote servers.

3.5.5. Inspecting a Remote

If you want to see more information about a particular remote, you can usethegit renote show
[renot e- name] command. If you run this command with a particular shortname, such asorii gi n, you
get something like this:

$ git renote show origin
* renpte origin
URL: git://github.com schacon/ticgit.git

Renote branch nerged with 'git pull' while on branch master
mast er

Tracked renote branches
mast er
ticgit

31

Pro Git

It lists the URL for the remote repository as well as the tracking branch information. The command
helpfully tellsyou that if you're on the master branch and you rungi t pul I, it will automatically
merge in the master branch on the remote after it fetches all the remote references. It also lists all the
remote references it has pulled down.

That isasimple example you're likely to encounter. When you' re using Git more heavily, however,
you may see much more information fromgit renote show:

$ git renote show origin
* renpte origin

URL: git @ithub.com defunkt/github.git

Renote branch nerged with 'git pull' while on branch issues
i ssues

Renote branch nerged with 'git pull' while on branch master
mast er

New renote branches (next fetch will store in renotes/origin)
cachi ng

Stal e tracking branches (use 'git renote prune')
I'i bwal ker
wal ker 2

Tracked renote branches
acl
api v2
dashboar d2
i ssues
mast er
post gr es

Local branch pushed with 'git push’
mast er : mast er

This command shows which branch is automatically pushed when you run git push on certain
branches. It also shows you which remote branches on the server you don’'t yet have, which
remote branches you have that have been removed from the server, and multiple branches that are
automatically merged whenyou rungit pul | .

3.5.6. Removing and Renaming Remotes

If you want to rename areference, in newer versions of Git you canrungit renote rename to
change aremote’ s shortname. For instance, if you want to rename pb to paul , you can do so with gi t
renote renane:

$ git renpte renane pb paul

$ git rennte

origin

paul

It's worth mentioning that this changes your remote branch names, too. What used to be referenced at
pb/ mast er iSnow at paul / mast er.

If you want to remove areference for some reason — you’ ve moved the server or are no longer using
aparticular mirror, or perhaps a contributor isn’t contributing anymore — you can usegit renote
rm

$ git renote rm paul
$ git renote
origin

32

Pro Git

3.6. Tagging

Like most VCSs, Git has the ability to tag specific pointsin history as being important. Generally,
people use this functionality to mark release points (v1.0, and so on). In this section, you'll learn how
to list the available tags, how to create new tags, and what the different types of tags are.

3.6.1. Listing Your Tags

Listing the available tagsin Git is straightforward. Just typegi t tag:

$git tag
v0.1
vl.3

This command lists the tags in aphabetical order; the order in which they appear has no red
importance.

Y ou can also search for tags with a particular pattern. The Git source repo, for instance, contains more
than 240 tags. If you're only interested in looking at the 1.4.2 series, you can run this:

$git tag -1 'vli. 4.2 *
vli. 4.2.1
vl.4.2.2
vl.4.2.3
vli. 4.2.4

3.6.2. Creating Tags

Git uses two main types of tags: lightweight and annotated. A lightweight tag is very much like a
branch that doesn’t change — it’ s just a pointer to a specific commit. Annotated tags, however, are
stored as full objectsin the Git database. They’ re checksummed; contain the tagger name, e-mail, and
date; have atagging message; and can be signed and verified with GNU Privacy Guard (GPG). It's
generally recommended that you create annotated tags so you can have all this information; but if you
want atemporary tag or for some reason don’t want to keep the other information, lightweight tags are
available too.

3.6.3. Annotated Tags

Creating an annotated tag in Git issimple. The easiest way is to specify - a when you run thet ag
command:

$ git tag -a vi.4 -m'ny version 1.4
$git tag

v0. 1

vl1.3

vi. 4

The - mspecifies a tagging message, which is stored with the tag. If you don’t specify a message for an
annotated tag, Git launches your editor so you cantypeitin.

Y ou can see the tag data along with the commit that was tagged by using the gi t show command:

$ git show vi. 4
tag vl1.4
Tagger: Scott Chacon <schacon@ee- il .conp

33

Pro Git

Dat e: Mon Feb 9 14:45:11 2009 -0800

ny version 1.4

conmmit 15027957951b64cf 874c3557a0f 3547bd83b3ff 6
Merge: 4ad47f7... a6b4c97..

Aut hor: Scott Chacon <schacon@ee-nail.conp

Dat e: Sun Feb 8 19:02:46 2009 -0800

Merge branch 'experinent'

That shows the tagger information, the date the commit was tagged, and the annotation message
before showing the commit information.

3.6.4. Signhed Tags

Y ou can also sign your tags with GPG, assuming you have a private key. All you haveto doisuse- s
instead of - a:

$ git tag -s vl.5 -m'ny signed 1.5 tag'

You need a passphrase to unlock the secret key for
user: "Scott Chacon <schacon@ee-mail.conp"
1024-bit DSA key, |D F721CA5A, created 2009-02-09

If yourungit showon that tag, you can see your GPG signature attached to it:

$ git show vl.5

tag v1.5

Tagger: Scott Chacon <schacon@ee-nail . conp
Dat e: Mon Feb 9 15:22:20 2009 -0800

my signed 1.5 tag
----- BEG N PGP SI GNATURE- - - - -
Version: GuPG v1.4.8 (Darw n)

i EYEABECAAYFAKmQur | ACgk QON3Dxf chxFr 5cACel M\+ZxLKggJ Q¥ 0QYi QBwgy SN
Ki 0An2JeAVUCAI J70Ox6ZEt K+NvZAj 82/

=WyJ

----- END PGP S| GNATURE- - - - -

commt 15027957951b64cf 874c3557a0f 3547bd83b3f f 6

Merge: 4ad47f7... a6b4c97..

Aut hor: Scott Chacon <schacon@ee-nuail.conp

Dat e: Sun Feb 8 19:02:46 2009 -0800

Mer ge branch 'experinent'

A bit later, you'll learn how to verify signed tags.

3.6.5. Lightweight Tags

Another way to tag commitsis with alightweight tag. Thisis basically the commit checksum stored
in afile— no other information is kept. To create alightweight tag, don’t supply the-a, -s, or -m
option:

$git tag vi.4-1w
$git tag

v0.1

vl.3

vl. 4

vl. 4-1w

34

Pro Git

vl.5

Thistime, if yourungi t show on the tag, you don't see the extratag information. The command just
shows the commit:

$ git show vl. 4-1w

comm t 15027957951b64cf 874c3557a0f 3547bd83b3f f 6
Mer ge: 4a447f7... a6b4c97..

Aut hor: Scott Chacon <schacon@ee-nail.conp

Dat e: Sun Feb 8 19:02:46 2009 -0800

Mer ge branch ' experi nent
3.6.6. Verifying Tags

To verify asigned tag, you usegit tag -v [tag-nane]. Thiscommand uses GPG to verify the
signature. Y ou need the signer’s public key in your keyring for thisto work properly:

$git tag -v vi.4.2.1

obj ect 883653babd8ee7ea23e6a5c392bb739348bleh61

type commit

tag v1.4.2.1

tagger Juni o C Hamano <j unki o@ox. net> 1158138501 -0700

GT1.4.21

M nor fixes since 1.4.2, including git-mv and git-http with alternates.

gpg: Signature nade Wed Sep 13 02: 08:25 2006 PDT using DSA key | D F3119B9A
gpg: Good signature from "Juni o C Hamano <j unki o@ox. net >"

gpg: aka "[]j peg i nage of size 1513]"

Primary key fingerprint: 3565 2A26 2040 E066 C9A7 4A7D COC6 DOA4 F311 9B9A

If you don’t have the signer’ s public key, you get something like this instead:

gpg: Signature nade Wed Sep 13 02:08: 25 2006 PDT using DSA key | D F3119B9A
gpg: Can't check signature: public key not found
error: could not verify the tag 'vl1.4.2.1

3.6.7. Tagging Later

Y ou can aso tag commits after you’ ve moved past them. Suppose your commit history looks like this:

$ git log --pretty=oneline

15027957951b64cf 874c3557a0f 3547bd83b3ff 6 Merge branch 'experi nent'
a6b4c97498bd301d84096da251c98a07¢7723e65 begi nning wite support
0d52aaab4479697da7686¢c15f 77a3d64d9165190 one nore thing
6d52a271eda8725415634dd79daabbc4d9b6008e Merge branch 'experinent'
0b7434d86859cc7b8c3d5eldddf ed66f f 742f cbc added a commit function
4682c3261057305bdd616€23b64b0857d832627b added a todo file
166ae0c4d3f 420721achbl115cc33848df cc212la started wite support

9f ceb02d0ae598e95dc970b74767f 19372d61af 8 updated rakefile

964f 16d36df ccde844893cac5h347e7b3d44abbc commit the todo
8a5cbc430f 1a9¢3d00f aaef f d07798508422908a updat ed r eadne

Now, suppose you forgot to tag the project at v1.2, which was at the "updated rakefile" commit. Y ou
can add it after the fact. To tag that commit, you specify the commit checksum (or part of it) at the end
of the command:

$ git tag -a vi.2 9fceb02

35

Pro Git

Y ou can see that you’ ve tagged the commit:

$ git tag
v0.1
vl. 2
vl.3
vl. 4
vl. 4-
vl. 5

| w

$ git show vl.2

tag vl1.2

Tagger: Scott Chacon <schacon@ee-nuail . conp
Dat e: Mon Feb 9 15:32:16 2009 -0800

version 1.2

commt 9f ceb02d0ae598e95dc970b74767f 19372d61af 8
Aut hor: Magnus Chacon <nthacon@ee-ail . con
Dat e: Sun Apr 27 20:43:35 2008 -0700

updated rakefile

3.6.8. Sharing Tags

By default, thegi t push command doesn’t transfer tags to remote servers. You will have to explicitly
push tags to a shared server after you have created them. This processisjust like sharing remote
branches— you canrungit push origin [tagnane].

$ git push origin vl.5

Counti ng objects: 50, done.

Conpressi ng objects: 100% (38/38), done.
Witing objects: 100% (44/44), 4.56 Ki B, done.
Total 44 (delta 18), reused 8 (delta 1)

To git @it hub. com schacon/sinplegit.git

* [new tag] vli.5 -> vl.5

If you have alot of tags that you want to push up at once, you can also use the - - t ags option to the
git push command. Thiswill transfer al of your tags to the remote server that are not already there.

$ git push origin --tags

Counti ng objects: 50, done.

Conpressi ng obj ects: 100% (38/38), done.
Witing objects: 100% (44/44), 4.56 Ki B, done.
Total 44 (delta 18), reused 8 (delta 1)

To git@ithub. com schacon/sinmplegit.git

* [new tag] v0.1l -> v0.1
* [new tag] vl 2 -> vl1l.2
* [new tag] vli. 4 -> vl. 4
* [new tag] vli . 4-lw -> vl. 4-lw
* [new tag] vl.5 -> vl1l.5

Now, when someone else clones or pulls from your repository, they will get al your tags as well.

3.7. Tips and Tricks

Before we finish this chapter on basic Git, afew little tips and tricks may make your Git experience
abit simpler, easier, or more familiar. Many people use Git without using any of these tips, and we

36

Pro Git

won't refer to them or assume you’ ve used them later in the book; but you should probably know how
to do them.

3.7.1. Auto-Completion

If you use the Bash shell, Git comes with a nice auto-completion script you can enable. Download the
Git source code, and look inthe cont ri b/ conpl et i on directory; there should be afilecalled gi t -
conpl eti on. bash. Copy thisfile to your home directory, and add thisto your . bashr ¢ file:

source ~/.git-conpletion.bash

If you want to set up Git to automatically have Bash shell completion for al users, copy this
script to the/ opt /1 ocal / et ¢/ bash_conpl eti on. d directory on Mac systems or to the/ et c/
bash_conpl eti on. d/ directory on Linux systems. Thisisadirectory of scripts that Bash will
automatically load to provide shell completions.

If you' re using Windows with Git Bash, which is the default when installing Git on Windows with
msysGit, auto-completion should be preconfigured.

Press the Tab key when you' re writing a Git command, and it should return a set of suggestions for
you to pick from:

$ git co<tab><tab>
commit config

In this case, typing git co and then pressing the Tab key twice suggests commit and config. Adding
nxt ab> completesgit conmi t automatically.

This also works with options, which is probably more useful. For instance, if you're running agi t
| og command and can’t remember one of the options, you can start typing it and press Tab to see
what matches:

$ git log --s<tab>
--shortstat --since= --src-prefix= --stat - -sunmmary

That's a pretty nice trick and may save you some time and documentation reading.

3.7.2. Git Aliases

Git doesn’t infer your command if you typeit in partialy. If you don’'t want to type the entire text of
each of the Git commands, you can easily set up an alias for each command using git confi g. Here
are a couple of examples you may want to set up:

$ git config --global alias.co checkout
$ git config --global alias.br branch
$ git config --global alias.ci commt
$ git config --global alias.st status

This means that, for example, instead of typing gi t conmi t, you just needtotypegit ci.Asyou
go on using Git, you'll probably use other commands frequently as well; in this case, don’t hesitate to
create new aliases.

This technigue can also be very useful in creating commands that you think should exist. For example,
to correct the usability problem you encountered with unstaging afile, you can add your own unstage
diasto Git:

37

Pro Git

$ git config --global alias.unstage 'reset HEAD --'

This makes the following two commands equivalent:

$ git unstage fileA
$ git reset HEAD fileA

This seems a bit clearer. It'salso common to add al ast command, like this:

$ git config --global alias.last 'log -1 HEAD

Thisway, you can see the last commit easily:

$ git last

commit 66938dae3329c7aebe598c2246a8e6af 90d04646
Aut hor: Josh Goebel <dreaner3@xanpl e. conr

Dat e: Tue Aug 26 19:48:51 2008 +0800

test for current head

Si gned- of f -by: Scott Chacon <schacon@xanpl e. conp

Asyou can tell, Git simply replaces the new command with whatever you aliasit for. However,
maybe you want to run an external command, rather than a Git subcommand. In that case, you start
the command with a! character. Thisisuseful if you write your own tools that work with a Git
repository. We can demonstrate by aliasing gi t vi sual torungitk:

$ git config --global alias.visual "!gitk"

3.8. Summary

At this point, you can do all the basic local Git operations — creating or cloning a repository, making
changes, staging and committing those changes, and viewing the history of all the changes the
repository has been through. Next, we'll cover Git’skiller feature: its branching model.

4. Git Branching

Nearly every VCS has some form of branching support. Branching means you diverge from the main
line of development and continue to do work without messing with that main line. In many VCS tools,
thisis a somewhat expensive process, often requiring you to create a new copy of your source code
directory, which can take along time for large projects.

Some peopl e refer to the branching model in Git asits “killer feature,” and it certainly sets Git apart
in the VCS community. Why isit so special? The way Git branchesisincredibly lightweight, making
branching operations nearly instantaneous and switching back and forth between branches generally
just asfast. Unlike many other VCSs, Git encourages a workflow that branches and merges often,
even multiple timesin a day. Understanding and mastering this feature gives you a powerful and
unique tool and can literally change the way that you devel op.

4.1. What a Branch Is

To redlly understand the way Git does branching, we need to take a step back and examine how Git
stores its data. As you may remember from Chapter 1, Git doesn’t store data as a series of changesets
or deltas, but instead as a series of snapshots.

38

Pro Git

When you commit in Git, Git stores a commit object that contains a pointer to the snapshot of the
content you staged, the author and message metadata, and zero or more pointers to the commit or
commits that were the direct parents of this commit: zero parents for the first commit, one parent for a
normal commit, and multiple parents for acommit that results from a merge of two or more branches.

To visuaizethis, let’s assume that you have adirectory containing three files, and you stage them
all and commit. Staging the files checksums each one (the SHA-1 hash we mentioned in Chapter
1), stores that version of the file in the Git repository (Git refers to them as blobs), and adds that
checksum to the staging area:

$ git add READVE test.rb LI CENSE
$ git coomit -m'initial commt of ny project’

When you create the commit by running gi t conmi t , Git checksums each subdirectory (in this case,
just the root project directory) and stores those tree objects in the Git repository. Git then creates
acommit object that has the metadata and a pointer to the root project tree so it can re-create that
snapshot when needed.

Y our Git repository now contains five objects: one blob for the contents of each of your three files,
one tree that lists the contents of the directory and specifies which file names are stored as which
blobs, and one commit with the pointer to that root tree and all the commit metadata. Conceptually,
the datain your Git repository looks something like Figure 3-1.

5bld3..
blob | size

This Librery i3 wied to test
Ruby projects

98ca%..

commit | size 92ec2.. / 91lle7..
tree Isizc—

tree 92ec2 blob | size
blob |5b1d3 | README

The MIT Licanse
author Scott —

blob |911e7 |LICENSE Copyright (£) <ypers <copyright]

A J

ComMmitter | Scott t
blob |cbata |test.ch Permission is herehy grented,

Ttial commit of my project
cbala. .
blob size

re ‘rubygess’
reqeire ‘s

requl
modile Test
medul,

If you make some changes and commit again, the next commit stores a pointer to the commit that

came immediately beforeit. After two more commits, your history might ook something like Figure
3-2.

98cal.. 34ac2.. £30ab..

commit | size commit |sir.r: commit size

tree 9Zeci tree 184ca tree Ode24
author Scott jparent 9Bcad
committer | Scott author

parent 34ac2
author Scott

A
r 3

m
alo

tial commit of =y project

committer | Scott

y A

Snapshot A Snapshot B | Snapshot C

A branch in Git is simply alightweight movable pointer to one of these commits. The default branch
name in Git is master. Asyou initially make commits, you' re given a master branch that points to the
last commit you made. Every time you commit, it moves forward automatically.

39

Pro Git

98cal

A

Y

Snapshot A

What happensif you create a new branch? Well, doing so creates a new pointer for you to move
around. Let’s say you create a new branch called testing. Y ou do thiswith thegi t branch command:

34ac2

master

\

Snapshot B

$ git branch testing

This creates a new pointer at the same commit you're currently on (see Figure 3-4).

98cal

How does Git know what branch you’ re currently on? It keeps a special pointer called HEAD. Note
that thisisalot different than the concept of HEAD in other VCSs you may be used to, such as
Subversion or CVS. In Git, thisis a pointer to the local branch you're currently on. In this case, you're
still on master. The git branch command only created a new branch — it didn’t switch to that branch
(see Figure 3-5).

98cal

I 3

r 3

Snapshot C

master

3dac2

To switch to an existing branch, you runthegi t checkout command. Let’s switch to the new testing

branch:

I 3

I 3

£30ab

A

testing

master

3dac2

$ git checkout testing

This moves HEAD to point to the testing branch (see Figure 3-6).

I 3

£30ab

testing

40

Pro Git

master

98cal - Jdac?2

I 3

£30ab

testing

What is the significance of that? Well, let’ s do another commit:

$ vimtest.rb
$ git comit -a -m' made a change'

Figure 3-7 illustrates the resullt.

master

1

98ca9 -+ 34ac2 < £30ab < c2b%e

testing

=

Thisisinteresting, because now your testing branch has moved forward, but your master branch still

points to the commit you were on when you ran gi t checkout to switch branches. Let’s switch back
to the master branch:

$ git checkout master

Figure 3-8 shows the result.

@

master

98ca9 < 34ac2 < £30ab < c2ble

testing

That command did two things. It moved the HEAD pointer back to point to the master branch, and
it reverted the filesin your working directory back to the snapshot that master pointsto. This also
means the changes you make from this point forward will diverge from an older version of the project.

It essentially rewinds the work you’ ve done in your testing branch temporarily so you cangoin a
different direction.

41

Pro Git

Let’s make afew changes and commit again:

$ vimtest.rb
$ git conmmit -a -m'nmade ot her changes'

Now your project history has diverged (see Figure 3-9). Y ou created and switched to a branch, did
some work on it, and then switched back to your main branch and did other work. Both of those
changes are isolated in separate branches: you can switch back and forth between the branches and
merge them together when you're ready. And you did all that with simple br anch and checkout

commands.
A

master

98ca9 -+ 34ac2 -+ £30ab

c2b9%e

‘/[87a2
‘\1

A

testing

Because abranch in Git isin actuality a simple file that contains the 40 character SHA-1 checksum of
the commit it points to, branches are cheap to create and destroy. Creating a new branch is as quick
and simple as writing 41 bytes to afile (40 characters and a newline).

Thisisin sharp contrast to the way most V CS tools branch, which involves copying all of the

project’ sfilesinto a second directory. This can take several seconds or even minutes, depending

on the size of the project, whereasin Git the process is always instantaneous. Also, because we're
recording the parents when we commit, finding a proper merge base for merging is automatically done
for usand is generally very easy to do. These features help encourage devel opers to create and use
branches often.

Let’s see why you should do so.

4.2. Basic Branching and Merging

Let’s go through a simple example of branching and merging with aworkflow that you might use in
thereal world. You'll follow these steps:

1. Do work on aweb site.
2. Create a branch for anew story you’ re working on.
3. Do somework in that branch.

At this stage, you'll receive acall that another issueis critical and you need a hotfix. You'll do the
following:

42

Pro Git

1. Revert back to your production branch.
2. Create a branch to add the hotfix.
3. After it’ stested, merge the hotfix branch, and push to production.

4. Switch back to your original story and continue working.

4.2.1. Basic Branching

First, let’s say you' re working on your project and have a couple of commits already (see Figure
3-10).

!
(=)Ae)H=)

Y ou've decided that you' re going to work on issue #53 in whatever issue-tracking System your
company uses. To be clear, Git isn't tied into any particular issue-tracking system; but because issue
#53 isafocused topic that you want to work on, you'll create a new branch in which to work. To
create a branch and switch to it at the same time, you can runthegit checkout command with the -
b switch:

$ git checkout -b issb53
Switched to a new branch "i ssb53"

Thisis shorthand for:

$ git branch iss53
$ git checkout iss53

Figure 3-11 illustrates the result.

(=) HC{)

Y ou work on your web site and do some commits. Doing so movesthei ss53 branch forward,
because you have it checked out (that is, your HEAD is pointing to it; see Figure 3-12):

$ vimindex. htmn
$ git comit -a -m'added a new footer [issue 53]

@O

43

Pro Git

Now you get the call that there is an issue with the web site, and you need to fix it immediately. With
Git, you don’t have to deploy your fix along with the i ss53 changes you’ ve made, and you don’t have
to put alot of effort into reverting those changes before you can work on applying your fix to what is
in production. All you have to do is switch back to your master branch.

However, before you do that, note that if your working directory or staging area has uncommitted
changes that conflict with the branch you' re checking out, Git won't let you switch branches. It’'s best
to have a clean working state when you switch branches. There are ways to get around this (namely,
stashing and commit amending) that we' |l cover later. For now, you’ ve committed all your changes,
S0 you can switch back to your master branch:

$ git checkout naster
Switched to branch "master”

At this point, your project working directory is exactly the way it was before you started working on
issue #53, and you can concentrate on your hotfix. Thisis an important point to remember: Git resets
your working directory to look like the snapshot of the commit that the branch you check out points
to. It adds, removes, and modifies files automatically to make sure your working copy is what the
branch looked like on your last commit to it.

Next, you have a hotfix to make. Let’s create a hotfix branch on which to work until it's completed
(see Figure 3-13):

$ git checkout -b "hotfix’

Switched to a new branch "hotfi x"

$ vimindex. ht

$ git commt -a -m'fixed the broken enmnil address

[hotfix]: created 3a0874c: "fixed the broken email address"”
1 files changed, 0 insertions(+), 1 deletions(-)

‘o
(=)L))A=)

iC3'
A

Y ou can run your tests, make sure the hotfix is what you want, and merge it back into your master
branch to deploy to production. Y ou do thiswith thegit ner ge command:

$ git checkout master
$ git merge hotfix
Updati ng f42c576..3a0874c
Fast forward
README | 1 -
1 files changed, 0 insertions(+), 1 deletions(-)

You'll notice the phrase "Fast forward" in that merge. Because the commit pointed to by the branch
you merged in was directly upstream of the commit you’ re on, Git moves the pointer forward. To
phrase that another way, when you try to merge one commit with a commit that can be reached by
following the first commit’s history, Git simplifies things by moving the pointer forward because
there is no divergent work to merge together — thisis called a "fast forward".

44

Pro Git

Y our change is now in the snapshot of the commit pointed to by the mast er branch, and you can
deploy your change (see Figure 3-14).

After your super-important fix is deployed, you' re ready to switch back to the work you were doing
before you were interrupted. However, first you'll delete the hot f i x branch, because you no longer
need it — the mast er branch points at the same place. Y ou can delete it with the - d option to gi t
branch:

$ git branch -d hotfix
Del eted branch hotfix (3a0874c).

Now you can switch back to your work-in-progress branch on issue #53 and continue working on it
(see Figure 3-15):

$ git checkout iss53

Switched to branch "iss53"

$ vimindex. htn

$ git commt -a -m'finished the new footer [issue 53]

[iss53]: created ad82d7a: "finished the new footer [issue 53]"
1 files changed, 1 insertions(+), O deletions(-)

A2

(=)—A=)

It's worth noting here that the work you did in your hot fi x branch is not contained in the filesin your
i ss53 branch. If you need to pull it in, you can merge your mast er branch into your i ss53 branch by
running git merge mast er, Or you can wait to integrate those changes until you decide to pull the

i ss53 branch back into nast er later.

4.2.2. Basic Merging

Suppose you' ve decided that your issue #53 work is complete and ready to be merged into your
mast er branch. In order to do that, you'll merge in your i ss53 branch, much like you merged in your

45

Pro Git

hot fi x branch earlier. All you have to do is check out the branch you wish to merge into and then run
thegit mer ge command:

$ git checkout master
$ git merge iss53
Merge made by recursive.
READVE | 1+
1 files changed, 1 insertions(+), O deletions(-)

Thislooks a bit different than the hot f i x merge you did earlier. In this case, your development
history has diverged from some older point. Because the commit on the branch you' re onisn’t adirect
ancestor of the branch you're merging in, Git has to do some work. In this case, Git doesasimple
three-way merge, using the two snapshots pointed to by the branch tips and the common ancestor of
the two. Figure 3-16 highlights the three snapshots that Git uses to do its merge in this case.

Snapshot to
Merge Into
Common ——
Ancestor
4 \ri
Cco)«—(Cl)4—' c2 = C4 '

(c3)4—' cs '
T“

iss53

|
Snapshot to
Merge In

Instead of just moving the branch pointer forward, Git creates a new snapshot that results from this
three-way merge and automatically creates a new commit that pointsto it (see Figure 3-17). Thisis
referred to as a merge commit and is specia in that it has more than one parent.

It'sworth pointing out that Git determines the best common ancestor to use for its merge base; this
isdifferent than CVS or Subversion (before version 1.5), where the developer doing the merge has to
figure out the best merge base for themselves. This makes merging a heck of alot easier in Git than in
these other systems.

Now that your work is merged in, you have no further need for thei ss53 branch. You can delete it
and then manually close the ticket in your ticket-tracking system:

46

Pro Git

$ git branch -d iss53

4.2.3. Basic Merge Conflicts

Occasionaly, this process doesn’t go smoothly. If you changed the same part of the samefile
differently in the two branches you’ re merging together, Git won’t be able to merge them cleanly. If
your fix for issue #53 modified the same part of afileasthehot f i x, you'll get a merge conflict that
looks something like this:

$ git nmerge iss53

Aut o- mer gi ng i ndex. ht

CONFLI CT (content): Merge conflict in index.htm

Automatic nmerge failed; fix conflicts and then commit the result.

Git hasn't automatically created a new merge commit. It has paused the process while you resolve the
conflict. If you want to see which files are unmerged at any point after amerge conflict, you can run
git status:

[master*]$ git status

i ndex. htm : needs nerge

On branch naster

Changed but not updat ed:

(use "git add <file> .." to update what will be conmitted)

(use "git checkout -- <file> .." to discard changes in working directory)
#

unnerged: i ndex. htm

#

Anything that has merge conflicts and hasn’t been resolved is listed as unmerged. Git adds standard
conflict-resolution markers to the files that have conflicts, so you can open them manually and resolve
those conflicts. Y our file contains a section that looks something like this:

<<<<<<< HEAD: i ndex. ht m
<div id="footer">contact : email.support@ithub.conx/div>

<div id="footer">

pl ease contact us at support @it hub. com
</ div>
>>>>>>> | ss53: i ndex. ht ni

This means the version in HEAD (your master branch, because that was what you had checked out
when you ran your merge command) is the top part of that block (everything above the =======),
while the version in your i ss53 branch looks like everything in the bottom part. In order to resolve
the conflict, you have to either choose one side or the other or merge the contents yourself. For
instance, you might resolve this conflict by replacing the entire block with this:

<div id="footer">
pl ease contact us at emmil.support @ithub. com
</ div>

Thisresolution has alittle of each section, and I’ ve fully removed the <<<<<<<, =======, and
>>>>>>> |ines. After you' ve resolved each of these sections in each conflicted file, rungit add
on each fileto mark it as resolved. Staging the file marksit as resolved in Git. If you want to use a
graphical tool to resolve these issues, you can rungi t mer get ool , which fires up an appropriate
visual merge tool and walks you through the conflicts:

47

Pro Git

$ git merget ool
merge tool candidates: kdiff3 tkdiff xxdiff neld gvindiff opendiff enmerge vindiff
Merging the files: index.htm

Normal nerge conflict for "index.htm"':
{local}: nodified
{renmote}: nodified
Hit return to start nerge resolution tool (opendiff):

If you want to use a merge tool other than the default (Git chose opendi f f for mein this case because
| ran the command on aMac), you can see all the supported tools listed at the top after “merge tool
candidates’. Type the name of the tool you' d rather use. In Chapter 7, we'll discuss how you can
change this default value for your environment.

After you exit the merge tool, Git asksyou if the merge was successful. If you tell the script that it
was, it stages the file to mark it as resolved for you.

Youcanrungit status againto verify that all conflicts have been resolved:

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)
#

#

#

nodi fi ed: i ndex. ht n

If you' re happy with that, and you verify that everything that had conflicts has been staged, you can
typegit conmit to finalize the merge commit. The commit message by default looks something like
this:.

Merge branch 'iss53

Conflicts:
i ndex. ht ni

It |ooks like you may be committing a MERGE

If this is not correct, please renove the file
. gi t/ MERGE_HEAD

and try again.

HHH O H R

Y ou can modify that message with detail s about how you resolved the merge if you think it would be
helpful to otherslooking at this merge in the future — why you did what you did, if it’s not obvious.

4.3. Branch Management

Now that you'’ ve created, merged, and deleted some branches, let’slook at some branch-management
tools that will come in handy when you begin using branches al the time.

Thegit branch command does more than just create and delete branches. If you run it with no
arguments, you get asimple listing of your current branches:

$ git branch
i ss53

* master
testing

48

Pro Git

Notice the* character that prefixesthe mast er branch: it indicates the branch that you currently have
checked out. Thismeansthat if you commit at this point, the mast er branch will be moved forward
with your new work. To see the last commit on each branch, you canrungit branch -v:

$ git branch -v
i ss53 93b412c fix javascript issue
* master 7a98805 Merge branch 'iss53
testing 782fd34 add scott to the author list in the readnes

Another useful option to figure out what state your branches areinisto filter thislist to branches that
you have or have not yet merged into the branch you’ re currently on. The useful - - mer ged and - - no-
mer ged options have been available in Git since version 1.5.6 for this purpose. To see which branches
are already merged into the branch you'reon, you canrungit branch --ner ged:

$ git branch --nerged
i ss53
* master

Because you already merged ini ss53 earlier, you seeit in your list. Branches on this list without the
* in front of them are generally fineto delete with gi t branch -d; you've already incorporated their
work into another branch, so you' re not going to lose anything.

To see dl the branches that contain work you haven’'t yet merged in, you canrungit branch --no-
nmer ged:

$ git branch --no-nerged
testing

This shows your other branch. Because it contains work that isn’'t merged in yet, trying to delete it
withgit branch -d will fail:

$ git branch -d testing
error: The branch '"testing' is not an ancestor of your current HEAD.
If you are sure you want to delete it, run 'git branch -D testing'.

If you really do want to delete the branch and lose that work, you can force it with - D, as the helpful
message points out.

4.4. Branching Workflows

Now that you have the basics of branching and merging down, what can or should you do with them?
In this section, we'll cover some common workflows that this lightweight branching makes possible,
so you can decideif you would like to incorporate it into your own development cycle.

4.4.1. Long-Running Branches

Because Git uses a simple three-way merge, merging from one branch into another multiple times
over along period is generally easy to do. This means you can have severa branches that are always
open and that you use for different stages of your development cycle; you can merge regularly from
some of them into others.

Many Git developers have aworkflow that embraces this approach, such as having only code that is
entirely stable in their mast er branch — possibly only code that has been or will be released. They
have another parallel branch named develop or next that they work from or use to test stability — it

49

Pro Git

isn’t necessarily always stable, but whenever it getsto a stable state, it can be merged into nast er .
It's used to pull in topic branches (short-lived branches, like your earlier i ss53 branch) when they’re
ready, to make sure they pass all the tests and don’t introduce bugs.

In reality, we're talking about pointers moving up the line of commits you’' re making. The stable
branches are farther down the line in your commit history, and the bleeding-edge branches are farther
up the history (see Figure 3-18).

E-@-E-®--E-)

It's generally easier to think about them as work silos, where sets of commits graduate to a more
stable silo when they’re fully tested (see Figure 3-19).

master (< |

develop

topic

Y ou can keep doing this for several levels of stability. Some larger projects aso have apr oposed or
pu (proposed updates) branch that has integrated branches that may not be ready to go into the next
or mast er branch. Theideaisthat your branches are at various levels of stability; when they reach a
more stable level, they’ re merged into the branch above them. Again, having multiple long-running
branches isn’'t necessary, but it’s often helpful, especially when you' re dealing with very large or
complex projects.

4.4.2. Topic Branches

Topic branches, however, are useful in projects of any size. A topic branch is a short-lived branch
that you create and use for asingle particular feature or related work. Thisis something you' ve likely
never done with aV CS before because it’s generally too expensive to create and merge branches. But
in Git it's common to create, work on, merge, and del ete branches several times a day.

Y ou saw thisin the last section with thei ss53 and hot f i x branches you created. You did afew
commits on them and deleted them directly after merging them into your main branch. This technique
allows you to context-switch quickly and completely — because your work is separated into silos
where all the changesin that branch have to do with that topic, it's easier to see what has happened
during code review and such. Y ou can keep the changes there for minutes, days, or months, and merge
them in when they’ re ready, regardless of the order in which they were created or worked on.

Consider an example of doing some work (on nast er), branching off for an issue (i ss91), working
on it for abit, branching off the second branch to try another way of handling the same thing
(i ss91v2), going back to your master branch and working there for awhile, and then branching off

50

Pro Git

there to do some work that you' re not sure is agood idea (durbi dea branch). Y our commit history
will look something like Figure 3-20.

Now, let’s say you decide you like the second solution to your issue best (i ss91v2); and you showed
the dunbi dea branch to your coworkers, and it turns out to be genius. Y ou can throw away the
original i ss91 branch (losing commits C5 and C6) and merge in the other two. Y our history then
looks like Figure 3-21.

It'simportant to remember when you' re doing all this that these branches are completely local. When
you' re branching and merging, everything is being done only in your Git repository — no server
communication is happening.

4.5. Remote Branches

Remote branches are references to the state of branches on your remote repositories. They’re
local branches that you can’t move; they’ re moved automatically whenever you do any network

51

Pro Git

communication. Remote branches act as bookmarks to remind you where the branches on your remote
repositories were the last time you connected to them.

They take theform (renot e) / (br anch) . For instance, if you wanted to see what the mast er branch
onyour ori gi n remote looked like as of the last time you communicated with it, you would check the
ori gi n/ mast er branch. If you were working on an issue with a partner and they pushed up ani ss53
branch, you might have your own local i ss53 branch; but the branch on the server would point to the
commit at ori gi n/i ss53.

This may be abit confusing, so let’slook at an example. Let’'s say you have a Git server on your
network at gi t . our conpany. com If you clone from this, Git automatically namesit ori gi n for you,
pulls down al its data, creates a pointer to whereitsmast er branchis, and namesit ori gi n/ mast er
locally; and you can’t move it. Git also gives you your own mast er branch starting at the same place
asorigin’'snast er branch, so you have something to work from (see Figure 3-22).

git.ourcompany.com

(0b743)1—(agbdc)‘—(f42c5)

‘ git clone schacon@git.ourcompany.com:project.git

My Computer

origin/master |- --- Remote Branch

()~ () ()

If you do some work on your local master branch, and, in the meantime, someone else pushesto

gi t. our conpany. comand updates its master branch, then your histories move forward differently.
Also, aslong as you stay out of contact with your origin server, your or i gi n/ mast er pointer doesn’t
move (see Figure 3-23).

git.ourcompany.com

(UbHJ)4—(asbdc)-—(ﬂz::!»)c—(31bse)d—(190&3)4 Someone else pushes

My Computer

(Db‘HJ)4—(abbic)4—(£42e5 }*(alsde)d—(893cf)

52

Pro Git

To synchronize your work, yourunagit fetch origi n command. Thiscommand looks up which
server originis (in thiscase, it’sgi t . our conpany. com), fetches any data from it that you don’t yet
have, and updates your local database, moving your or i gi n/ mast er pointer to its new, more up-to-
date position (see Figure 3-24).

git.ourcompany.com

() (o))~ (mm)+ (o)

‘ git fetch origin

My Computer

origin/master

(0b743)1—(aébdc)!—(f42e5)<—(3lbBe)4—(190a3

|

i

master

i

To demonstrate having multiple remote servers and what remote branches for those remote projects
look like, let’ s assume you have another internal Git server that is used only for development by one
of your sprint teams. Thisserver isat gi t . t eaml. our conpany. com Y ou can add it as a new remote
reference to the project you're currently working on by running thegit renote add command aswe
covered in Chapter 2. Name this remote t eanone, which will be your shortname for that whole URL
(see Figure 3-25).

git.ourcompany.com git.teaml.ourcompany.com

Gl

-1-{“2:5 JQ—(31bte)C—(190&3) 4— 3lbde

| origin | | teamone |

git remote add teamone git://git.teami.ourcompany.com

My Computer

- ED - D)

Now, youcanrungit fetch teanone tofetch everything the remotet eanone server hasthat you
don’'t have yet. Because that server is a subset of the data your ori gi n server hasright now, Git

53

Pro Git

fetches no data but sets a remote branch called t eanone/ nast er to point to the commit that t earone
has asitsmast er branch (see Figure 3-26).

git.ourcompany.com git.teaml.ourcompany.com

A @D) | | D)

| origin | | teamone |

git fetch teamone *

My Computer

o6 -6

4.5.1. Pushing

When you want to share a branch with the world, you need to push it up to aremote that you have
write access to. Your local branches aren’t automatically synchronized to the remotes you write to —
you have to explicitly push the branches you want to share. That way, you can use private branches
for work you don’'t want to share, and push up only the topic branches you want to collaborate on.

If you have abranch named ser ver fi x that you want to work on with others, you can push it up the
same way you pushed your first branch. Rungit push (renote) (branch):

$ git push origin serverfix
Counti ng objects: 20, done.
Conpressi ng obj ects: 100% (14/14), done.
Witing objects: 100% (15/15), 1.74 KiB, done.
Total 15 (delta 5), reused 0 (delta 0)
To git @it hub. com schacon/sinplegit.git

* [new branch] serverfix -> serverfix

Thisisabit of ashortcut. Git automatically expandsthe ser ver fi x branchname out to r ef s/ heads/
serverfix:refs/heads/serverfix, whichmeans, “Take my serverfix local branch and push it

to update the remote’ s serverfix branch.” We'll go over ther ef s/ heads/ part in detail in Chapter

9, but you can generally leaveit off. Youcanalsodogit push origin serverfix:serverfix,
which does the same thing — it says, “ Take my serverfix and make it the remote’s serverfix.” You
can use this format to push alocal branch into aremote branch that is named differently. If you
didn’t want it to be called ser ver fi x on the remote, you could instead rungi t push origin
serverfix: awesomebr anch to push your local ser ver fi x branch to the awesonebr anch branch on
the remote project.

The next time one of your collaborators fetches from the server, they will get areference to where the
server’ sversion of server fi x isunder the remote branch ori gi n/ serverfi x:

$ git fetch origin
renote: Counting objects: 20, done.
renote: Conpressing objects: 100% (14/14), done.

54

Pro Git

renote: Total 15 (delta 5), reused 0 (delta 0)
Unpacki ng objects: 100% (15/15), done.

From gi t @i t hub. com schacon/ si npl egi t

* [new branch] serverfix -> origin/serverfix

It'simportant to note that when you do afetch that brings down new remote branches, you don’t
automatically have local, editable copies of them. In other words, in this case, you don’t have a new
serverfix branch — you only havean ori gi n/ server f i x pointer that you can’'t modify.

To merge thiswork into your current working branch, you canrungit merge origi n/ serverfix. If
you want your own ser ver f i x branch that you can work on, you can base it off your remote branch:

$ git checkout -b serverfix origin/serverfix
Branch serverfix set up to track renote branch refs/renotes/origin/serverfix.
Switched to a new branch "serverfix"

This givesyou alocal branch that you can work on that startswhereori gi n/ serverfix is.

4.5.2. Tracking Branches

Checking out alocal branch from aremote branch automatically creates what is called atracking
branch. Tracking branches are local branches that have a direct relationship to a remote branch. If
you're on atracking branch and typegi t push, Git automatically knows which server and branch to
push to. Also, running gi t pul I while on one of these branches fetches all the remote references and
then automatically merges in the corresponding remote branch.

When you clone arepository, it generally automatically creates amast er branch that tracksori gi n/
master. That'swhy git push andgit pul | work out of the box with no other arguments. However,
you can set up other tracking branchesif you wish — ones that don’t track branches on ori gi n and
don't track the mast er branch. The simple case is the example you just saw, running gi t checkout
-b [branch] [renotename]/[branch].If youhave Git version 1.6.2 or later, you can also use the
- -t rack shorthand:

$ git checkout --track origin/serverfix
Branch serverfix set up to track renote branch refs/renotes/origin/serverfix.
Switched to a new branch "serverfix"

To set up alocal branch with a different name than the remote branch, you can easily use the first
version with adifferent local branch name:

$ git checkout -b sf origin/serverfix
Branch sf set up to track renote branch refs/renotes/origin/serverfix.
Switched to a new branch "sf"

Now, your local branch sf will automatically push to and pull from origin/serverfix.

4.5.3. Deleting Remote Branches

Suppose you' re done with a remote branch — say, you and your collaborators are finished

with afeature and have merged it into your remote’ s mast er branch (or whatever branch your

stable codelineisin). Y ou can delete a remote branch using the rather obtuse syntax gi t push

[renot enanme] :[branch] . If youwant to delete your ser ver fi x branch from the server, you run the
following:

55

Pro Git

$ git push origin :serverfix
To git @it hub. com schacon/sinplegit.git
- [del et ed] serverfix

Boom. No more branch on your server. Y ou may want to dog-ear this page, because you' I need that
command, and you'll likely forget the syntax. A way to remember this command is by recalling the
git push [renotename] [l ocal branch]:[renotebranch] syntax that we went over abit earlier.
If you leave off the[| ocal br anch] portion, then you're basically saying, “ Take nothing on my side
and makeit be[r enot ebranch] .’

4.6. Rebasing

In Git, there are two main ways to integrate changes from one branch into another: the mer ge and the
rebase. Inthis section you'll learn what rebasing is, how to do it, why it’s a pretty amazing tool, and
in what cases you won't want to useit.

4.6.1. The Basic Rebase

If you go back to an earlier example from the Merge section (see Figure 3-27), you can see that you
diverged your work and made commits on two different branches.

-G

A

o

The easiest way to integrate the branches, as we' ve already covered, isthe mer ge command. It
performs a three-way merge between the two latest branch snapshots (C3 and C4) and the most recent
common ancestor of the two (C2), creating a new snapshot (and commit), as shown in Figure 3-28.

However, there is another way: you can take the patch of the change that was introduced in C3 and
reapply it on top of C4. In Git, thisis called rebasing. With the r ebase command, you can take all the
changes that were committed on one branch and replay them on another one.

In this example, you'd run the following:

56

Pro Git

$ git checkout experiment

$ git rebase master

First, rew nding head to replay your work on top of it...
Appl yi ng: added staged command

It works by going to the common ancestor of the two branches (the one you' re on and the one you're
rebasing onto), getting the diff introduced by each commit of the branch you' re on, saving those diffs
to temporary files, resetting the current branch to the same commit as the branch you are rebasing
onto, and finally applying each change in turn. Figure 3-29 illustrates this process.

L)) A=))H=)

A

At this point, you can go back to the master branch and do a fast-forward merge (see Figure 3-30).

L)) A2)A=)H T)

Now, the snapshot pointed to by C3' is exactly the same as the one that was pointed to by C5 in the
merge example. There is no difference in the end product of the integration, but rebasing makes for
acleaner history. If you examine the log of arebased branch, it looks like alinear history: it appears
that all the work happened in series, even when it originally happened in parallel.

Often, you'll do this to make sure your commits apply cleanly on aremote branch — perhapsin a
project to which you' re trying to contribute but that you don’t maintain. In this case, you' d do your
work in a branch and then rebase your work onto or i gi n/ mast er when you were ready to submit
your patches to the main project. That way, the maintainer doesn’t have to do any integration work —
just afast-forward or a clean apply.

Note that the snapshot pointed to by the final commit you end up with, whether it’s the last of the
rebased commits for arebase or the final merge commit after amerge, is the same snapshot — it's
only the history that is different. Rebasing replays changes from one line of work onto ancther in the
order they were introduced, whereas merging takes the endpoints and merges them together.

4.6.2. More Interesting Rebases

Y ou can aso have your rebase replay on something other than the rebase branch. Take a history like
Figure 3-31, for example. Y ou branched atopic branch (ser ver) to add some server-side functionality
to your project, and made a commit. Then, you branched off that to make the client-side changes

(cl'i ent) and committed afew times. Finally, you went back to your server branch and did afew
more cCommits.

57

Pro Git

master

(c1)4 c)4 cs)4 ct)
™
G-

server

L))

client

Suppose you decide that you want to merge your client-side changes into your mainline for arelease,
but you want to hold off on the server-side changes until it’ stested further. Y ou can take the changes
on client that aren’t on server (C8 and C9) and replay them on your master branch by using the - -
ont o option of gi t rebase:

$ git rebase --onto master server client

Thisbasically says, “ Check out the client branch, figure out the patches from the common ancestor
of thecl i ent andserver branches, and then replay them onto mast er .” It's a bit complex; but the
result, shown in Figure 3-32, is pretty cool.

Now you can fast-forward your master branch (see Figure 3-33):

$ git checkout master
$ git nerge client

58

Pro Git

Let’s say you decide to pull in your server branch aswell. Y ou can rebase the server branch onto
the master branch without having to check it out first by running gi t rebase [basebranch]

[t opi cbr anch] — which checks out the topic branch (in this case, ser ver) for you and replays it
onto the base branch (mast er):

$ git rebase naster server

Thisreplaysyour ser ver work on top of your mast er work, as shown in Figure 3-34.

Then, you can fast-forward the base branch (mast er):

$ git checkout naster
$ git nerge server

You can removethecl i ent andserver branches because all the work is integrated and you don’t
need them anymore, leaving your history for this entire process looking like Figure 3-35:

$ git branch -d client
$ git branch -d server

4.6.3. The Perils of Rebasing

Ahh, but the bliss of rebasing isn’t without its drawbacks, which can be summed up in asingle line:
Do not rebase commitsthat you have pushed to a public repository.

If you follow that guideline, you' Il be fine. If you don’t, people will hate you, and you'll be scorned
by friends and family.

When you rebase stuff, you’ re abandoning existing commits and creating new ones that are similar
but different. If you push commits somewhere and others pull them down and base work on them, and
then you rewrite those commitswith gi t rebase and push them up again, your collaborators will
have to re-merge their work and things will get messy when you try to pull their work back into yours.

59

Pro Git

Let’slook at an example of how rebasing work that you’ ve made public can cause problems. Suppose
you clone from a central server and then do some work off that. Y our commit history looks like
Figure 3-36.

git.team1.ourcompany.com

4-.-

My Computer

4 . teamone/master
‘ﬁ c2)4—(C3)4 master

Now, someone else does more work that includes a merge, and pushes that work to the central
server. Y ou fetch them and merge the new remote branch into your work, making your history ook
something like Figure 3-37.

git.team1.ourcompany.com
ofokto!

My Computer

™\
- @ =]

one mast

Next, the person who pushed the merged work decides to go back and rebase their work instead;
they doagit push --force tooverwrite the history on the server. Y ou then fetch from that server,
bringing down the new commits.

60

Pro Git

git.team1.ourcompany.com

&=

My Computer

=)
N
()=){=)
N BN
(@){=)E)- =]

At this point, you have to merge this work in again, even though you’ ve already done so. Rebasing
changes the SHA-1 hashes of these commits so to Git they look like new commits, when in fact you
already have the C4 work in your history (see Figure 3-39).

git.team1.ourcompany.com

&=

My Computer

(=);
™\
(c) et oo s)
™ ™\
O--@-®

Y ou have to merge that work in at some point so you can keep up with the other developer in the
future. After you do that, your commit history will contain both the C4 and C4' commits, which have
different SHA-1 hashes but introduce the same work and have the same commit message. If you run a
gi t 1 og when your history looks like this, you'll see two commits that have the same author date and
message, which will be confusing. Furthermore, if you push this history back up to the server, you'll
reintroduce all those rebased commits to the central server, which can further confuse people.

If you treat rebasing as away to clean up and work with commits before you push them, and if

you only rebase commits that have never been available publicly, then you’'ll be fine. If you rebase
commits that have already been pushed publicly, and people may have based work on those commits,
then you may be in for some frustrating trouble.

4.7. Summary

WEe' ve covered basic branching and merging in Git. Y ou should feel comfortable creating and
switching to new branches, switching between branches and merging local branches together. Y ou
should also be able to share your branches by pushing them to a shared server, working with others on
shared branches and rebasing your branches before they are shared.

61

Pro Git

5. GIit on the Server

At this point, you should be able to do most of the day-to-day tasks for which you’ll be using Git.
However, in order to do any collaboration in Git, you' |l need to have aremote Git repository.
Although you can technically push changes to and pull changes from individuals' repositories, doing
so is discouraged because you can fairly easily confuse what they’ re working on if you’ re not careful.
Furthermore, you want your collaborators to be able to access the repository even if your computer is
offline — having a more reliable common repository is often useful. Therefore, the preferred method
for collaborating with someone is to set up an intermediate repository that you both have access to,
and push to and pull from that. We'll refer to this repository as a"Git server"; but you'll notice that

it generaly takes atiny amount of resources to host a Git repository, so you'll rarely need to use an
entire server for it.

Running a Git server is simple. First, you choose which protocols you want your server to
communicate with. The first section of this chapter will cover the available protocols and the pros
and cons of each. The next sections will explain some typical setups using those protocols and how
to get your server running with them. Last, we'll go over afew hosted options, if you don’t mind
hosting your code on someone else’ s server and don’t want to go through the hassle of setting up and
maintaining your own server.

If you have no interest in running your own server, you can skip to the last section of the chapter to
see some options for setting up a hosted account and then move on to the next chapter, where we
discuss the various ins and outs of working in a distributed source control environment.

A remote repository is generally abare repository — a Git repository that has no working directory.
Because the repository is only used as a collaboration point, there is no reason to have a snapshot
checked out on disk; it’sjust the Git data. In the simplest terms, a bare repository is the contents of
your project’s. gi t directory and nothing else.

5.1. The Protocols

Git can use four major network protocolsto transfer data: Local, Secure Shell (SSH), Git, and HTTP.
Here we'll discuss what they are and in what basic circumstances you would want (or not want) to use
them.

It'simportant to note that with the exception of the HTTP protocols, all of these require Git to be
installed and working on the server.

5.1.1. Local Protocol

The most basic isthe Local protocol, in which the remote repository isin another directory on disk.
Thisis often used if everyone on your team has access to a shared filesystem such as an NFS mount,
or in the less likely case that everyone logs in to the same computer. The latter wouldn’t be ideal,
because all your code repository instances would reside on the same computer, making a catastrophic
loss much more likely.

If you have a shared mounted filesystem, then you can clone, push to, and pull from alocal file-based
repository. To clone arepository like this or to add one as a remote to an existing project, use the path
to the repository as the URL. For example, to clone alocal repository, you can run something like
this:

62

Pro Git

$ git clone /opt/git/project.git
Or you can do this:
$ git clone file:///opt/git/project.git

Git operates dightly differently if you explicitly specify fil e:// at the beginning of the URL. If

you just specify the path, Git triesto use hardlinks or directly copy thefilesit needs. If you specify
file://,Gitfiresup the processesthat it normally usesto transfer data over a network whichis
generaly alot less efficient method of transferring the data. The main reason to specify thefile://
prefix isif you want a clean copy of the repository with extraneous references or objects left out —
generally after an import from another version-control system or something similar (see Chapter 9 for
maintenance tasks). We'll use the normal path here because doing so is almost always faster.

To add alocal repository to an existing Git project, you can run something like this:
$ git renote add |ocal _proj /opt/git/project.git
Then, you can push to and pull from that remote as though you were doing so over a network.

The Pros

The pros of file-based repositories are that they’ re simple and they use existing file permissions and
network access. If you aready have a shared filesystem to which your whole team has access, setting
up arepository isvery easy. You stick the bare repository copy somewhere everyone has shared
access to and set the read/write permissions as you would for any other shared directory. We'll discuss
how to export a bare repository copy for this purpose in the next section, “ Getting Git on a Server.”

Thisisalso anice option for quickly grabbing work from someone else’ s working repository. If you
and a co-worker are working on the same project and they want you to check something out, running
acommand likegit pull /home/john/ proj ect isoften easier than them pushing to aremote server
and you pulling down.

The Cons

The cons of this method are that shared access is generally more difficult to set up and reach from
multiple locations than basic network access. If you want to push from your laptop when you’ re at
home, you have to mount the remote disk, which can be difficult and slow compared to network-based
access.

It's aso important to mention that thisisn’'t necessarily the fastest option if you' re using a shared
mount of some kind. A local repository isfast only if you have fast access to the data. A repository
on NFSis often slower than the repository over SSH on the same server, alowing Git to run off local
disks on each system.

5.1.2. The SSH Protocol

Probably the most common transport protocol for Git is SSH. Thisis because SSH access to servers
isalready set up in most places— and if it isn't, it’s easy to do. SSH is also the only network-based
protocol that you can easily read from and write to. The other two network protocols (HTTP and Git)
are generally read-only, so even if you have them available for the unwashed masses, you still need
SSH for your own write commands. SSH is also an authenticated network protocol; and becauseit’s
ubiquitous, it's generally easy to set up and use.

63

Pro Git

To clone a Git repository over SSH, you can specify ssh:// URL like this:

$ git clone ssh://user @erver:project.git

Or you can not specify a protocol — Git assumes SSH if you aren’'t explicit:

$ git clone user @erver:project.git
Y ou can aso not specify a user, and Git assumes the user you’ re currently logged in as.
The Pros

The pros of using SSH are many. First, you basically have to useit if you want authenticated write
access to your repository over a network. Second, SSH isrelatively easy to set up — SSH daemons
are commonplace, many network admins have experience with them, and many OS distributions are
set up with them or have tools to manage them. Next, access over SSH is secure — al datatransfer is
encrypted and authenticated. Last, like the Git and Local protocols, SSH is efficient, making the data
as compact as possible before transferring it.

The Cons

The negative aspect of SSH is that you can’t serve anonymous access of your repository over it.
People must have access to your machine over SSH to accessit, even in aread-only capacity,
which doesn’t make SSH access conducive to open source projects. If you're using it only within
your corporate network, SSH may be the only protocol you need to deal with. If you want to allow
anonymous read-only access to your projects, you'll have to set up SSH for you to push over but
something else for othersto pull over.

5.1.3. The Git Protocol

Next isthe Git protocol. Thisis a special daemon that comes packaged with Git; it listenson a
dedicated port (9418) that provides a service similar to the SSH protocol, but with absolutely no
authentication. In order for arepository to be served over the Git protocol, you must create the gi t -
expor t - daenon- ok file— the daemon won'’t serve arepository without that file in it — but other
than that there is no security. Either the Git repository is available for everyoneto cloneor it isn't.
This means that there is generally no pushing over this protocol. Y ou can enable push access; but
given the lack of authentication, if you turn on push access, anyone on the internet who finds your
project’s URL could push to your project. Sufficeit to say that thisisrare.

The Pros

The Git protocol isthe fastest transfer protocol available. If you're serving alot of traffic for a public
project or serving avery large project that doesn’t require user authentication for read access, it’s
likely that you'll want to set up a Git daemon to serve your project. It uses the same data-transfer
mechanism as the SSH protocol but without the encryption and authentication overhead.

The Cons

The downside of the Git protocol isthe lack of authentication. It’s generally undesirable for the Git
protocol to be the only access to your project. Generally, you'll pair it with SSH access for the few
developers who have push (write) access and have everyone else usegi t : // for read-only access. It's
also probably the most difficult protocol to set up. It must run its own daemon, which is custom —

64

Pro Git

we'll look at setting one up in the “ Gitosis” section of this chapter — it requires xi net d configuration
or thelike, which isn’t always awalk in the park. It also requires firewall access to port 9418, which
isn’t a standard port that corporate firewalls always allow. Behind big corporate firewalls, this obscure
port is commonly blocked.

5.1.4. The HTTP/S Protocol

Last we have the HTTP protocol. The beauty of the HTTP or HTTPS protocol is the simplicity of
setting it up. Basically, all you have to do is put the bare Git repository under your HT TP document
root and set up a specific post - updat e hook, and you' re done (See Chapter 7 for details on Git
hooks). At that point, anyone who can access the web server under which you put the repository can
also clone your repository. To allow read access to your repository over HTTP, do something like this:

$ cd /var/ww/ ht docs/

$ git clone --bare /path/to/git_project gitproject.git
$ cd gitproject.git

$ nv hooks/ post - updat e. sanpl e hooks/ post - updat e

$ chnod a+x hooks/ post - update

That's all. The post - updat e hook that comes with Git by default runs the appropriate command (gi t
updat e- server - i nf 0) to make HTTP fetching and cloning work properly. This command isrun
when you push to this repository over SSH; then, other people can clone via something like

$ git clone http://exanple.comgitproject.git

In this particular case, we're using the / var / ww/ ht docs path that is common for Apache setups, but
you can use any static web server — just put the bare repository in its path. The Git datais served as
basic static files (see Chapter 9 for details about exactly how it’s served).

It's possible to make Git push over HTTP as well, although that technique isn’t as widely used and
reguires you to set up complex WebDAV requirements. Because it’s rarely used, we won't cover it
in this book. If you're interested in using the HT TP-push protocols, you can read about preparing
arepository for this purpose at ht't p: / / www. ker nel . or g/ pub/ sof t war e/ scni gi t / docs/ howt o/
set up-git-server-over-http.txt.Onenicething about making Git push over HTTP isthat you
can use any WebDAV server, without specific Git features; so, you can use this functionality if your
web-hosting provider supports WebDAV for writing updates to your web site.

The Pros

The upside of using the HTTP protocol isthat it’s easy to set up. Running the handful of required
commands gives you a simple way to give the world read access to your Git repository. It takes only
afew minutesto do. The HTTP protocol also isn't very resource intensive on your server. Because it
generally usesa static HTTP server to serve al the data, anormal Apache server can serve thousands
of files per second on average — it’ s difficult to overload even a small server.

Y ou can also serve your repositories read-only over HTTPS, which means you can encrypt the content
transfer; or you can go so far as to make the clients use specific signed SSL certificates. Generaly, if
you' re going to these lengths, it’s easier to use SSH public keys; but it may be a better solution in your
specific case to use signed SSL certificates or other HTTP-based authentication methods for read-only
accessover HTTPS.

Another nicething isthat HTTP is such a commonly used protocol that corporate firewalls are often
set up to alow traffic through this port.

65

Pro Git

The Cons

The downside of serving your repository over HTTP isthat it’srelatively inefficient for the client.

It generally takes alot longer to clone or fetch from the repository, and you often have alot more
network overhead and transfer volume over HTTP than with any of the other network protocols.
Because it’ s not as intelligent about transferring only the data you need — there is no dynamic work
on the part of the server in these transactions — the HT TP protocol is often referred to as a dumb
protocol. For more information about the differences in efficiency between the HTTP protocol and the
other protocols, see Chapter 9.

5.2. Getting Git on a Server

In order to initially set up any Git server, you have to export an existing repository into a new bare
repository — arepository that doesn’t contain aworking directory. Thisis generaly straightforward
to do. In order to clone your repository to create a new bare repository, you run the clone command
with the - - bar e option. By convention, bare repository directoriesendin. gi t, like so:

$ git clone --bare nmy_project ny_project.git
Initialized enpty Gt repository in /opt/projects/ny_project.git/

The output for this command is alittle confusing. Sincecl one isbasically agit init thenagit

f et ch, we see some output from thegi t i nit part, which creates an empty directory. The actual
object transfer gives no output, but it does happen. Y ou should now have a copy of the Git directory
datainyour my_proj ect. gi t directory.

Thisisroughly equivalent to something like
$ cp -Rf ny_project/.git ny_project.git

There are a couple of minor differencesin the configuration file; but for your purpose, thisis close
to the same thing. It takes the Git repository by itself, without aworking directory, and creates a
directory specifically for it alone.

5.2.1. Putting the Bare Repository on a Server

Now that you have a bare copy of your repository, all you need to do is put it on a server and set up
your protocols. Let’s say you' ve set up aserver called gi t . exanpl e. comthat you have SSH access
to, and you want to store all your Git repositories under the/ opt / gi t directory. Y ou can set up your
new repository by copying your bare repository over:

$ scp -r ny_project.git user@it.exanple.com/opt/git

At this point, other users who have SSH access to the same server which has read-access to the/ opt /
gi t directory can clone your repository by running

$ git clone user@it.exanple.com/opt/git/ny project.git

If auser SSHsinto a server and has write accessto the/ opt / gi t/ ny_pr oj ect . gi t directory, they
will also automatically have push access. Git will automatically add group write permissionsto a
repository properly if you runthegit init command with the - - shar ed option.

$ ssh user @i t. exanpl e. com
$ cd /opt/git/nmy_project.git
$ git init --bare --shared

66

Pro Git

Y ou see how easy it isto take a Git repository, create a bare version, and place it on a server to which
you and your collaborators have SSH access. Now you' re ready to collaborate on the same project.

It'simportant to note that thisisliteraly all you need to do to run a useful Git server to which severa
people have access — just add SSH-able accounts on a server, and stick a bare repository somewhere
that all those users have read and write access to. Y ou're ready to go — nothing el se needed.

In the next few sections, you'll see how to expand to more sophisticated setups. This discussion will
include not having to create user accounts for each user, adding public read access to repositories,
setting up web Uls, using the Gitosis tool, and more. However, keep in mind that to collaborate with a
couple of people on a private project, all you need isan SSH server and a bare repository.

5.2.2. Small Setups

If you're asmall outfit or are just trying out Git in your organization and have only afew developers,
things can be simple for you. One of the most complicated aspects of setting up a Git server is user
management. If you want some repositories to be read-only to certain users and read/write to others,
access and permissions can be a bit difficult to arrange.

SSH Access#

If you already have a server to which all your developers have SSH access, it’s generally easiest to
set up your first repository there, because you have to do almost no work (as we covered in the last
section). If you want more complex access control type permissions on your repositories, you can
handle them with the normal filesystem permissions of the operating system your server runs.

If you want to place your repositories on a server that doesn’t have accounts for everyone on your
team whom you want to have write access, then you must set up SSH access for them. We assume that
if you have a server with which to do this, you already have an SSH server installed, and that’ s how
you're accessing the server.

There are afew ways you can give access to everyone on your team. The first isto set up accounts for
everybody, which is straightforward but can be cumbersome. Y ou may not want to run adduser and
set temporary passwords for every user.

A second method is to create a single git user on the machine, ask every user who isto have write
access to send you an SSH public key, and add that key to the ~/ . ssh/ aut hor i zed_keys file of your
new git user. At that point, everyone will be able to access that machine viathe git user. This doesn’t
affect the commit datain any way — the SSH user you connect as doesn’t affect the commits you’ ve
recorded.

Another way to do it isto have your SSH server authenticate from an LDAP server or some other
centralized authentication source that you may already have set up. Aslong as each user can get shell
access on the machine, any SSH authentication mechanism you can think of should work.

5.3. Generating Your SSH Public Key

That being said, many Git servers authenticate using SSH public keys. In order to provide a public
key, each user in your system must generate one if they don’t already have one. This processis similar
across all operating systems. First, you should check to make sure you don’t already have akey. By

67

Pro Git

default, auser’s SSH keys are stored in that user’s~/ . ssh directory. Y ou can easily check to seeif
you have akey already by going to that directory and listing the contents:

$ cd ~/.ssh

$1s

aut hori zed_keys2 id_dsa known_host s
config i d_dsa. pub

You'relooking for apair of files named something and something.pub, where the something is
usually i d_dsa orid_rsa. The. pub fileisyour public key, and the other fileisyour private key. If
you don’t have these files (or you don’'t even have a. ssh directory), you can create them by running
aprogram called ssh- keygen, which is provided with the SSH package on Linux/Mac systems and
comes with the M SysGit package on Windows:

$ ssh-keygen

Cenerating public/private rsa key pair

Enter file in which to save the key (/Users/schacon/.ssh/id rsa):

Ent er passphrase (enpty for no passphrase):

Enter same passphrase again

Your identification has been saved in /Users/schacon/.ssh/id rsa.

Your public key has been saved in /Users/schacon/.ssh/id _rsa.pub

The key fingerprint is:

43: ¢5: 5b: 5f: bl:f1:50:43: ad: 20: a6: 92: 6a: 1f : 9a: 3a schacon@agador | apt op. | oca

First it confirms where you want to save the key (. ssh/ i d_r sa), and then it asks twice for a
passphrase, which you can leave empty if you don’t want to type a password when you use the key.

Now, each user that does this has to send their public key to you or whoever is administrating the Git
server (assuming you're using an SSH server setup that requires public keys). All they haveto dois
copy the contents of the . pub file and e-mail it. The public keys ook something like this:

$ cat ~/.ssh/id_rsa. pub

ssh-rsa AAAAB3NzaClyc2EAAAABI WAAAQEAKI OUpkDHr f HY17Sbr miTl pNLTGKOTj oml BWDSU
GPl +naf zI HOTYW’hd| 4y Z5ew18JHAJV®j bhUFr vi QzM7 x| ELEVF 4h91 FX5QVkbPppSwg0cda3
Pbv7kCdJ/ My Bl WKFCR+HA03FXRi t Bgxi X1nKhXpHAZsMei Lq8VER) sNAQamdsdMFv ST VK/ 7XA
t 3Fa0JoAsSNcMLOx5+3VOWW68/ el FmblzuUFI j QIKpr r X88XypNDvj YNby6vw PbOrwert/ En
nZ+AWIQZPnTPI 89ZPnVM_uayr D2cE862/ i | 8b+gw3r 3+1nKat m kj n2s01d01Qr aTl MyjVSsbx
Nr RFi 9w f +M7 Q== schacon@gador | apt op. | oca

For amore in-depth tutorial on creating an SSH key on multiple operating systems, see the GitHub
guideon SSH keysat ht t p: // gi t hub. com gui des/ pr ovi di ng- your - ssh- key.

5.4. Setting Up the Server

Let’swalk through setting up SSH access on the server side. In this example, you' |l use the
aut hori zed_keys method for authenticating your users. We also assume you' re running a standard
Linux distribution like Ubuntu. First, you create agit user and a. ssh directory for that user.

$ sudo adduser git
$ su git

$ cd

$ nkdir .ssh

Next, you need to add some developer SSH public keysto the aut hor i zed_keys file for that user.
Let’s assume you' ve received afew keys by e-mail and saved them to temporary files. Again, the
public keyslook something like this:

68

Pro Git

$ cat /tnp/id_rsa.john.pub

ssh-rsa AAAAB3NzaClyc2EAAAADAQABAAABAQCBO07n/ ww+ouNAgSLKssMKXnBOvf 9LG 4L
0j G6r s6hPB09j 9R/ T17/ x4l hJAOF3FRLr P6k YBRsW 2aThGA6HXLMB/ 52yt K6Zt g3RPKK+4k
Y] h6541NYsnEAZuXz0j TTyAUf rt U3Z5E003C40xQg 6HOr f | F1kKI 9MAQLMIpGM GYEI gS9Ez
Sdf d8AcCl i cTDWhgLAcW4UpkaX8Kyd LwsNuuGzt obF8nm72ALC/ nLF6JLt Pof wFBI gc+nyi v
O7 TCUSBALQ gMVOFg1l 2uPWOk ONQAHUKEONT j y2j ct xSDBQR20ynj aNsHT4kgt Zg2AYYgPq
dAv8JggJl Clvax2T9va5 gsg- keypair

Y ou just append them to your aut hori zed_keys file:

$ cat /tnp/id_rsa.john.pub >> ~/.ssh/authorized_keys
$ cat /tnp/id_rsa.josie.pub >> ~/.ssh/authorized_keys
$ cat /tnp/id_rsa.jessica.pub >> ~/.ssh/authorized_keys

Now, you can set up an empty repository for them by running gi t i ni t with the - - bar e option,
which initializes the repository without a working directory:

$ cd /opt/git

$ nkdir project.git
$ cd project.git

$ git --bare init

Then, John, Josie, or Jessica can push the first version of their project into that repository by adding it
as aremote and pushing up abranch. Note that someone must shell onto the machine and create a bare
repository every time you want to add a project. Let’suse gi t ser ver asthe hostname of the server on
which you’ ve set up your git user and repository. If you're running it internally, and you set up DNS
for gi t server to point to that server, then you can use the commands pretty much asis:

on Johns computer

cd myproj ect

git init

git add .

git coomit -m'initial comit’

git renmote add origin git@itserver:/opt/git/project.git
git push origin master

AR HHH

At this point, the others can clone it down and push changes back up just as easily:

$ git clone git@itserver:/opt/git/project.git
$ vi m READVE

$ git commit -am'fix for the READVE file'

$ git push origin nmaster

With this method, you can quickly get aread/write Git server up and running for a handful of
developers.

As an extra precaution, you can easily restrict the git user to only doing Git activities with alimited
shell tool called gi t - shel | that comeswith Git. If you set this as your git user’slogin shell, then the
git user can't have normal shell accessto your server. To usethis, specify gi t - shel | instead of bash
or csh for your user’slogin shell. To do so, you'll likely have to edit your / et c/ passwd file:

$ sudo vim/etc/passwd

At the bottom, you should find aline that looks something like this:

gi t:x:1000:1000::/hone/git:/bin/sh

69

Pro Git

Change/ bi n/ shto/ usr/ bin/git-shell (Or runwhich git-shell toseewhereit'sinstalled). The
line should look something like this:

gi t:x:1000:1000::/hone/git:/usr/bin/git-shel

Now, the git user can only use the SSH connection to push and pull Git repositories and can’t shell
onto the machine. If you try, you'll see alogin rejection like this:

$ ssh git @itserver
fatal: What do you think I an®? A shell?
Connection to gitserver closed.

5.5. Public Access

What if you want anonymous read access to your project? Perhaps instead of hosting an internal
private project, you want to host an open source project. Or maybe you have a bunch of automated
build servers or continuous integration servers that change alot, and you don’t want to have to
generate SSH keys all the time — you just want to add simple anonymous read access.

Probably the ssmplest way for smaller setupsisto run a static web server with its document root where
your Git repositories are, and then enable that post - updat e hook we mentioned in the first section of
this chapter. Let’swork from the previous example. Say you have your repositoriesin the/ opt / gi t
directory, and an Apache server is running on your machine. Again, you can use any web server for
this; but as an example, we'll demonstrate some basic Apache configurations that should give you an
idea of what you might need.

First you need to enable the hook:

$ cd project.git
$ nv hooks/ post - updat e. sanpl e hooks/ post - updat e
$ chnod a+x hooks/ post - update

If you're using aversion of Git earlier than 1.6, the mv command isn’'t necessary — Git started naming
the hooks examples with the .sample postfix only recently.

What does this post - updat e hook do? It looks basically like this:

$ cat .git/hooks/post-update
#!/bin/sh
exec git-update-server-info

This means that when you push to the server via SSH, Git will run this command to update the files
needed for HTTP fetching.

Next, you need to add a VirtualHost entry to your Apache configuration with the document root as the
root directory of your Git projects. Here, we' re assuming that you have wildcard DNS set up to send
*. gi t server towhatever box you're using to run al this:

<Vi rtual Host *: 80>
ServerNane git.gitserver
Docurent Root /opt/git
<Directory /opt/git/>
Order all ow, deny

70

Pro Git

allow fromall
</Directory>
</ Vi r t ual Host >

You'll also need to set the Unix user group of the/ opt / gi t directories to ww dat a SO your web
server can read-access the repositories, because the Apache instance running the CGI script will (by
default) be running as that user:

$ chgrp -R wwdata /opt/git

When you restart Apache, you should be able to clone your repositories under that directory by
specifying the URL for your project:

$ git clone http://git.gitserver/project.git

Thisway, you can set up HTTP-based read access to any of your projects for afair number of users
in afew minutes. Another simple option for public unauthenticated access is to start a Git daemon,

although that requires you to daemonize the process - we' Il cover this option in the next section, if you
prefer that route.

5.6. GitWeb

Now that you have basic read/write and read-only access to your project, you may want to set up a
simple web-based visualizer. Git comes with a CGI script called GitWeb that is commonly used for
this. You can see GitWeb in use at siteslikeht t p: // gi t . ker nel . or g (see Figure 4-1).

/pub/scm / git/git.git / summary

summary | ghotiog | iog | comemi | gommmibdd] | tnae

dascripion The core git plumbing

=l

Junig G Hamano

lest changl Fr, 20 Fob 2005 074407 «0000

LUAL

shortleg

&3 howrs ago
34 hours a0
34 howrs ago
34 howrs ago
34 howrs 890
34 hours 00
£ days ago
2 ciays ago
2 days ago
2 days age
2 days ago
2 dayE ag
2 days age
£ days aga
2 days ago
2 ditys ago

Jnio © Hamano
Matthea Moy
Martheau Moy
Marcad M, Cany
Johannes Schindadin
Johdanas Sohindedin
Toad Zutinger
Jnio & Hamano
SR O HATRAND
Larg Nogohingkd
Sy Soffign

Mchaed Sparsy

S O Hamans
Marced M. Cany
Garrit Papea
Thamas R

phigt sarnal ongpubiscrmipliglgn
hitpaiweass kemal orgipubiscmigiipn.git

Marge branch ‘maint’ mase |

Mere Triendly mosasge when lacking the index fails. mane

Document git blame —nivnersa.

gitweb: Hyperiink multiple git hashes on the same commi ...

system_pathi): simplily using strip_path_suffix(, ...
Introduce the function strip_path_suffio]
Documentation: Mote file formats send-small accepis
Marge branch ‘maint’

tests: fin “export varsval®

fiiter-branch -d;: Export GIT_DIR earlber

dizalicw providing multiple upstream branches to rebase ...

Skip timestamp diferances for dil —no-Index

git-swn: fix parsing of imestamp obtained from swn
gitweb: Fix warnings with cverride permitied bul no ...
Documentationigit-push: —all, ~mirror, ~tAgs can ...
bash completion: anly show ‘log =merge’ if menging

+s mit |

Lo E Saasch! .

i i = T <
SoeT | COMIICNT | i | SAJCgrc
Lo | pomim | e | Enananol
pmed | pammaaT | el | Soaeanl
ST | COTIRICHY | e | Sd
S | oA | i |
Eame | oomyeaoed | e | SOACSROl
ST TR | e | e
LT | (e | e | e
R | T | ek | A
LR | RO | e | SOdRdl
Lo | oM | e | it
o] | oA | e | SOt
ST | GOTVINICHY | 1np | SOCOroH
LT | T aCHT | Tyl | Sicai
el | eemmadT | s | Enacataol

71

Pro Git

If you want to check out what GitWeb would look like for your project, Git comes with a command
to fire up atemporary instance if you have alightweight server on your system likel i ght t pd or
webr i ck. On Linux machines, | i ght t pd is often installed, so you may be able to get it to run by
typing gi t i nst aweb inyour project directory. If you're running aMac, Leopard comes preinstalled
with Ruby, sowebri ck may be your best bet. To start i nst aweb with a non-lighttpd handler, you can
run it with the - - ht t pd option.

$ git instaweb --httpd=webrick
[2009-02-21 10:02:21] INFO WEBrick 1.3.1
[2009- 02-21 10:02:21] INFO ruby 1.8.6 (2008-03-03) [universal-darwi n9. 0]

That starts up an HTTPD server on port 1234 and then automatically starts a web browser that opens
on that page. It’s pretty easy on your part. When you’ re done and want to shut down the server, you
can run the same command with the - - st op option:

$ git instaweb --httpd=webrick --stop

If you want to run the web interface on a server al the time for your team or for an open source
project you' re hosting, you' || need to set up the CGI script to be served by your normal web server.
Some Linux distributions have a gi t web package that you may be able to install viaapt or yum so
you may want to try that first. We'll walk though installing GitWeb manually very quickly. First, you
need to get the Git source code, which GitWeb comes with, and generate the custom CGI script:

$ git clone git://git.kernel.org/pub/scnmgit/git.git
$ cd gt/
$ nake G TWEB_PRQIECTROOT="/opt/git" \
prefix=/usr gitweb/gitweb. cgi
$ sudo cp -Rf gitweb /var/ww/

Notice that you have to tell the command where to find your Git repositories with the
G TWEB_PRQJECTROOT variable. Now, you need to make Apache use CGI for that script, for which you
can add a VirtualHost:

<Virtual Host *: 80>
Server Nane gitserver
Docurent Root /var/ww/ gi t web
<Directory /var/ww gi t web>
Options ExecCA +Fol | owSynli nks +SynLi nksl f Oaner Mat ch
Al l owOverride All
order all ow, deny
Al'l ow from all
AddHandl er cgi-script cgi
Directoryl ndex gitweb. cgi
</Directory>
</ Vi r t ual Host >

Again, GitWeb can be served with any CGI capable web server; if you prefer to use something else, it
shouldn’t be difficult to set up. At this point, you should be ableto visit htt p: // gi t server/ toview
your repositories online, and you canuse htt p: // gi t. gi t server to clone and fetch your repositories
over HTTP.

5.7. Gitosis

Keeping al users public keysintheaut hori zed_keys file for access works well only for awhile.
When you have hundreds of users, it's much more of a pain to manage that process. Y ou have to shell

72

Pro Git

onto the server each time, and there is no access control — everyone in the file has read and write
access to every project.

At this point, you may want to turn to awidely used software project called Gitosis. Gitosisis
basically a set of scriptsthat help you manage the aut hori zed_keys file aswell asimplement some
simple access controls. Thereally interesting part is that the Ul for this tool for adding people and
determining access isn’'t aweb interface but a special Git repository. Y ou set up the information in
that project; and when you push it, Gitosis reconfigures the server based on that, which is cool.

Installing Gitosisisn't the ssimplest task ever, but it’s not too difficult. It’'s easiest to use aLinux server
for it — these examples use a stock Ubuntu 8.10 server.

Gitosis requires some Python tools, so first you have to install the Python setuptool s package, which
Ubuntu provides as python-setuptools:

$ apt-get install python-setuptools

Next, you clone and install Gitosis from the project’s main site:
$ git clone git://eagain.net/gitosis.git

$ cd gitosis
$ sudo python setup.py instal

That installs a couple of executables that Gitosis will use. Next, Gitosis wants to put its repositories
under / hone/ gi t , which isfine. But you have already set up your repositoriesin/ opt/ gi t , SO instead
of reconfiguring everything, you create a symlink:

$1In -s /opt/git /honme/git/repositories

Gitosisis going to manage your keys for you, so you need to remove the current file, re-add the
keys later, and let Gitosis control the aut hor i zed_keys file automatically. For now, move the
aut hori zed_keys file out of the way:

$ nv /hone/git/.ssh/authorized keys /home/git/.ssh/ak. bak

Next you need to turn your shell back on for the git user, if you changed it to thegi t - shel |
command. People still won't be able to log in, but Gitosis will control that for you. So, let’s change
thislineinyour / et c/ passwd file

gi t:x:1000:1000::/hone/git:/usr/bin/git-shel
back to this:
git:x:1000:1000::/hone/git:/bin/sh

Now it'stimeto initialize Gitosis. Y ou do this by running the gi t osi s-i ni t command with your
personal public key. If your public key isn’t on the server, you' |l have to copy it there:

$ sudo -H -u git gitosis-init < /tnp/id_dsa. pub
Initialized enpty Gt repository in /opt/git/gitosis-adnin.git/
Reinitialized existing Gt repository in /opt/git/gitosis-adnin.git/

This lets the user with that key modify the main Git repository that controls the Gitosis setup. Next,
you have to manually set the execute bit on the post - updat e script for your new control repository.

73

Pro Git

$ sudo chnod 755 /opt/git/gitosis-adnm n.git/hooks/post-update

You'reready to roll. If you're set up correctly, you can try to SSH into your server as the user for
which you added the public key to initialize Gitosis. Y ou should see something like this:

$ ssh git @itserver

PTY al l ocation request failed on channel 0O

fatal: unrecogni zed conmand ' gitosi s-serve schacon@uat er ni on'
Connection to gitserver closed.

That means Gitosis recognized you but shut you out because you' re not trying to do any Git
commands. So, let’s do an actual Git command — you' |l clone the Gitosis control repository:

on your |ocal conputer
$ git clone git@itserver:gitosis-adnmn.git

Now you have a directory named gi t osi s- admi n, which has two mgjor parts:

$ cd gitosis-adnin
$ find .

./ gitosis.conf

. keydir

./l keydir/scott. pub

Thegi tosi s. conf fileisthe control file you use to specify users, repositories, and permissions.

The keydi r directory iswhere you store the public keys of all the users who have any sort of access
to your repositories— one file per user. The name of thefilein keydi r (in the previous example,
scot t. pub) will be different for you — Gitosis takes that name from the description at the end of the
public key that was imported with the gi t osi s-i ni t script.

If you look at thegi t osi s. conf file, it should only specify information about the gi t osi s- admi n
project that you just cloned:

$ cat gitosis.conf
[gitosis]

[group gitosis-adm n]
witable = gitosis-adnin
nenbers = scott

It shows you that the scott user — the user with whose public key you initialized Gitosis — isthe only
one who has accessto the gi t osi s- admi n project.

Now, let’s add a new project for you. You'll add a new section called nobi | e where you'll list the
developers on your mobile team and projects that those devel opers need access to. Because scott is the
only user in the system right now, you' [l add him as the only member, and you’ll create a new project
caledi phone_proj ect to start on:

[group nobil e]

writable = iphone_project
nmenbers = scott

Whenever you make changes to the gi t osi s- adni n project, you have to commit the changes and
push them back up to the server in order for them to take effect:

$ git coommit -am 'add i phone_project and nobile group'

74

Pro Git

[master]: created 8962da8: "changed nane"
1 files changed, 4 insertions(+), O deletions(-)

$ git push

Counting objects: 5, done.

Conpressi ng obj ects: 100% (2/2), done.

Witing objects: 100% (3/3), 272 bytes, done.

Total 3 (delta 1), reused 0 (delta 0)

To git@itserver:/opt/git/gitosis-admn.git
fb27aec..8962da8 naster -> master

Y ou can make your first push to the new i phone_pr oj ect project by adding your server as aremote
to your local version of the project and pushing. Y ou no longer have to manually create a bare
repository for new projects on the server — Gitosis creates them automatically when it sees the first
push:

$ git renpte add origin git@itserver:iphone_project.git
$ git push origin master
Initialized enpty Gt repository in /opt/git/iphone_project.git/
Counting objects: 3, done.
Witing objects: 100% (3/3), 230 bytes, done.
Total 3 (delta 0), reused 0 (delta 0)
To git @i tserver:iphone_project.git
* [new branch] master -> naster

Notice that you don’t need to specify the path (in fact, doing so won’t work), just a colon and then the
name of the project — Gitosisfindsit for you.

Y ou want to work on this project with your friends, so you’'ll have to re-add their public keys. But
instead of appending them manually tothe ~/ . ssh/ aut hori zed_keys file on your server, you'll add
them, one key per file, into the keydi r directory. How you name the keys determines how you refer to
the usersinthegi t osi s. conf file. Let’sre-add the public keys for John, Josie, and Jessica:

$ cp /tnp/id_rsa.john.pub keydir/john.pub
$ cp /tnp/id_rsa.josie.pub keydir/josie.pub
$ cp /tnp/id_rsa.jessica.pub keydir/jessica. pub

Now you can add them all to your mobile team so they have read and write access to
i phone_proj ect :

[group nobil e]
writabl e = iphone_project
nmenbers = scott john josie jessica

After you commit and push that change, all four users will be able to read from and write to that
project.

Gitosis has simple access controls as well. If you want John to have only read access to this project,
you can do thisinstead:

[group nobil e]
writable = iphone_project
nmenbers = scott josie jessica

[group nobile ro]
readonly = i phone_proj ect
nmenbers = john

75

Pro Git

Now John can clone the project and get updates, but Gitosis won’t allow him to push back up to the
project. Y ou can create as many of these groups as you want, each containing different users and
projects. Y ou can a so specify another group as one of the members (using @as prefix), to inherit all
of its members automatically:

[group nobile committers]
menbers = scott josie jessica

[group nobil e]
witable = iphone_project
menber s @mobi l e_conmitters

[group nobile 2]
witable = another_iphone_project
menbers = @mwbile conmtters john

If you have any issues, it may be useful to add | ogl evel =DEBUG under the [gi t osi s] section. If
you'’ ve lost push access by pushing a messed-up configuration, you can manualy fix the file on the
server under / home/ gi t/ . gi t osi s. conf — the file from which Gitosis reads itsinfo. A push to
the project takesthe gi t osi s. conf file you just pushed up and sticksit there. If you edit that file
manually, it remains like that until the next successful push to the gi t osi s- adni n project.

5.8. Gitolite

Note: the latest copy of this section of the ProGit book is aways available within the [gitolite
documentation][gldpg]. The author would also like to humbly state that, while this section is accurate,
and can (and often has) been used to install gitolite without reading any other documentation, it is of
necessity not complete, and cannot completely replace the enormous amount of documentation that
gitolite comes with.

[gldpg]: http://github.com/sitaramc/gitolite/bl ob/pu/doc/progit-article.mkd

Git has started to become very popular in corporate environments, which tend to have some
additional requirementsin terms of access control. Gitolite was originally created to help with those
requirements, but it turns out that it’s equally useful in the open source world: the Fedora Project
controls access to their package management repositories (over 10,000 of them!) using gitolite, and
thisis probably the largest gitolite installation anywhere too.

Gitolite allows you to specify permissions not just by repository, but also by branch or tag names
within each repository. That is, you can specify that certain people (or groups of people) can only
push certain "refs’ (branches or tags) but not others.

5.8.1. Installing

Installing Gitolite is very easy, even if you don’t read the extensive documentation that comes with
it. You need an account on a Unix server of some kind; various Linux flavours, and Solaris 10, have
been tested. Y ou do not need root access, assuming git, perl, and an openssh compatible ssh server
are already installed. In the examples below, we will usethegi t ol i t e account on a host called

gi tserver.

Gitolite is somewhat unusual asfar as"server" software goes— accessis via ssh, and so every userid
on the server is a potential "gitolite host". As aresult, thereis anotion of "instaling” the software
itself, and then "setting up" auser as a"gitolite host".

76

http://github.com/sitaramc/gitolite/blob/pu/doc/progit-article.mkd

Pro Git

Gitolite has 4 methods of installation. People using Fedora or Debian systems can obtain an RPM or
aDEB and install that. People with root access can install it manually. In these two methods, any user
on the system can then become a "gitolite host".

People without root access can install it within their own userids. And finally, gitolite can be installed
by running a script on the wor kstation, from a bash shell. (Even the bash that comes with msysgit
will do, in case you' re wondering.)

We will describe this last method in this article; for the other methods please see the documentation.

Y ou start by obtaining public key based access to your server, so that you can log in from your
workstation to the server without getting a password prompt. The following method works on Linux;
for other workstation OSs you may have to do this manually. We assume you already had akey pair
generated using ssh- keygen.

$ ssh-copy-id -i ~/.ssh/id_rsa gitolite@itserver

Thiswill ask you for the password to the gitolite account, and then set up public key access. This
isessential for theinstall script, so check to make sure you can run a command without getting a
password prompt:

$ ssh gitolite@itserver pwd
/hone/gitolite

Next, you clone Gitolite from the project’s main site and run the "easy install" script (the third
argument is your name as you would like it to appear in the resulting gitolite-admin repository):

$ git clone git://github.com sitaranc/gitolite
$ cd gitolitel/src
$./gl-easy-install -q gitolite gitserver sitaram

And you're done! Gitolite has now been installed on the server, and you now have a brand new
repository called gi t ol i t e- adni n in the home directory of your workstation. Y ou administer your
gitolite setup by making changes to this repository and pushing.

That last command does produce a fair amount of output, which might be interesting to read. Also, the
first time you run this, anew keypair is created; you will have to choose a passphrase or hit enter for
none. Why a second keypair is needed, and how it is used, is explained in the "ssh troubleshooting"
document that comes with Gitolite. (Hey the documentation has to be good for something!)

Reposnamed gi tol i t e- adni n and t est i ng are created on the server by default. If you wish to
clone either of these locally (from an account that has SSH console access to the gitolite account via
authorized_keys), type:

$ git clone gitolite:gitolite-admn
$ git clone gitolite:testing

To clone these same repos from any other account:

$ git clone gitolite@ervernane:gitolite-admn
$ git clone gitolite@ervernane:testing

5.8.2. Customising the Install

While the default, quick, install works for most people, there are some ways to customise the install
if you need to. If you omit the - g argument, you get a "verbose" mode install — detailed information

77

Pro Git

on what the install is doing at each step. The verbose mode also alows you to change certain server-
side parameters, such as the location of the actual repositories, by editing an "rc" file that the server
uses. This"rc" fileisliberally commented so you should be able to make any changes you need quite
easily, saveit, and continue. Thisfile also contains various settings that you can change to enable or
disable some of gitolite’s advanced features.

5.8.3. Config File and Access Control Rules

Oncetheinstall isdone, you switch tothegi t ol i t e- adni n repository (placed in your HOME
directory) and poke around to see what you got:

$ cd ~/gitolite-adnm n/

$1Is

conf/ keydir/

$ find conf keydir -type f

conf/gitolite. conf

keydi r/ sitaram pub

$ cat conf/gitolite. conf

#gitolite conf

pl ease see conf/exanple.conf for details on syntax and features

repo gitolite-admn

RV = sitaram
repo testing
RW- = @l |

Notice that "sitaram" (the last argument in the gl - easy-i nst al | command you gave earlier) has
read-write permissionsonthegi t ol i t e- admi n repository aswell as a public key file of the same
name.

The config file syntax for gitolite is liberally documented in conf / exanpl e. conf, sowe'll only
mention some highlights here.

Y ou can group users or repos for convenience. The group names are just like macros; when defining
them, it doesn’t even matter whether they are projects or users; that distinction is only made when you
use the "macro”.

@ss_repos
@ecret_repos

[inux perl rakudo git gitolite
fenestra pear

@dm ns = scott # Adans, not Chacon, sorry :)

@ nt erns = ashok # get the spelling right, Scott!
@ngi neers = sitaramdilbert wally alice

Gt af f = @dm ns @ngi neers @nterns

Y ou can control permissions at the "ref" level. In the following example, interns can only push the
"int" branch. Engineers can push any branch whose name starts with "eng-", and tags that start with
"rc" followed by adigit. And the admins can do anything (including rewind) to any ref.

repo @ss_repos

RW int$ = @nterns
RW eng- = @ngi neers
RW refs/tags/rc[0-9] = @ngi neers
RV = @dm ns

78

Pro Git

The expression after the Rwor Rw+ is aregular expression (regex) that the refname (ref) being pushed
is matched against. So we call it a"refex"! Of course, arefex can be far more powerful than shown
here, so don’t overdo it if you' re not comfortable with perl regexes.

Also, as you probably guessed, Gitolite prefixesr ef s/ heads/ as a syntactic convenience if the refex
does not begin withrefs/ .

An important feature of the config file's syntax isthat all the rules for arepository need not be in one
place. Y ou can keep all the common stuff together, like the rules for al oss_r epos shown above, then
add specific rules for specific caseslater on, like so:

repo gitolite
R+ = sitaram

That rule will just get added to the ruleset for the gi t ol i t e repository.

At this point you might be wondering how the access control rules are actually applied, so let’s go
over that briefly.

There are two levels of access control in gitolite. Thefirst is at the repository level; if you have read
(or write) accessto any ref in the repository, then you have read (or write) access to the repository.

The second level, applicable only to "write" access, is by branch or tag within arepository. The
username, the access being attempted (wor +), and the refname being updated are known. The access
rules are checked in order of appearance in the config file, looking for a match for this combination
(but remember that the refname is regex-matched, not merely string-matched). If a match is found, the
push succeeds. A fallthrough results in access being denied.

5.8.4. Advanced Access Control with "deny" rules

So far, we' ve only seen permissions to be one or R, Rw or Rw+. However, gitolite allows another
permission: -, standing for "deny". This givesyou alot more power, at the expense of some
complexity, because now fallthrough is not the only way for access to be denied, so the order of the
rules now matters!

Let us say, in the situation above, we want engineers to be able to rewind any branch except master
and integ. Here's how to do that:

RW master integ
master integ
RW-

@ngi neers
@ngi neers
@ngi neers

Again, you simply follow the rules top down until you hit a match for your access mode, or a deny.
Non-rewind push to master or integ is allowed by the first rule. A rewind push to those refs does not
match the first rule, drops down to the second, and is therefore denied. Any push (rewind or non-
rewind) to refs other than master or integ won’t match the first two rules anyway, and the third rule
alowsit.

5.8.5. Restricting pushes by files changed

In addition to restricting what branches a user can push changes to, you can aso restrict what files
they are allowed to touch. For example, perhaps the Makefile (or some other program) isreally not

79

Pro Git

supposed to be changed by just anyone, because alot of things depend on it or would break if the
changes are not done just right. You can tell gitolite:

repo foo

RwW = @ uni or _devs @eni or_devs
RW NAME/ = @eni or _devs

NAVE/ Makefi |l e = @ uni or _devs
RW NAME/ = @ uni or _devs

This powerful feature is documented in conf / exanpl e. conf .

5.8.6. Personal Branches

Gitolite also has afeature called "persona branches" (or rather, "personal branch namespace”) that
can be very useful in a corporate environment.

A lot of code exchange in the git world happens by "please pull” requests. In a corporate environment,
however, unauthenticated access is a no-no, and a devel oper workstation cannot do authentication, so
you have to push to the central server and ask someone to pull from there.

Thiswould normally cause the same branch name clutter asin a centralised VCS, plus setting up
permissions for this becomes a chore for the admin.

Gitolite lets you define a"personal” or "scratch”" namespace prefix for each devel oper (for example,
ref s/ per sonal / <devname>/ *); see the "personal branches' sectionindoc/ 3-faqg-ti ps-etc. mkd
for details.

5.8.7. "Wildcard" repositories

Gitolite allows you to specify repositories with wildcards (actually perl regexes), like, for example
assi gnment s/ s[0-9] [0- 9]/ a[0- 9] [0- 9] , to pick arandom example. Thisisavery powerful
feature, which has to be enabled by setting $GL_W LDREPOS = 1; inthercfile. It allowsyou to assign
anew permission mode ("C") which alows users to create repositories based on such wild cards,
automatically assigns ownership to the specific user who created it, alows him/her to hand out R and
RW permissions to other usersto collaborate, etc. This feature is documented in doc/ 4- wi | dcar d-
reposi tories. nkd.

5.8.8. Other Features

We'll round off this discussion with a sampling of other features, al of which, and many more, are
described in great detail in the "fags, tips, etc" and other documents.

Logging: Gitolite logs all successful accesses. If you were somewhat relaxed about giving people
rewind permissions (Rw) and some kid blew away "master”, the log fileis alife saver, in terms of
easily and quickly finding the SHA that got hosed.

Git outside normal PATH: One extremely useful convenience feature in gitolite is support for

git installed outside the normal $PATH (thisis more common than you think; some corporate
environments or even some hosting providers refuse to install things system-wide and you end up
putting them in your own directories). Normally, you are forced to make the client-side git aware of

80

Pro Git

this non-standard location of the git binariesin some way. With gitolite, just choose a verbose install
and set $G T_PATHIin the "rc" files. No client-side changes are required after that :-)

Accessrightsreporting: Another convenient feature is what happens when you try and just ssh to
the server. Gitolite shows you what repos you have access to, and what that access may be. Here' s an
example:

hello sitaram the gitolite version here is v1.5.4-19-ga3397d4
the gitolite config gives you the follow ng access:

anu-wsd

entrans

git-notes

gitolite

gitolite-adm n

i ndi c_web_i nput

shreel i pi _converter

TVVDDODODD
=

Delegation: For really large installations, you can delegate responsibility for groups of repositoriesto
various people and have them manage those pieces independently. This reduces the load on the main
admin, and makes him less of a bottleneck. This feature hasits own documentation file in the doc/
directory.

Gitweb support: Gitolite supports gitweb in several ways. Y ou can specify which repos are visible
viagitweb. Y ou can set the "owner" and "description” for gitweb from the gitolite config file. Gitweb
has a mechanism for you to implement access control based on HT TP authentication, so you can make
it use the "compiled" config file that gitolite produces, which means the same access control rules (for
read access) apply for gitweb and gitolite.

Mirroring: Gitolite can help you maintain multiple mirrors, and switch between them easily if the
primary server goes down.

5.9. Git Daemon

For public, unauthenticated read access to your projects, you’ll want to move past the HTTP protocol
and start using the Git protocol. The main reason is speed. The Git protocol isfar more efficient and
thus faster than the HT TP protocol, so using it will save your userstime.

Again, thisisfor unauthenticated read-only access. If you’ re running this on a server outside your
firewall, it should only be used for projects that are publicly visible to the world. If the server you're
running it on isinside your firewall, you might use it for projects that alarge number of people or
computers (continuous integration or build servers) have read-only access to, when you don’t want to
have to add an SSH key for each.

In any case, the Git protocol isrelatively easy to set up. Basically, you need to run this command in a
daemonized manner:

git daenobn --reuseaddr --base-path=/opt/git/ /opt/git/

- -reuseaddr alowsthe server to restart without waiting for old connections to time out, the - - base-
pat h option allows people to clone projects without specifying the entire path, and the path at the end
tells the Git daemon where to look for repositories to export. If you're running afirewall, you'll also
need to punch aholein it at port 9418 on the box you’ re setting this up on.

81

Pro Git

Y ou can daemoni ze this process a number of ways, depending on the operating system you're
running. On an Ubuntu machine, you use an Upstart script. So, in the following file

/etc/event.d/local -git-daenon

you put this script:

start on startup

stop on shut down

exec /usr/bin/git daenon \
--user=git --group=git \
--reuseaddr \
--base-path=/opt/git/ \
[opt/git/

r espawn

For security reasons, it is strongly encouraged to have this daemon run as a user with read-only
permissions to the repositories — you can easily do this by creating a new user git-ro and running
the daemon as them. For the sake of simplicity we'll simply run it as the same git user that Gitosisis
running as.

When you restart your machine, your Git daemon will start automatically and respawn if it goes down.
To get it running without having to reboot, you can run this:

initctl start |ocal-git-daenon

On other systems, you may want to use xi net d, ascript in your sysvi ni t system, or something else
— aslong as you get that command daemonized and watched somehow.

Next, you have to tell your Gitosis server which repositories to allow unauthenticated Git server-based
access to. If you add a section for each repository, you can specify the ones from which you want your
Git daemon to allow reading. If you want to allow Git protocol access for your iphone project, you
add thisto the end of thegi t osi s. conf file:

[repo i phone_project]
daenon = yes

When that is committed and pushed up, your running daemon should start serving requests for the
project to anyone who has access to port 9418 on your server.

If you decide not to use Gitosis, but you want to set up a Git daemon, you'’ || have to run this on each
project you want the Git daemon to serve:

$ cd /path/to/project.git
$ touch git-daenon-export - ok

The presence of that file tells Git that it's OK to serve this project without authentication.

Gitosis can aso control which projects GitWeb shows. First, you need to add something like the
following to the/ et ¢/ gi t web. conf file:

$projects_list = "/hone/git/gitosis/projects.list";
$proj ectroot = "/ honme/git/repositories";

$export _ok = "git-daenon-export-ok";

@it _base url list = ('git://gitserver');

82

Pro Git

Y ou can control which projects GitWeb lets users browse by adding or removing agi t web Setting in
the Gitosis configuration file. For instance, if you want the iphone project to show up on GitWeb, you
make the r epo setting look like this:

[repo i phone_project]
daenmon = yes
gi tweb yes

Now, if you commit and push the project, GitWeb will automatically start showing your iphone
project.

5.10. Hosted Git

If you don’t want to go through all of the work involved in setting up your own Git server, you have
severa options for hosting your Git projects on an external dedicated hosting site. Doing so offersa
number of advantages. a hosting site is generally quick to set up and easy to start projects on, and no
server maintenance or monitoring isinvolved. Even if you set up and run your own server internaly,
you may still want to use a public hosting site for your open source code — it’s generally easier for
the open source community to find and help you with.

These days, you have a huge number of hosting options to choose from, each with different
advantages and disadvantages. To see an up-to-date list, check out the GitHosting page on the main
Git wiki:

http://git.or.cz/gitw ki/G tHosting

Because we can't cover al of them, and because | happen to work at one of them, we'll use this
section to walk through setting up an account and creating a new project at GitHub. Thiswill give you
an idea of what isinvolved.

GitHub is by far the largest open source Git hosting site and it’s also one of the very few that offers
both public and private hosting options so you can keep your open source and private commercial
code in the same place. In fact, we used GitHub to privately collaborate on this book.

5.10.1. GitHub

GitHub is dightly different than most code-hosting sites in the way that it namespaces projects.
Instead of being primarily based on the project, GitHub is user centric. That means when | host my
grit project on GitHub, you won't find it at gi t hub. coni gri t but instead at gi t hub. conf schacon/
grit. Thereisno canonical version of any project, which allows a project to move from one user to
another seamlesdly if the first author abandons the project.

GitHub is also acommercial company that charges for accounts that maintain private repositories,
but anyone can quickly get afree account to host as many open source projects as they want. We'll
quickly go over how that is done.

5.10.2. Setting Up a User Account

The first thing you need to do is set up afree user account. If you visit the Pricing and Signup page
at http://github. com pl ans and click the"Sign Up" button on the Free account (see figure 4-2),
you' re taken to the signup page.

83

Pro Git

github &=

e Priging and Signup Aopostiores

Biog Login

Choose the plan that's right for you.

Faid plans any biled monthly and can be upgradedidowngraded/terminated at any Sme without ponalty.

Open Source

Frea!

Unlimited Public Reposionas
Unlimited Public Collaborators

300 MB Disk Space

Here you must choose a username that isn’t yet taken in the system and enter an e-mail address that
will be associated with the account and a password (see Figure 4-3).

Signup 1«

Ui

_E i A s
.=.] Ak

.'-: rilirm Passwond

SOH Pk Ky ol

Bl i o repalernd i g o

Waar gy vt i tree plan, B you Rl iy Gt

i ESG o1
By Sagning up, you Bgree by e Tores of Servics, Pravacy,

_—
1 e, Lgn e

If you have it available, thisisagood time to add your public SSH key as well. We covered how to
generate anew key earlier, in the "Simple Setups" section. Take the contents of the public key of that
pair, and paste it into the SSH Public Key text box. Clicking the "explain ssh keys" link takes you to

84

Pro Git

detailed instructions on how to do so on all major operating systems. Clicking the "I agree, sign me
up" button takes you to your new user dashboard (see Figure 4-4).

github -) st

SOATML O Bt | Gades i L

MNews Feed = Your Repositories jcreate a rew on
fior yetma I fr e Mg | ool | R

ot Welsaemna b QitHub! What's seaT

Next you can create a new repository.

5.10.3. Creating a New Repository

Start by clicking the "create a new one" link next to Y our Repositories on the user dashboard. You're
taken to the Create a New Repository form (see Figure 4-5).

Create a New Repository

Conati & rdw amghy PeDoERcry o which you & push your I55al git reps.
ROTE: I you intend 1o push & Sopy of & reposicry Thal B sy hosted on GitHub, Ten you should fork i instead
P ojct Name
iphona_project
Dascriphon

iphone progect for our mobily growpl

Homapage LIFL

Who has Bcceds 10 1S reposRony™
@ .ﬂ."l'.'nl"ﬁ i D abd pUBE M

Uegrads your plan 1o copdln Mosp privilhi Mpodiorng

" Create Repeaitary |

All you redlly haveto do is provide a project name, but you can aso add a description. When that is

done, click the "Create Repository” button. Now you have a new repository on GitHub (see Figure
4-6).

85

Pro Git

github [~ e o0

:|,',-_‘;'|r|r_;|.-£-|,'r.I'i|:|l‘|-::|:|'||:: projpect i - LPrBah L1 Gy
iphoe progect for o mobde geoeap g0

Tl by 0ol g

ik TS S LSO

Since you have no code there yet, GitHub will show you instructions for how create a brand-new
project, push an existing Git project up, or import a project from a public Subversion repository (see
Figure 4-7).

Global setup:
Downlood and install Git
git config --global user.email testEgithub.com

MNext steps:

mixdir iphone_project

cd iphone_project

git init

touch README

git add README

git commit -m 'first commit’

git remote add crigin gitBgithub.com:testingusers/iphone_project.git
git push origin master

Existing Git Repo?
cd exusting_giri_repo
git remote add erigin git@github.com:testingusersiphone_project.git
git push origin master

Importing a SVN Repo?

LCK N¥

When you're done:

LOATLNUE

These instructions are similar to what we' ve already gone over. To initialize aproject if it isn't aready
a Git project, you use

$git init

$ git add .

$ git coomit -m'initial commit’

When you have a Git repository locally, add GitHub as a remote and push up your master branch:

$ git renote add origin git@ithub.comtestinguser/iphone_project.git
$ git push origin master

86

Pro Git

Now your project is hosted on GitHub, and you can give the URL to anyone you want to share your
project with. Inthiscase, it'shtt p: // gi t hub. coni t esti nguser/i phone_pr oj ect . You can also see
from the header on each of your project’ s pages that you have two Git URLs (see Figure 4-8).

testinguser / iphone_project (. edit) (= unwatch)
Description iphone project for our mobile group edit
Homepage: Click to edit edit

Public Clone URL: git:/github.comfestinguser/iiphone_project.qgit [£)
Your Clone URL: git@github.com:testinguseriphone_project.git (i

The Public Clone URL isa public, read-only Git URL over which anyone can clone the project. Feel
freeto give out that URL and post it on your web site or what have you.

The Your Clone URL is aread/write SSH-based URL that you can read or write over only if you
connect with the SSH private key associated with the public key you uploaded for your user. When
other usersvisit this project page, they won’'t see that URL—only the public one.

5.10.4. Importing from Subversion

If you have an existing public Subversion project that you want to import into Git, GitHub can often
do that for you. At the bottom of the instructions page is alink to a Subversion import. If you click it,
you see aform with information about the import process and a text box where you can paste in the
URL of your public Subversion project (see Figure 4-9).

Import a Subversion Repository

Read Before Procesding

= [he import procoss could tos 2 kie as 5 menobes 10 25 long a3 5 days doponding on tho sie of your reposiicry. This has
evoryThing 10 0o with Fosw Show subrvsrsion s, but wo'no wordng on spseding up Bhe prooess.

= I your Solpngion PDoRory COMMDFG i NOn-gindasd Sinpinny shructung, g impon procods will probably ndt work for you, Chck
2 DU Guics for running th impor yoursol

» THEs S6rch cumantly only SuRDOMS Bublic PUEHOMEn FOBOSRONoS.

Progsct Mam

iphane project

EVN Fapositany UFL

[rep L imipors Authom

If your project isvery large, nonstandard, or private, this process probably won’'t work for you. In
Chapter 7, you'll learn how to do more complicated manual project imports.

87

Pro Git

5.10.5. Adding Collaborators

Let’s add the rest of the team. If John, Josie, and Jessica all sign up for accounts on GitHub, and you
want to give them push access to your repository, you can add them to your project as collaborators.
Doing so will alow pushes from their public keys to work.

Click the "edit" button in the project header or the Admin tab at the top of the project to reach the
Admin page of your GitHub project (see Figure 4-10).

testinguser M iphone_projéct i
phors profect o our mobile group oo
Clici b it ool
Inactve okt

o) Repository Collaborators
THes e & vidrsodo By (Veryang ; ks
H s L 0L AR YO S TR BhE FORany privln!

To give another user write access to your project, click the “Add another collaborator” link. A new
text box appears, into which you can type a username. As you type, a helper pops up, showing you
possible username matches. When you find the correct user, click the Add button to add that user asa
collaborator on your project (see Figure 4-11).

Repository Collaborators

schasan| [mad ' or d

When you’ re finished adding collaborators, you should see alist of them in the Repository
Collaborators box (see Figure 4-12).

88

Pro Git

Repository Collaborators

E schacon revoke

duncanparkes revoke

Spearce revoxe

(Add) or done

If you need to revoke access to individuals, you can click the "revoke" link, and their push access will
be removed. For future projects, you can also copy collaborator groups by copying the permissions of
an existing project.

5.10.6. Your Project

After you push your project up or have it imported from Subversion, you have a main project page
that looks something like Figure 4-13.

[]
Elthl..lb (Searen) Home Pricing and Signup Fopastories Blog Logn
il SO Browtd Doaisy Asros:

Sounos

R S il it T

testinguser ! iphone_project waiich | |4 download A (&
iphores projoct for our mobila group

taitial coamit
e

iphone_project

5 deyi agd inftial commit [

pList 5 doys ogh tnitlol comerle [Sohadoon)
M iri . % S dayi ogo initiol commit [
5 doys ago inielal comik [
% days ogo initlol comit [sc
5 deyi ago inftiol commit [
5 doyE ogh initlol comerle [Sohadoon)]
4 doys ogo initiol commit [=ch

When people visit your project, they see this page. It contains tabs to different aspects of your
projects. The Commits tab shows alist of commitsin reverse chronological order, similar to the

89

Pro Git

output of thegi t | og command. The Network tab shows all the people who have forked your project
and contributed back. The Downloads tab allows you to upload project binaries and link to tarballs
and zipped versions of any tagged pointsin your project. The Wiki tab provides awiki where you can
write documentation or other information about your project. The Graphs tab has some contribution
visualizations and statistics about your project. The main Source tab that you land on shows your
project’s main directory listing and automatically renders the README file below it if you have one.
Thistab aso shows a box with the latest commit information.

5.10.7. Forking Projects

If you want to contribute to an existing project to which you don’t have push access, GitHub
encourages forking the project. When you land on a project page that |ooks interesting and you want
to hack on it a bit, you can click the "fork" button in the project header to have GitHub copy that
project to your user so you can push to it.

Thisway, projects don’t have to worry about adding users as collaborators to give them push access.
People can fork a project and push to it, and the main project maintainer can pull in those changes by
adding them as remotes and merging in their work.

To fork a project, visit the project page (in this case, mojombo/chronic) and click the "fork™ button in
the header (see Figure 4-14).

github ~— e S

SOTLAL QDN e

Soncs
mamer glbraschos ol tage

|:':‘:_:::!‘:!:::.|'-::Hr|;:-| Wb & g 130 (38

hin) Y st vl L A0 Sl o

hdded toits for Rupeaterdinute
Birian Browring

After afew seconds, you' re taken to your new project page, which indicates that this project is afork
of another one (see Figure 4-15).

schacon / chronic (. edit) { = unwatch)

Faork of mojombaschronic

Description Chronic is a pure Buby natural language date parser. edit
Homepage http:fchronic. rubyforge.org edit

Public Clone URL: git:/fgithub.com/schacon/chronic.git i)

Your Clong URL: git@github.com:schaconchronic.git i

90

Pro Git

5.10.8. GitHub Summary

That's all we'll cover about GitHub, but it’ s important to note how quickly you can do al this. You
can create an account, add a new project, and push to it in a matter of minutes. If your project is open
source, you also get a huge community of developers who now have visibility into your project and
may well fork it and help contribute to it. At the very least, this may be away to get up and running
with Git and try it out quickly.

5.11. Summary

Y ou have several options to get aremote Git repository up and running so that you can collaborate
with others or share your work.

Running your own server gives you alot of control and alows you to run the server within your own
firewall, but such aserver generally requires afair amount of your time to set up and maintain. If you
place your data on a hosted server, it’'s easy to set up and maintain; however, you have to be able to
keep your code on someone else’ s servers, and some organizations don’t alow that.

It should be fairly straightforward to determine which solution or combination of solutionsis
appropriate for you and your organization.

6. Distributed Git

Now that you have aremote Git repository set up as a point for all the developers to share their code,
and you’re familiar with basic Git commandsin alocal workflow, you'll look at how to utilize some
of the distributed workflows that Git affords you.

In this chapter, you'll see how to work with Git in a distributed environment as a contributor and an
integrator. That is, you'll learn how to contribute code successfully to a project and make it as easy
on you and the project maintainer as possible, and also how to maintain a project successfully with a
number of developers contributing.

6.1. Distributed Workflows

Unlike Centralized Version Control Systems (CV CSs), the distributed nature of Git allows you to be
far more flexible in how developers collaborate on projects. In centralized systems, every developer is
anode working more or less equally on a central hub. In Git, however, every developer is potentially
both a node and a hub — that is, every developer can both contribute code to other repositories and
maintain a public repository on which others can base their work and which they can contribute to.
This opens a vast range of workflow possibilities for your project and/or your team, so I'll cover a
few common paradigms that take advantage of thisflexibility. I'll go over the strengths and possible
weaknesses of each design; you can choose a single one to use, or you can mix and match features
from each.

6.1.1. Centralized Workflow

In centralized systems, there is generally a single collaboration model—the centralized workflow. One
central hub, or repository, can accept code, and everyone synchronizes their work to it. A number of
developers are nodes — consumers of that hub — and synchronize to that one place (see Figure 5-1).

91

Pro Git

shared
repository

(developer) (developer) (developer)

This meansthat if two developers clone from the hub and both make changes, the first devel oper to
push their changes back up can do so with no problems. The second developer must merge in the
first one’ swork before pushing changes up, so as not to overwrite the first developer’s changes. This
concept istruein Git asit isin Subversion (or any CVCS), and this model works perfectly in Git.

If you have a small team or are already comfortable with a centralized workflow in your company or
team, you can easily continue using that workflow with Git. Simply set up a single repository, and
give everyone on your team push access; Git won't let users overwrite each other. If one devel oper
clones, makes changes, and then tries to push their changes while another developer has pushed in
the meantime, the server will reject that devel oper’ s changes. They will be told that they’ re trying

to push non-fast-forward changes and that they won'’t be able to do so until they fetch and merge.
Thisworkflow is attractive to alot of people because it’ s a paradigm that many are familiar and
comfortable with.

6.1.2. Integration-Manager Workflow

Because Git allows you to have multiple remote repositories, it' s possible to have a workflow where
each developer has write access to their own public repository and read access to everyone else’s. This
scenario often includes a canonical repository that represents the "official” project. To contribute to
that project, you create your own public clone of the project and push your changesto it. Then, you
can send arequest to the maintainer of the main project to pull in your changes. They can add your
repository as aremote, test your changes locally, merge them into their branch, and push back to their
repository. The process works as follow (see Figure 5-2):

1. The project maintainer pushes to their public repository.

2. A contributor clones that repository and makes changes.

3. The contributor pushes to their own public copy.

4. The contributor sends the maintainer an e-mail asking them to pull changes.
5. The maintainer adds the contributor’ s repo as aremote and merges locally.

6. The maintainer pushes merged changes to the main repository.

developer developer developer
blessed public public public
repository
A
integration developer
manager pri\me privane private

92

Pro Git

Thisisavery common workflow with sites like GitHub, whereit’s easy to fork a project and push
your changes into your fork for everyone to see. One of the main advantages of this approach is that
you can continue to work, and the maintainer of the main repository can pull in your changes at any
time. Contributors don’t have to wait for the project to incorporate their changes — each party can
work at their own pace.

6.1.3. Dictator and Lieutenants Workflow

Thisisavariant of amultiple-repository workflow. It’s generally used by huge projects with hundreds
of collaborators; one famous exampleis the Linux kernel. Various integration managers arein

charge of certain parts of the repository; they’re called lieutenants. All the lieutenants have one
integration manager known as the benevolent dictator. The benevolent dictator’ s repository serves as
the reference repository from which all the collaborators need to pull. The process works like this (see
Figure 5-3):

1. Regular developers work on their topic branch and rebase their work on top of master. The master
branch isthat of the dictator.

2. Lieutenants merge the developers' topic branchesinto their master branch.
3. Thedictator merges the lieutenants' master branches into the dictator’ s master branch.

4. The dictator pushes their master to the reference repository so the other developers can rebase on it.

bl q
dictator :
repository

r'gd

" ',/
(lieutenant) (lieutenant)
/
¥
ik
developer developer
public public

This kind of workflow isn’t common but can be useful in very big projects or in highly hierarchical
environments, because as it allows the project leader (the dictator) to delegate much of the work and
collect large subsets of code at multiple points before integrating them.

Y

developer
public

These are some commonly used workflows that are possible with a distributed system like Git, but
you can see that many variations are possible to suit your particular real-world workflow. Now that
you can (I hope) determine which workflow combination may work for you, I’ll cover some more
specific examples of how to accomplish the main roles that make up the different flows.

6.2. Contributing to a Project

Y ou know what the different workflows are, and you should have a pretty good grasp of fundamental
Git usage. In this section, you' |l learn about afew common patterns for contributing to a project.

93

Pro Git

The main difficulty with describing this processis that there are a huge number of variations on

how it’s done. Because Git is very flexible, people can and do work together many ways, and it’s
problematic to describe how you should contribute to a project — every project is a bit different.
Some of the variables involved are active contributor size, chosen workflow, your commit access, and
possibly the external contribution method.

Thefirst variable is active contributor size. How many users are actively contributing code to this
project, and how often? In many instances, you’ll have two or three developers with afew commits
aday, or possibly less for somewhat dormant projects. For really large companies or projects, the
number of developers could be in the thousands, with dozens or even hundreds of patches coming in
each day. Thisisimportant because with more and more developers, you run into more issues with
making sure your code applies cleanly or can be easily merged. Changes you submit may be rendered
obsolete or severely broken by work that is merged in while you were working or while your changes
were waiting to be approved or applied. How can you keep your code consistently up to date and your
patches valid?

The next variable is the workflow in use for the project. Is it centralized, with each developer having
equal write access to the main codeline? Does the project have a maintainer or integration manager
who checks all the patches? Are all the patches peer-reviewed and approved? Are you involved in that
process? Is alieutenant system in place, and do you have to submit your work to them first?

The next issue is your commit access. The workflow required in order to contribute to a project is
much different if you have write access to the project than if you don’t. If you don’t have write access,
how does the project prefer to accept contributed work? Does it even have a policy? How much work
are you contributing at atime? How often do you contribute?

All these questions can affect how you contribute effectively to a project and what workflows are
preferred or available to you. I' [l cover aspects of each of these in a series of use cases, moving from
simple to more complex; you should be able to construct the specific workflows you need in practice
from these examples.

6.2.1. Commit Guidelines

Before you start looking at the specific use cases, here’ s a quick note about commit messages. Having
agood guideline for creating commits and sticking to it makes working with Git and collaborating
with others alot easier. The Git project provides a document that lays out a number of good tips

for creating commits from which to submit patches — you can read it in the Git source code in the
Docunent at i on/ Subni tti ngPat ches file.

First, you don’t want to submit any whitespace errors. Git provides an easy way to check for this —
before you commit, rungit diff --check,whichidentifies possible whitespace errors and lists
them for you. Here is an example, where I’ ve replaced ared terminal color with “X's:

$ git diff --check

lib/sinmplegit.rb:5: trailing whitespace.

+ @it _dir = File.expand_path(git_dir)XX
lib/sinmplegit.rb:7: trailing whitespace.

+ XXOKKKXKXX

lib/sinmplegit.rb:26: trailing whitespace.

+ def command(git_cnd) XXXX

If you run that command before committing, you can tell if you’ re about to commit whitespace issues
that may annoy other developers.

94

Pro Git

Next, try to make each commit alogically separate changeset. If you can, try to make your changes
digestible — don’'t code for a whole weekend on five different issues and then submit them all as
one massive commit on Monday. Even if you don’t commit during the weekend, use the staging area
on Monday to split your work into at least one commit per issue, with a useful message per commit.
If some of the changes modify the samefile, try tousegit add -- pat ch to partially stagefiles
(covered in detail in Chapter 6). The project snapshot at the tip of the branch isidentical whether you
do one commit or five, aslong as al the changes are added at some point, so try to make things easier
on your fellow devel opers when they have to review your changes. This approach also makesit easier
to pull out or revert one of the changesets if you need to later. Chapter 6 describes a number of useful
Git tricks for rewriting history and interactively staging files — use these tools to help craft a clean
and understandable history.

The last thing to keep in mind is the commit message. Getting in the habit of creating quality commit
messages makes using and collaborating with Git alot easier. Asageneral rule, your messages
should start with asingle line that’s no more than about 50 characters and that describes the changeset
concisely, followed by ablank line, followed by a more detailed explanation. The Git project

requires that the more detailed explanation include your motivation for the change and contrast its
implementation with previous behavior — thisis a good guideline to follow. It's also agood ideato
use the imperative present tense in these messages. In other words, use commands. Instead of "l added
testsfor" or "Adding testsfor,” use "Add tests for." Here is atemplate originally written by Tim Pope
at tpope.net:

Short (50 chars or less) sumary of changes

More detail ed explanatory text, if necessary. Wap it to about 72
characters or so. In some contexts, the first line is treated as the
subj ect of an emmil and the rest of the text as the body. The bl ank
line separating the summary fromthe body is critical (unless you omt
the body entirely); tools like rebase can get confused if you run the
two toget her.

Furt her paragraphs cone after blank |ines.
 Bullet points are okay, too

» Typicaly ahyphen or asterisk is used for the bullet, preceded by a single space, with blank linesin
between, but conventions vary here

If all your commit messages look like this, things will be alot easier for you and the developers you
work with. The Git project has well-formatted commit messages — | encourageyoutorungit |og
- - no- mer ges there to see what a nicely formatted project-commit history looks like.

In the following examples, and throughout most of this book, for the sake of brevity | don’t format
messages nicely like this; instead, | usethe - moptiontogit comit.Doasl say, not as| do.

6.2.2. Private Small Team

The simplest setup you're likely to encounter is a private project with one or two other devel opers.
By private, | mean closed source — not read-accessible to the outside world. Y ou and the other
developers all have push access to the repository.

In this environment, you can follow aworkflow similar to what you might do when using Subversion
or another centralized system. Y ou still get the advantages of things like offline committing and vastly

95

Pro Git

simpler branching and merging, but the workflow can be very similar; the main differenceis that
merges happen client-side rather than on the server at commit time. Let’s see what it might look like
when two devel opers start to work together with a shared repository. The first devel oper, John, clones
the repository, makes a change, and commits locally. (I’ m replacing the protocol messageswith . .. in
these exampl es to shorten them somewhat.)

John's Machi ne
$ git clone john@ithost:sinplegit.git
Initialized enpty Gt repository in /hone/john/sinplegit/.git/

$ cd sinplegit/
$vimlib/sinplegit.rb
$ git commt -am'renoved invalid default val ue'
[master 738ee87] renoved invalid default val ue
1 files changed, 1 insertions(+), 1 deletions(-)

The second devel oper, Jessica, does the same thing — clones the repository and commits a change:

Jessica's Machine
$ git clone jessica@ithost:sinplegit.git
Initialized enpty Gt repository in /hone/jessical/sinplegit/.git/

$ cd sinplegit/
$ vim TODO
$ git coomit -am ' add reset task’
[master fbff5bc] add reset task
1 files changed, 1 insertions(+), O deletions(-)

Now, Jessica pushes her work up to the server:

Jessica's Machine
$ git push origin master

To jessica@ithost:sinplegit.git
ledee6b. . fbff5bc nmmster -> nmaster

John tries to push his change up, too:

John's Machi ne
$ git push origin master
To john@ithost:sinplegit.git
I [rejected] master -> nmaster (non-fast forward)
error: failed to push sone refs to 'john@ithost:sinplegit.git’

Johnisn’'t alowed to push because Jessica has pushed in the meantime. Thisis especially important
to understand if you’ re used to Subversion, because you'’ |l notice that the two developers didn’t edit
the same file. Although Subversion automatically does such amerge on the server if different files
are edited, in Git you must merge the commits locally. John has to fetch Jessica’ s changes and merge
them in before he will be alowed to push:

$ git fetch origin

From j ohn@i t host : si npl egi t
+ 049d078. .. f bf f 5bc naster -> origin/ master

At this point, John’s local repository looks something like Figure 5-4.

96

Pro Git

master

v

--E3-EE-ED)

fbff5

origin/master

John has areference to the changes Jessica pushed up, but he has to merge them into his own work
before heis allowed to push:

$ git nerge origin/ master
Merge nade by recursive.
TODO | 1+
1 files changed, 1 insertions(+), O deletions(-)

The merge goes smoothly — John’s commit history now looks like Figure 5-5.

master

4—-{ 4b078)4—(ledee)4—(738ee)4—(72bbec)
rd

fbff5

3

origin/master

Now, John can test his code to make sure it still works properly, and then he can push his new merged
work up to the server:

$ git push origin master

To john@ithost:sinplegit.git
f bf f 5bc. . 72bbc59 nmaster -> naster

Finally, John’s commit history looks like Figure 5-6.

97

Pro Git

master

- () ED)-ED)--GD)
<

A
E origin/master

In the meantime, Jessica has been working on atopic branch. She's created a topic branch called
i ssue54 and done three commits on that branch. She hasn't fetched John’s changes yet, so her
commit history looks like Figure 5-7.

() () ()= () (5 ()

Jessica wants to sync up with John, so she fetches:

Jessica' s Machi ne
$ git fetch origin

From j essi ca@i t host: si npl egi t
f bf f 5bc. . 72bbc59 master -> origin/ master

That pulls down the work John has pushed up in the meantime. Jessica s history now looks like Figure
5-8.

-~ "(4b078)‘—(ledee)‘—(fbEf5)‘—(8149%a)‘—(23ack)‘—(4af42)

Jessica thinks her topic branch is ready, but she wants to know what she has to merge her work into so
that she can push. Sherunsgi t | og to find out:

$ git log --no-nmerges origin/master "issue54
comm t 738ee872852df aa9d6634e0dea7a324040193016
Aut hor: John Smth <jsm th@xanple. conk

Dat e: Fri May 29 16:01:27 2009 -0700

renpved invalid default val ue

Now, Jessica can merge her topic work into her master branch, merge John’swork (or i gi n/ mast er)
into her mast er branch, and then push back to the server again. First, she switches back to her master
branch to integrate all this work:

$ git checkout naster

98

Pro Git

Switched to branch "master”
Your branch is behind "origin/master' by 2 conmts, and can be fast-forwarded.

She can merge either ori gi n/ mast er or i ssue54 first — they’re both upstream, so the order doesn’t
matter. The end snapshot should be identical no matter which order she chooses; only the history will
be dlightly different. She chooses to mergeini ssue54 first:

$ git nerge issueb4
Updating fbff5bc..4af 4298
Fast forward
READVE | 1+
lib/sinplegit.rb | 6 +++++-
2 files changed, 6 insertions(+), 1 deletions(-)

No problems occur; as you can seeit, was asimple fast-forward. Now Jessica merges in John’s work
(ori gi n/ master):

$ git nerge origin/ master
Auto-nerging lib/sinplegit.rb
Mer ge made by recursive.
lib/sinplegit.rb | 2 +-
1 files changed, 1 insertions(+), 1 deletions(-)

Everything merges cleanly, and Jessica’s history looks like Figure 5-9.

(D) ED- (- (=)

Now ori gi n/ mast er isreachable from Jessica’ s mast er branch, so she should be able to successfully
push (assuming John hasn’t pushed again in the meantime):

$ git push origin master

To jessica@ithost:sinplegit.git
72bbc59..8059¢c15 nmaster -> naster

Each developer has committed a few times and merged each other’ s work successfully; see Figure
5-10.

D Co N CO) e CD e EN D

}@ = D)

That is one of the simplest workflows. Y ou work for awhile, generally in atopic branch, and merge
into your master branch when it’ s ready to be integrated. When you want to share that work, you
merge it into your own master branch, then fetch and merge or i gi n/ mast er if it has changed, and

99

Pro Git

finally push to the mast er branch on the server. The general sequence is something like that shownin
Figure 5-11.

Jessica Server John

git clone (url) -

[™
< git clone (url)
[

git push origin >
qit fetch origin >

|

» git push origin
‘git fetch origin

[=

git push origin >

git fetch origin >

Jessica Server

6.2.3. Private Managed Team

In this next scenario, you'll look at contributor rolesin alarger private group. You'll learn how
to work in an environment where small groups collaborate on features and then those team-based
contributions are integrated by another party.

Let’s say that John and Jessica are working together on one feature, while Jessica and Josie are
working on a second. In this case, the company is using atype of integration-manager workflow
where the work of the individual groups is integrated only by certain engineers, and the nast er
branch of the main repo can be updated only by those engineers. In this scenario, all work isdonein
team-based branches and pulled together by the integrators later.

100

Pro Git

Let’sfollow Jessica s workflow as she works on her two features, collaborating in parallel with two
different developers in this environment. Assuming she already has her repository cloned, she decides
to work on f eat ur eA first. She creates a new branch for the feature and does some work on it there:

Jessica's Machine
$ git checkout -b featureA
Switched to a new branch "featureA"
$vimlib/sinplegit.rb
$ git conmit -am'add linmt to log function'
[featureA 3300904] add limt to |l og function

1 files changed, 1 insertions(+), 1 deletions(-)

At this point, she needs to share her work with John, so she pushes her f eat ur eA branch commits up
to the server. Jessica doesn’'t have push access to the mast er branch — only the integrators do — so
she has to push to another branch in order to collaborate with John:

$ git push origin featureA

To jessica@ithost:sinplegit.git
* [new branch] featureA -> featureA

Jessica e-mails John to tell him that she’s pushed some work into a branch named f eat ur eA and
he can look at it now. While she waits for feedback from John, Jessica decides to start working on
f eat ur eB with Josie. To begin, she starts a new feature branch, basing it off the server’ smast er
branch:

Jessica' s Machi ne

$ git fetch origin

$ git checkout -b featureB origin/ master
Switched to a new branch "featureB"

Now, Jessica makes a couple of commits on the f eat ur eB branch:

$vimlib/sinplegit.rb
$ git commit -am'made the Is-tree function recursive
[featureB e5b0fdc] nmade the |s-tree function recursive
1 files changed, 1 insertions(+), 1 deletions(-)
$vimlib/sinplegit.rb
$ git commit -am'add Is-files
[featureB 8512791] add Is-files
1 files changed, 5 insertions(+), O deletions(-)

Jessica' s repository looks like Figure 5-12.

master featureA

\J

(o) () ()
N
=)~

A

featureB

101

Pro Git

She' s ready to push up her work, but gets an e-mail from Josie that a branch with some initial work on
it was already pushed to the server asf eat ur eBee. Jessicafirst needs to merge those changesin with
her own before she can push to the server. She can then fetch Josie' s changes down withgi t fet ch:

$ git fetch origin

From j essi ca@i t host: si npl egi t
* [new branch] featureBee -> origin/featureBee

Jessica can now merge thisinto the work she did with gi t mer ge:

$ git nerge origin/featureBee
Auto-nerging lib/sinplegit.rb
Mer ge made by recursive.
lib/sinmplegit.rb | 4 ++++
1 files changed, 4 insertions(+), O deletions(-)

Thereisabit of a problem — she needs to push the merged work in her f eat ur eB branch to the
f eat ur eBee branch on the server. She can do so by specifying the local branch followed by a colon
(:) followed by the remote branch to thegi t push command:

$ git push origin featureB:featureBee

To jessica@ithost:sinplegit.git
f ba9af 8. .cd685d1 featureB -> featureBee

Thisis called arefspec. See Chapter 9 for amore detailed discussion of Git refspecs and different
things you can do with them.

Next, John e-mails Jessicato say he's pushed some changesto the f eat ur eA branch and ask her to
verify them. Sherunsagit fetch to pull down those changes:

$ git fetch origin

From j essi ca@i t host: si npl egi t
3300904. . aad881d featureA -> origin/featureA

Then, she can see what has been changed withgi t 1 og:

$ git log origin/featureA ~featureA

comt aad88ldl54acdaeb2b6bl8eale827ed8a6d671e6
Aut hor: John Smith <jsmth@xanpl e. conr

Dat e: Fri May 29 19:57:33 2009 -0700

changed | og output to 30 from 25

Finally, she merges John’swork into her own f eat ur eA branch:

$ git checkout featureA
Switched to branch "featureA"
$ git nerge origin/featureA
Updati ng 3300904. . aad881d
Fast forward
lib/sinmplegit.rb | 10 +++++++++-
1 files changed, 9 insertions(+), 1 deletions(-)

Jessica wants to tweak something, so she commits again and then pushes this back up to the server:

102

Pro Git

$ git commit -am ' snall tweak'
[featureA ed774b3] small tweak

1 files changed, 1 insertions(+), 1 deletions(-)
$ git push origin featureA

To jessica@ithost:sinplegit.git
3300904. . ed774b3 featureA -> featureA

Jessica’s commit history now looks something like Figure 5-13.

origin/featureA

[

master featureA

v v
() () () () ()
\
(eSbOf)4—(8512?) cd685)

Jessica, Josie, and John inform the integrators that the f eat ur eA and f eat ur eBee branches on
the server are ready for integration into the mainline. After they integrate these branches into the
mainline, afetch will bring down the new merge commits, making the commit history look like
Figure 5-14.

]
{WHM)-{WHWHW -—/(m)

eﬁbUf)1—(8512? cd685)

fbasa |

Many groups switch to Git because of this ability to have multiple teams working in parallel, merging
the different lines of work late in the process. The ability of smaller subgroups of ateam to collaborate
viaremote branches without necessarily having to involve or impede the entire team is a huge benefit
of Git. The sequence for the workflow you saw here is something like Figure 5-15.

103

Pro Git

John Josle Server:featureA Server.featureBee

git commit an :l

oo e fearen

it commit on ﬁ1

qgit rrmrgeun:l

qit @ arigin featuras >

git commit on Ef]

qit push origin feabureBee -

git commit on B

git fietch origin

git merge on B

git Ergh origin featurel featurefes -

git fetch origin

git merge on A

iyl

git commit on :I

erver: featureA Server:featureBee

6.2.4. Public Small Project

Contributing to public projectsis abit different. Because you don’t have the permissions to directly
update branches on the project, you have to get the work to the maintainers some other way. This first
example describes contributing viaforking on Git hosts that support easy forking. The repo.or.cz and
GitHub hosting sites both support this, and many project maintainers expect this style of contribution.
The next section deals with projects that prefer to accept contributed patches via e-mail.

First, you'll probably want to clone the main repository, create atopic branch for the patch or patch
series you' re planning to contribute, and do your work there. The sequence |ooks basically like this:

104

Pro Git

git clone (url)

cd project

git checkout -b featureA
(wor k)

git comm t

(wor k)

git comm t

B PR LD B P

You may want to user ebase -i to squash your work down to a single commit, or rearrange the
work in the commits to make the patch easier for the maintainer to review — see Chapter 6 for more
information about interactive rebasing.

When your branch work is finished and you' re ready to contribute it back to the maintainers, go to the
original project page and click the "Fork™ button, creating your own writable fork of the project. You
then need to add in this new repository URL as a second remote, in this case named nyf or k:

$ git rempte add nyfork (url)

Y ou need to push your work up to it. It's easiest to push the remote branch you’ re working on up to
your repository, rather than merging into your master branch and pushing that up. The reason is that
if the work isn’'t accepted or is cherry picked, you don’t have to rewind your master branch. If the
maintainers merge, rebase, or cherry-pick your work, you' Il eventually get it back via pulling from
their repository anyhow:

$ git push nyfork featureA

When your work has been pushed up to your fork, you need to notify the maintainer. Thisis often
called apull request, and you can either generate it via the website — GitHub has a"pull request”
button that automatically messages the maintainer — or runthegi t request - pul I command and e-
mail the output to the project maintainer manually.

Therequest - pul I command takes the base branch into which you want your topic branch pulled and
the Git repository URL you want them to pull from, and outputs a summary of all the changes you're
asking to be pulled in. For instance, if Jessica wants to send John a pull request, and she’s done two
commits on the topic branch she just pushed up, she can run this:

$ git request-pull origin/master nyfork
The foll owi ng changes since conmit ledee6b1d61823a2de3b09c160d7080b8d1b3a40:
John Snmith (1):
added a new function

are available in the git repository at:
git://githost/sinplegit.git featureA
Jessica Snith (2):

add limt to |log function

change log output to 30 from 25

lib/sinplegit.rb | 10 +++++++++-
1 files changed, 9 insertions(+), 1 deletions(-)

The output can be sent to the maintainer—it tells them where the work was branched from,
summarizes the commits, and tells where to pull thiswork from.

On a project for which you' re not the maintainer, it's generally easier to have a branch like nast er
alwaystrack ori gi n/ mast er and to do your work in topic branches that you can easily discard if

105

Pro Git

they’re rgjected. Having work themes isolated into topic branches also makes it easier for you to
rebase your work if the tip of the main repository has moved in the meantime and your commits no
longer apply cleanly. For example, if you want to submit a second topic of work to the project, don’t
continue working on the topic branch you just pushed up — start over from the main repository’s
mast er branch:

$ git checkout -b featureB origin/ master
$ (work)

$ git comit

$ git push nyfork featureB

$ (emai | maintainer)

$ git fetch origin

Now, each of your topicsis contained within asilo — similar to a patch queue — that you can rewrite,
rebase, and modify without the topics interfering or interdepending on each other asin Figure 5-16.

master origin/master

- - { 4b078)4—(ledee)4—(33009)
(azde3)ﬁ—(0d708)1— featureA
(esbof)-1— featureB

Let’s say the project maintainer has pulled in a bunch of other patches and tried your first branch, but
it no longer cleanly merges. In this case, you can try to rebase that branch on top of ori gi n/ master,
resolve the conflicts for the maintainer, and then resubmit your changes:

$ git checkout featureA
$ git rebase origin/naster
$ git push -f myfork featureA

This rewrites your history to now look like Figure 5-17.

{AbUTE)Q—(ledee)Q—(JJOOB

| deeéb l 5399e
featurel

Because you rebased the branch, you have to specify the - f to your push command in order to
be able to replace the f eat ur eA branch on the server with a commit that isn’t a descendant of it.
An aternative would be to push this new work to a different branch on the server (perhaps called
f eat ur eAv2).

Let’slook at one more possible scenario: the maintainer has looked at work in your second branch
and likes the concept but would like you to change an implementation detail. You' |l also take this

106

Pro Git

opportunity to move the work to be based off the project’s current mast er branch. Y ou start anew
branch based off the current or i gi n/ mast er branch, squash the f eat ur eB changes there, resolve any
conflicts, make the implementation change, and then push that up as a new branch:

$ git checkout -b featureBv2 origin/master
$ git nerge --no-commit --squash featureB
$ (change inpl enentation)

$ git commit

$ git push nmyfork featureBv2

The - - squash option takes all the work on the merged branch and sgquashes it into one non-merge
commit on top of the branch you're on. The - - no- conmi t option tells Git not to automatically record
acommit. This allows you to introduce all the changes from another branch and then make more
changes before recording the new commit.

Now you can send the maintainer a message that you’ ve made the requested changes and they can
find those changes in your f eat ur eBv2 branch (see Figure 5-18).

T 1
-~ {4!:075)4—(ledee)d—(33009)

6.2.5. Public Large Project

Many larger projects have established procedures for accepting patches — you'll need to check the
specific rules for each project, because they will differ. However, many larger public projects accept
patches via a developer mailing list, so I'll go over an example of that now.

The workflow is similar to the previous use case — you create topic branches for each patch series
you work on. The difference is how you submit them to the project. Instead of forking the project and
pushing to your own writable version, you generate e-mail versions of each commit series and e-mail
them to the developer mailing list:

$ git checkout -b topicA
$ (work)

$ git comit

$ (work)

$ git comit

Now you have two commits that you want to send to the mailing list. You usegit for mat - pat ch to
generate the mbox-formatted files that you can e-mail to the list — it turns each commit into an e-mail
message with the first line of the commit message as the subject and the rest of the message plus the
patch that the commit introduces as the body. The nice thing about thisis that applying a patch from
an e-mail generated with f or mat - pat ch preserves all the commit information properly, asyou’ll see
more of in the next section when you apply these commits:

$ git format-patch -M origin/ naster

107

Pro Git

0001-add-limt-to-1og-function. patch
0002- changed- | og- out put -t 0- 30- f r om 25. pat ch

Thef or mat - pat ch command prints out the names of the patch filesit creates. The - Mswitch tells Git
to look for renames. The files end up looking like this:

$ cat 0001-add-limt-to-1o0g-function.patch

From 330090432754092d704da8e76ca5c05¢198e71a8 Mon Sep 17 00: 00: 00 2001
From Jessica Smith <jessica@xanple.conp

Date: Sun, 6 Apr 2008 10:17:23 -0700

Subject: [PATCH 1/2] add limt to | og function

Limt log functionality to the first 20

lib/sinplegit.rb | 2 +-
1 files changed, 1 insertions(+), 1 deletions(-)

diff --git a/lib/sinplegit.rb b/lib/sinplegit.rb
i ndex 76f47bc..f9815f1 100644
--- allib/sinplegit.rb
+++ b/lib/sinplegit.rb
@-14,7 +14,7 @@class SinpleGt
end

def log(treeish = '"master')

- command("git |og #{treeish}")

+ command("git log -n 20 #{treeish}")
end

def |Is_tree(treeish = 'master')

1.6.2.rcl.20.9g8c5b.dirty

Y ou can also edit these patch files to add more information for the e-mail list that you don’t want to
show up in the commit message. If you add text between the - - line and the beginning of the patch
(theli b/ si npl egi t. r b line), then developers can read it; but applying the patch excludesit.

To e-mail thisto amailing list, you can either paste the file into your e-mail program or send it via

a command-line program. Pasting the text often causes formatting issues, especially with "smarter”
clients that don’t preserve newlines and other whitespace appropriately. Luckily, Git provides atool
to help you send properly formatted patches via|MAP, which may be easier for you. I'll demonstrate
how to send a patch via Gmail, which happensto be the e-mail agent | use; you can read detailed
instructions for a number of mail programs at the end of the aforementioned Docunent at i on/

Subni t t i ngPat ches filein the Git source code.

First, you need to set up the imap section in your ~/ . gi t confi g file. You can set each value
separately with aseriesof gi t confi g commands, or you can add them manually; but in the end,
your config file should look something like this:

[imap]
folder = "[Gmil]/Drafts"

host = imaps://imap. gnmail.com
user = user @nail.com

pass = p4ssword

port = 993

sslverify = fal se

108

Pro Git

If your IMAP server doesn’t use SSL, the last two lines probably aren’t necessary, and the host value
will bei map: // instead of i maps: //. When that is set up, you canusegit send-enai | to placethe
patch series in the Drafts folder of the specified IMAP server:

$ git send-emmil *.patch

0001- added-limt-to-log-function. patch

0002- changed- | og- out put -t o- 30- f r om 25. pat ch

VWho should the emails appear to be fron? [Jessica Smith <jessica@xanple.conp]
Emails will be sent from Jessica Smith <jessica@xanple.conp

VWho should the emails be sent to? jessica@xanpl e.com

Message-1D to be used as In-Reply-To for the first email? vy

Then, Git spits out a bunch of log information looking something like this for each patch you're
sending:

(rmbox) Adding cc: Jessica Smith <jessica@xanple.conr from
\line "From Jessica Snmith <jessica@xanple.comnmp'

K. Log says:

Sendnai | : /usr/shbin/sendmail -i jessica@xanple.com

From Jessica Smth <jessica@xanpl e. conr

To: jessica@xanpl e.com

Subj ect: [PATCH 1/2] added limt to | og function

Date: Sat, 30 May 2009 13:29:15 -0700

Message- 1 d: <1243715356-61726-1-git-send-enmil -j essi ca@xanpl e. conp

X-Mailer: git-send-enmail 1.6.2.rcl.20.9g8c5h.dirty

I n- Reply-To: <y>

Ref erences: <y>

Result: K

At this point, you should be able to go to your Drafts folder, change the To field to the mailing list
you' re sending the patch to, possibly CC the maintainer or person responsible for that section, and
send it off.

6.2.6. Summary

This section has covered a number of common workflows for dealing with several very different types
of Git projectsyou're likely to encounter and introduced a couple of new tools to help you manage
this process. Next, you'll see how to work the other side of the coin: maintaining a Git project. You'll
learn how to be a benevolent dictator or integration manager.

6.3. Maintaining a Project

In addition to knowing how to effectively contribute to a project, you'll likely need to know how to
maintain one. This can consist of accepting and applying patches generated viaf or mat - pat ch and e-
mailed to you, or integrating changes in remote branches for repositories you’ ve added as remotes to
your project. Whether you maintain a canonical repository or want to help by verifying or approving
patches, you need to know how to accept work in away that is clearest for other contributors and
sustainable by you over the long run.

6.3.1. Working in Topic Branches

When you’ re thinking of integrating new work, it's generally agood ideato try it out in atopic branch
— atemporary branch specifically made to try out that new work. Thisway, it’s easy to tweak a patch

109

Pro Git

individually and leave it if it’s not working until you have time to come back to it. If you create a
simple branch name based on the theme of the work you’re going to try, such asruby_cl i ent or
something similarly descriptive, you can easily remember it if you have to abandon it for awhile and
come back later. The maintainer of the Git project tends to namespace these branches as well — such
assc/ ruby_client,wheresc isshort for the person who contributed the work. As you’ll remember,
you can create the branch based off your master branch like this:

$ git branch sc/ruby_client naster

Or, if you want to also switch to it immediately, you can use the checkout - b option:

$ git checkout -b sc/ruby_client master

Now you're ready to add your contributed work into this topic branch and determine if you want to
merge it into your longer-term branches.

6.3.2. Applying Patches from E-mail

If you receive a patch over e-mail that you need to integrate into your project, you need to apply the
patch in your topic branch to evaluate it. There are two ways to apply an e-mailed patch: with gi t
apply or withgit am

Applying a Patch with apply

If you received the patch from someone who generated it withthegit diff oraUnix diff
command, you can apply it withthegi t appl y command. Assuming you saved the patch at / t mp/
pat ch-ruby- cl i ent . pat ch, you can apply the patch like this:

$ git apply /tnp/patch-ruby-client. patch

This modifies the filesin your working directory. It's aimost identical to running apat ch - p1
command to apply the patch, although it's more paranoid and accepts fewer fuzzy matches than patch.
It also handles file adds, deletes, and renames if they’re described inthegi t di ff format, which

pat ch won't do. Finaly, gi t apply isan "apply al or abort al" model where either everything is
applied or nothing is, whereas pat ch can partialy apply patchfiles, leaving your working directory in
aweird state. gi t appl y isoveral much more paranoid than pat ch. It won’t create a commit for you
— after running it, you must stage and commit the changes introduced manually.

Y ou can aso use git apply to see if a patch applies cleanly before you try actually applying it — you
canrungit apply --check with the patch:

$ git apply --check 0001-seeing-if-this-hel ps-the-gem patch

error: patch failed: ticgit.genspec:1
error: ticgit.genspec: patch does not apply

If there is no output, then the patch should apply cleanly. This command also exits with a non-zero
status if the check fails, so you can useit in scriptsif you want.

Applying a Patch with am

If the contributor is a Git user and was good enough to use the f or mat - pat ch command to generate
their patch, then your job is easier because the patch contains author information and a commit

110

Pro Git

message for you. If you can, encourage your contributors to usef or mat - pat ch instead of di ff to
generate patches for you. Y ou should only haveto usegi t appl y for legacy patches and things like
that.

To apply a patch generated by f or mat - pat ch, you usegit am Technically, gi t amisbuilt to read
an mbox file, which isasimple, plain-text format for storing one or more e-mail messages in one text
file. It looks something like this:

From 330090432754092d704da8e76ca5c05¢c198e71a8 Mon Sep 17 00: 00: 00 2001
From Jessica Smth <jessi ca@xanpl e. conr

Date: Sun, 6 Apr 2008 10:17:23 -0700

Subject: [PATCH 1/2] add limt to | og function

Limt log functionality to the first 20

Thisisthe beginning of the output of the format-patch command that you saw in the previous section.
Thisisaso avalid mbox e-mail format. If someone has e-mailed you the patch properly using git
send-email, and you download that into an mbox format, then you can point git am to that mbox file,
and it will start applying all the patchesit sees. If you run amail client that can save several e-mails
out in mbox format, you can save entire patch seriesinto afile and then use git am to apply them one
at atime.

However, if someone uploaded a patch file generated viaf or mat - pat ch to aticketing system or
something similar, you can save the file locally and then pass that file saved on your disktogit amto

apply it:

$ git am 0001-limt-log-function.patch
Applying: add Iimt to log function

Y ou can see that it applied cleanly and automatically created the new commit for you. The author
information is taken from the e-mail’ s Fr omand Dat e headers, and the message of the commit is taken
from the Subj ect and body (before the patch) of the e-mail. For example, if this patch was applied
from the mbox example | just showed, the commit generated would look something like this:

$ git log --pretty=fuller -1
commt 6c5e70b984a60b3cecd395edd5b48a7575bf 58e0

Aut hor : Jessica Snmith <jessica@xanpl e.conr
Aut hor Date: Sun Apr 6 10:17:23 2008 -0700
Commi t: Scott Chacon <schacon@nuil . conp

Conmi t Date: Thu Apr 9 09:19:06 2009 -0700
add limt to log function

Limt log functionality to the first 20

The commi t information indicates the person who applied the patch and the time it was applied. The
Aut hor information is the individual who originally created the patch and when it was originally
created.

But it's possible that the patch won’t apply cleanly. Perhaps your main branch has diverged too far
from the branch the patch was built from, or the patch depends on another patch you haven't applied
yet. In that case, thegit amprocess will fail and ask you what you want to do:

$ git am 0001-seei ng-if-this-hel ps-the-gem patch

111

Pro Git

Applying: seeing if this hel ps the gem

error: patch failed: ticgit.genspec:1

error: ticgit.genspec: patch does not apply

Patch failed at 0001.

VWhen you have resolved this problemrun "git am --resol ved"

If you would prefer to skip this patch, instead run "git am --skip".
To restore the original branch and stop patching run "git am--abort”.

This command puts conflict markersin any files it has issues with, much like a conflicted merge or
rebase operation. Y ou solve this issue much the same way — edit the file to resolve the conflict, stage
the new file, and thenrungit am - - resol ved to continue to the next patch:

$ (fix the file)

$ git add ticgit.genspec

$ git am--resol ved

Applying: seeing if this hel ps the gem

If you want Git to try a bit more intelligently to resolve the conflict, you can passa- 3 option to it,
which makes Git attempt athree-way merge. This option isn’t on by default because it doesn’t work
if the commit the patch saysit was based onisn’t in your repository. If you do have that commit —
if the patch was based on a public commit — then the - 3 option is generally much smarter about
applying a conflicting patch:

$ git am -3 0001-seeing-if-this-hel ps-the-gem patch
Applying: seeing if this hel ps the gem

error: patch failed: ticgit.genmspec:1

error: ticgit.genmspec: patch does not apply

Using index info to reconstruct a base tree..
Fal | i ng back to patching base and 3-way nerge...

No changes -- Patch already applied.

In this case, | wastrying to apply a patch | had aready applied. Without the - 3 option, it looks like a
conflict.

If you' re applying a number of patches from an mbox, you can aso run the amcommand in interactive
mode, which stops at each patch it finds and asks if you want to apply it:

$ git am-3 -i nbox
Commit Body is:

Apply? [yles/[n]o/[e]dit/[v]iew patch/[a]ccept all

Thisisnice if you have a number of patches saved, because you can view the patch first if you don’t
remember what it is, or not apply the patch if you' ve already done so.

When all the patches for your topic are applied and committed into your branch, you can choose
whether and how to integrate them into alonger-running branch.

6.3.3. Checking Out Remote Branches

If your contribution came from a Git user who set up their own repository, pushed a number of
changesinto it, and then sent you the URL to the repository and the name of the remote branch the
changes are in, you can add them as aremote and do merges locally.

112

Pro Git

For instance, if Jessica sends you an e-mail saying that she has agreat new feature in the r uby-
cl i ent branch of her repository, you can test it by adding the remote and checking out that branch
locally:

$ git renpte add jessica git://github.con jessical/nyproject.git
$ git fetch jessica
$ git checkout -b rubyclient jessical/ruby-client

If she e-mailsyou again later with another branch containing another great feature, you can fetch and
check out because you already have the remote setup.

Thisis most useful if you’ re working with a person consistently. If someone only has a single patch
to contribute once in awhile, then accepting it over e-mail may be less time consuming than requiring
everyone to run their own server and having to continually add and remove remotes to get afew
patches. You're aso unlikely to want to have hundreds of remotes, each for someone who contributes
only a patch or two. However, scripts and hosted services may make this easier — it depends largely
on how you develop and how your contributors devel op.

The other advantage of this approach is that you get the history of the commits as well. Although you
may have legitimate merge issues, you know where in your history their work is based; a proper three-
way merge is the default rather than having to supply a- 3 and hope the patch was generated off a
public commit to which you have access.

If you aren’t working with a person consistently but still want to pull from them in this way, you can
provide the URL of the remote repository tothegit pul | command. This does a one-time pull and
doesn’t save the URL as aremote reference:

$ git pull git://github.con onetinmeguy/project.qgit
From git://github. com oneti meguy/ proj ect

* branch HEAD -> FETCH_HEAD
Merge made by recursive.

6.3.4. Determining What Is Introduced

Now you have atopic branch that contains contributed work. At this point, you can determine what
you'd like to do with it. This section revisits a couple of commands so you can see how you can use
them to review exactly what you’ll be introducing if you merge thisinto your main branch.

It's often helpful to get areview of all the commitsthat are in this branch but that aren’t in your
master branch. Y ou can exclude commits in the master branch by adding the - - not option before the
branch name. For example, if your contributor sends you two patches and you create a branch called
cont ri b and applied those patches there, you can run this:

$ git log contrib --not master

conmm t 5b6235bd297351589ef c4d73316f 0a68d484f 118
Aut hor: Scott Chacon <schacon@nmai |l . conms

Dat e: Fri Oct 24 09:53:59 2008 -0700

seeing if this hel ps the gem
conmit 7482e0d16d04bea79d0dba8988cc78df 655f 16a0

Aut hor: Scott Chacon <schacon@nuil . conp
Dat e: Mon Qct 22 19:38:36 2008 -0700

113

Pro Git

updated the genspec to hopefully work better

To see what changes each commit introduces, remember that you can passthe - p optiontogit | og
and it will append the diff introduced to each commit.

To see afull diff of what would happen if you were to merge this topic branch with another branch,
you may have to use aweird trick to get the correct results. Y ou may think to run this:

$ git diff master

This command gives you a diff, but it may be misleading. If your mast er branch has moved forward
since you created the topic branch from it, then you'll get seemingly strange results. This happens
because Git directly compares the snapshots of the last commit of the topic branch you’ re on and the
snapshot of the last commit on the nast er branch. For example, if you've added alinein afile on the
mast er branch, adirect comparison of the snapshots will look like the topic branch is going to remove
that line.

If mast er isadirect ancestor of your topic branch, thisisn’t a problem; but if the two histories have
diverged, the diff will look like you're adding all the new stuff in your topic branch and removing
everything unique to the mast er branch.

What you really want to see are the changes added to the topic branch — the work you’ Il introduce if
you merge this branch with master. Y ou do that by having Git compare the last commit on your topic
branch with the first common ancestor it has with the master branch.

Technically, you can do that by explicitly figuring out the common ancestor and then running your
diff onit:

$ git nerge-base contrib naster

36¢c7dba2c95e6bbb78df a822519ecf ec6elcab49
$ git diff 36¢7db

However, that isn’t convenient, so Git provides another shorthand for doing the same thing: the triple-
dot syntax. In the context of the di f f command, you can put three periods after another branch to do a
di f f between the last commit of the branch you’ re on and its common ancestor with another branch:

$ git diff master...contrib

This command shows you only the work your current topic branch has introduced since its common
ancestor with master. That isavery useful syntax to remember.

6.3.5. Integrating Contributed Work

When al the work in your topic branch is ready to be integrated into a more mainline branch, the
guestion is how to do it. Furthermore, what overall workflow do you want to use to maintain your
project? Y ou have a number of choices, so I'll cover afew of them.

Merging Workflows

One simple workflow merges your work into your mast er branch. In this scenario, you have anast er
branch that contains basically stable code. When you have work in atopic branch that you’ ve done

114

Pro Git

or that someone has contributed and you’ ve verified, you merge it into your master branch, delete the
topic branch, and then continue the process. If we have a repository with work in two branches named
ruby_client andphp_client that looks like Figure 5-19 and merger uby_cl i ent first and then
php_cl i ent next, then your history will end up looking like Figure 5-20.

php_client

master

v

D DD

6

A

ruby_client

+a

php_client

That is probably the simplest workflow, but it’s problematic if you' re dealing with larger repositories
Or projects.

If you have more developers or alarger project, you'll probably want to use at |east a two-phase
merge cycle. In this scenario, you have two long-running branches, mast er and devel op, in which
you determine that mast er is updated only when avery stable release is cut and all new code
isintegrated into the devel op branch. Y ou regularly push both of these branches to the public
repository. Each time you have a new topic branch to merge in (Figure 5-21), you merge it into
devel op (Figure 5-22); then, when you tag arelease, you fast-forward mast er to wherever the now-
stable devel op branchis (Figure 5-23).

115

Pro Git

master develop

\J \J

(D)
™
5@

*

ruby_client

master develop

\J Y

(D)3(-—4

ruby_client

master develop

N ¥

~@-00—@

ruby_client

Thisway, when people clone your project’s repository, they can either check out master to build the
latest stable version and keep up to date on that easily, or they can check out develop, which isthe
more cutting-edge stuff. Y ou can also continue this concept, having an integrate branch where al the
work is merged together. Then, when the codebase on that branch is stable and passes tests, you merge
it into a devel op branch; and when that has proven itself stable for awhile, you fast-forward your
master branch.

Large-Merging Workflows

The Git project has four long-running branches: mast er, next , and pu (proposed updates) for new
work, and mai nt for maintenance backports. When new work is introduced by contributors, it's
collected into topic branches in the maintainer’ s repository in a manner similar to what I’ ve described
(see Figure 5-24). At this point, the topics are evaluated to determine whether they’ re safe and ready
for consumption or whether they need more work. If they’re safe, they’ re merged into next , and that
branch is pushed up so everyone can try the topics integrated together.

116

Pro Git

I'ﬂ'thCI'

tv/rebase-stat
4—@4——' k/clone-post-checkout |
<—. db/push-cleanup

(D))]
(Cll)1—(cl2)1—| ps/blame

If the topics still need work, they’re merged into pu instead. When it’s determined that they’ re totally
stable, the topics are re-merged into mast er and are then rebuilt from the topics that werein next but
didn’t yet graduate to nast er . Thismeans mast er amost always moves forward, next is rebased
occasionally, and pu is rebased even more often (see Figure 5-25).

When atopic branch has finally been merged into mast er, it’s removed from the repository. The

Git project aso has amai nt branch that is forked off from the last release to provide backported
patches in case a maintenance release is required. Thus, when you clone the Git repository, you

have four branches that you can check out to evaluate the project in different stages of development,
depending on how cutting edge you want to be or how you want to contribute; and the maintainer has
a structured workflow to help them vet new contributions.

Rebasing and Cherry Picking Workflows

Other maintainers prefer to rebase or cherry-pick contributed work on top of their master branch,
rather than merging it in, to keep amostly linear history. When you have work in atopic branch and
have determined that you want to integrate it, you move to that branch and run the rebase command to
rebuild the changes on top of your current master (or devel op, and so on) branch. If that works well,
you can fast-forward your mast er branch, and you' Il end up with alinear project history.

The other way to move introduced work from one branch to another isto cherry-pick it. A cherry-
pick in Git islike arebase for a single commit. It takes the patch that was introduced in a commit and
triesto reapply it on the branch you're currently on. Thisisuseful if you have a number of commits
on atopic branch and you want to integrate only one of them, or if you only have one commit on a
topic branch and you' d prefer to cherry-pick it rather than run rebase. For example, suppose you have
aproject that looks like Figure 5-26.

117

Pro Git

master

\J

4--‘(0b743)ﬂ—(abbdc)‘—(£42c5)
N
(e43a6)4—(5d;ae)

ruby_client

If you want to pull commit e43a6 into your master branch, you can run

$ git cherry-pick e43a6fd3e94888d76779ad79f b568ed180e5f cdf

Fi ni shed one cherry- pi ck.

[master]: created a0a4la9: "Mre friendly nessage when | ocking the index fails."
3 files changed, 17 insertions(+), 3 deletions(-)

This pulls the same change introduced in e43a6, but you get a new commit SHA-1 value, because the
date applied is different. Now your history looks like Figure 5-27.

master

\J

o () () (=) ()

Now you can remove your topic branch and drop the commits you didn’t want to pull in.

6.3.6. Tagging Your Releases

When you’ ve decided to cut arelease, you' |l probably want to drop atag so you can re-create that
release at any point going forward. Y ou can create anew tag as | discussed in Chapter 2. If you decide
to sign the tag as the maintainer, the tagging may look something like this:

$ git tag -s vl.5 -m'ny signed 1.5 tag'
You need a passphrase to unlock the secret key for
user: "Scott Chacon <schacon@mail . conm"
1024-bit DSA key, |D F721CA5A, created 2009-02-09

If you do sign your tags, you may have the problem of distributing the public PGP key used to sign
your tags. The maintainer of the Git project has solved thisissue by including their public key asa
blob in the repository and then adding atag that points directly to that content. To do this, you can

figure out which key you want by running gpg --1i st - keys:

$ gpg --list-keys
/ User s/ schacon/ . gnupg/ pubri ng. gpg

118

Pro Git

pub 1024D/ F721CA5A 2009-02-09 [expires: 2010-02-09]
ui d Scott Chacon <schacon@nmuil . conp
sub 20489/ 45D02282 2009- 02-09 [expires: 2010-02-09]

Then, you can directly import the key into the Git database by exporting it and piping that through gi t
hash- obj ect , which writes a new blob with those contents into Git and gives you back the SHA-1 of
the blob:

$ gpg -a --export F721C45A | git hash-object -w --stdin
659ef 797d181633c87ec71lac3f 9ba29f e5775b92

Now that you have the contents of your key in Git, you can create atag that points directly to it by
specifying the new SHA-1 value that the hash- obj ect command gave you:

$ git tag -a naintainer-pgp-pub 659ef 797d181633c87ec7lac3f 9ba29f e5775b92

If yourungit push --tags, themai nt ai ner - pgp- pub tag will be shared with everyone. If anyone
wants to verify atag, they can directly import your PGP key by pulling the blob directly out of the
database and importing it into GPG:

$ git show maintainer-pgp-pub | gpg --inport

They can use that key to verify al your signed tags. Also, if you include instructionsin the tag
message, running gi t show <t ag> will let you give the end user more specific instructions about tag
verification.

6.3.7. Generating a Build Number

Because Git doesn’t have monotonically increasing numbers like v123 or the equivalent to go with
each commit, if you want to have a human-readable name to go with a commit, you can run gi t
descri be on that commit. Git gives you the name of the nearest tag with the number of commits on
top of that tag and a partial SHA-1 value of the commit you' re describing:

$ git describe master
v1l.6.2-rcl-20-9g8c5b85c

Thisway, you can export a snapshot or build and name it something understandable to people. In
fact, if you build Git from source code cloned from the Git repository, gi t - - ver si on givesyou
something that looks like this. If you’ re describing a commit that you have directly tagged, it gives
you the tag name.

Thegit descri be command favors annotated tags (tags created with the - a or - s flag), so

release tags should be created thisway if you'reusing git descri be, to ensure the commit is

named properly when described. Y ou can also use this string as the target of a checkout or show
command, although it relies on the abbreviated SHA-1 value at the end, so it may not be valid forever.
For instance, the Linux kernel recently jumped from 8 to 10 characters to ensure SHA-1 object
uniqueness, so older gi t descri be output names were invalidated.

6.3.8. Preparing a Release

Now you want to release a build. One of the things you’ll want to do is create an archive of the
latest snapshot of your code for those poor souls who don’'t use Git. The command to do thisisgi t
archi ve:

119

Pro Git

$ git archive naster --prefix="project/' | gzip > "git describe master .tar.gz
$1s *.tar.gz
v1.6.2-rcl-20-9g8c5b85c.tar.gz

If someone opens that tarball, they get the latest snapshot of your project under a project directory.
Y ou can a'so create a zip archive in much the same way, but by passing the - - f or mat =zi p option to
git archive:

$ git archive naster --prefix="project/' --format=zip > "git describe nmaster .zip

Y ou now have anicetarball and azip archive of your project release that you can upload to your
website or e-mail to people.

6.3.9. The Shortlog

It'stime to e-mail your mailing list of people who want to know what’ s happening in your project. A
nice way of quickly getting a sort of changelog of what has been added to your project since your last
release or eemail isto usethegit shortl og command. It summarizes al the commitsin the range
you give it; for example, the following gives you a summary of al the commits since your last release,
if your last release was named v1.0.1:

$ git shortlog --no-nerges master --not v1.0.1
Chris Wanstrath (8):

Add support for annotated tags to Git::Tag

Add packed-refs annotated tag support.

Add Grit::Commt#to_patch

Updat e version and History.txt

Renmove stray " puts’

Make |s_tree ignore nils

Tom Preston-\Werner (4):
fix dates in history
dynam ¢ version nethod
Version bunmp to 1.0.2
Regener at ed genspec for version 1.0.2

Y ou get a clean summary of al the commits since v1.0.1, grouped by author, that you can e-mail to
your list.

6.4. Summary

Y ou should fedl fairly comfortable contributing to a project in Git as well as maintaining your own
project or integrating other users contributions. Congratul ations on being an effective Git devel oper!
In the next chapter, you'll learn more powerful tools and tips for dealing with complex situations,
which will truly make you a Git master.

7. Git Tools

By now, you’ve learned most of the day-to-day commands and workflows that you need to manage
or maintain a Git repository for your source code control. Y ou’ ve accomplished the basic tasks of
tracking and committing files, and you’ ve harnessed the power of the staging area and lightweight
topic branching and merging.

120

Pro Git

Now you'll explore a number of very powerful things that Git can do that you may not necessarily use
on aday-to-day basis but that you may need at some point.

7.1. Revision Selection

Git alows you to specify specific commits or arange of commitsin several ways. They aren’t
necessarily obvious but are helpful to know.

7.1.1. Single Revisions

Y ou can obvioudly refer to acommit by the SHA-1 hash that it’ s given, but there are more human-
friendly ways to refer to commits as well. This section outlines the various ways you can refer to a
single commit.

7.1.2. Short SHA

Git is smart enough to figure out what commit you meant to type if you provide the first few
characters, aslong as your partial SHA-1 is at least four characters long and unambiguous — that is,
only one object in the current repository begins with that partial SHA-1.

For example, to see a specific commit, supposeyou runagit | og command and identify the commit
where you added certain functionality:

$ git log

conmit 734713bc047d87bf 7eac9674765ae793478c50d3
Aut hor: Scott Chacon <schacon@nuil . conp

Dat e: Fri Jan 2 18:32:33 2009 -0800

fixed refs handling, added gc auto, updated tests

commit d921970aadf 03b3cf 0e71lbecdaab3147ba7lcdef
Merge: 1c002dd... 35cfb2b..

Aut hor: Scott Chacon <schacon@nmai |l . conm>

Dat e: Thu Dec 11 15:08:43 2008 -0800

Merge commit ' phedders/rdocs'

commt 1c002dd4b536e7479f e34593e72e6c6c1819e53b
Aut hor: Scott Chacon <schacon@nuil . conp
Dat e: Thu Dec 11 14:58:32 2008 -0800

added sone bl ame and nerge stuff

In this case, choose 1c002dd. . .. If yougit showthat commit, the following commands are
equivalent (assuming the shorter versions are unambiguous):

$ git show 1c002dd4b536e7479f e34593e72e6c6c1819e53b
$ git show 1c002dd4b536e7479f
$ git show 1c002d

Git can figure out a short, unique abbreviation for your SHA-1 values. If you pass - - abbr ev- conmi t
tothegit | og command, the output will use shorter values but keep them unique; it defaults to using
seven characters but makes them longer if necessary to keep the SHA-1 unambiguous:

$ git log --abbrev-commit --pretty=oneline

121

Pro Git

ca82a6d changed the version nunber
085bb3b rempbved unnecessary test code
allbefO first commt

Generdly, eight to ten characters are more than enough to be unique within a project. One of the
largest Git projects, the Linux kernel, is beginning to need 12 characters out of the possible 40 to stay
unique.

7.1.3. A SHORT NOTE ABOUT SHA-1

A lot of people become concerned at some point that they will, by random happenstance, have two
objectsin their repository that hash to the same SHA-1 value. What then?

If you do happen to commit an object that hashes to the same SHA-1 value as a previous object

in your repository, Git will see the previous object already in your Git database and assume it was
already written. If you try to check out that object again at some point, you'll always get the data of
the first object.

However, you shoul d be aware of how ridiculously unlikely this scenario is. The SHA-1 di

Here' s an example to give you an idea of what it would take to get a SHA-1 collision. If al 6.5 billion
humans on Earth were programming, and every second, each one was producing code that was the
equivalent of the entire Linux kernel history (1 million Git objects) and pushing it into one enormous
Git repository, it would take 5 years until that repository contained enough objects to have a 50%
probability of asingle SHA-1 object collision. A higher probability exists that every member of your
programming team will be attacked and killed by wolvesin unrelated incidents on the same night.

7.1.4. Branch References

The most straightforward way to specify a commit requires that it have a branch reference pointed

at it. Then, you can use a branch name in any Git command that expects a commit object or SHA-1
value. For instance, if you want to show the last commit object on a branch, the following commands
are equivalent, assuming that the t opi ¢1 branch pointsto cag82a6d:

$ git show caB82a6dff817ec66f44342007202690a93763949
$ git show topicl

If you want to see which specific SHA abranch points to, or if you want to see what any of these
examples boils down to in terms of SHAS, you can use a Git plumbing tool called r ev- par se. You
can see Chapter 9 for more information about plumbing tools; basically, r ev- par se existsfor lower-
level operations and isn’'t designed to be used in day-to-day operations. However, it can be helpful
sometimes when you need to see what’ s really going on. Here you can run r ev- par se on your branch.

$ git rev-parse topicl
ca82a6df f 817ec66f 44342007202690a93763949

7.1.5. RefLog Shortnames

One of the things Git does in the background while you' re working away is keep areflog — alog of
where your HEAD and branch references have been for the last few months.

You can seeyour reflog by using gi t refl og:

122

Pro Git

$ git reflog

734713b... HEAD@O}: commit: fixed refs handling, added gc auto, updated
d921970... HEAD@ 1}: nmerge phedders/rdocs: Merge made by recursive.
1c002dd. .. HEAD@2}: conmit: added some bl ame and merge stuff

1c36188... HEAD@ 3}: rebase -i (squash): updating HEAD

95df 984... HEAD@4}: commit: # This is a conbination of two commits.
1c36188... HEAD@5}: rebase -i (squash): updating HEAD

7e05da5... HEAD@ 6}: rebase -i (pick): updating HEAD

Every time your branch tip is updated for any reason, Git stores that information for you in this
temporary history. And you can specify older commits with this data, as well. If you want to see the
fifth prior value of the HEAD of your repository, you can use the @ n} reference that you seein the
reflog output:

$ git show HEAD@ 5}

Y ou can a'so use this syntax to see where a branch was some specific amount of time ago. For
instance, to see where your mast er branch was yesterday, you can type

$ git show nmaster @ yest er day}

That shows you where the branch tip was yesterday. This technique only works for datathat’s still in
your reflog, so you can't useit to look for commits older than afew months.

To seereflog information formatted likethegi t | og output, you canrungit |og -g:

$ git log -g master

comm t 734713bc047d87bf 7eac9674765ae793478¢c50d3

Refl og: master @0} (Scott Chacon <schacon@mail . conp)

Refl og nessage: conmit: fixed refs handling, added gc auto, updated
Aut hor: Scott Chacon <schacon@nmai |l . conm>

Dat e: Fri Jan 2 18:32:33 2009 -0800

fixed refs handling, added gc auto, updated tests

comm t d921970aadf 03b3cf 0e71lbecdaab3147ba7lcdef

Refl og: master @1} (Scott Chacon <schacon@mail . conp)

Ref | og nessage: mnerge phedders/rdocs: Merge nade by recursive.
Aut hor: Scott Chacon <schacon@nmuil . conp

Dat e: Thu Dec 11 15:08:43 2008 - 0800

Merge conmit ' phedders/rdocs'

I’ simportant to note that the reflog information is strictly local — it’s alog of what you’ve donein
your repository. The references won't be the same on someone else’ s copy of the repository; and right
after you initially clone arepository, you'll have an empty reflog, as no activity has occurred yet in
your repository. Running git show HEAD@ 2. nont hs. ago} will work only if you cloned the project
at least two months ago — if you cloned it five minutes ago, you' |l get no results.

7.1.6. Ancestry References

The other main way to specify acommit isviaits ancestry. If you place a~ at the end of areference,
Git resolvesit to mean the parent of that commit. Suppose you look at the history of your project:

$git log --pretty=format:' % %' --graph
* 734713b fixed refs handling, added gc auto, updated tests
* d921970 Merge commit ' phedders/rdocs'

123

Pro Git

|\

| * 35cfb2b Some rdoc changes

* | 1c002dd added some bl ame and merge stuff

| /

* 1c36188 ignore *.gem

* 9b29157 add open3_detach to genspec file |ist

Then, you can see the previous commit by specifying HEAD", which means "the parent of HEAD":

$ git show HEAD"

comm t d921970aadf 03b3cf 0e71lbecdaab3147ba7lcdef
Merge: 1c002dd... 35cfb2b. ..

Aut hor: Scott Chacon <schacon@nmei |l . con>

Dat e: Thu Dec 11 15:08:43 2008 - 0800

Merge conmit ' phedders/rdocs'

Y ou can also specify anumber after ther — for example, 92197072 means "the second parent of
d921970." This syntax is only useful for merge commits, which have more than one parent. The first
parent is the branch you were on when you merged, and the second is the commit on the branch that
you merged in:

$ git show d921970"

conmit 1c002dd4b536e7479f e34593e72e6c6c1819e53b
Aut hor: Scott Chacon <schacon@nuil . conp

Dat e: Thu Dec 11 14:58:32 2008 -0800

added some bl ame and nerge stuff

$ git show d92197072

conmit 35cfb2b795a55793d7cc56a6¢cc2060b4bb732548
Aut hor: Paul Hedderly <paul +git@jr. org>

Dat e: Wed Dec 10 22:22:03 2008 +0000

Sonme rdoc changes

The other main ancestry specification isthe ~. This also refersto the first parent, so HEAD~ and HEAD®
are equivalent. The difference becomes apparent when you specify a number. HEAD~-2 means "the first
parent of the first parent,” or "the grandparent” — it traverses the first parents the number of timesyou
specify. For example, in the history listed earlier, HEAD-3 would be

$ git show HEAD-3

commit 1c3618887af b5f bchea25b7c013f 4e2114448b8d
Aut hor: Tom Prest on-Wer ner <tom@mj onbo. conp
Dat e: Fri Nov 7 13:47:59 2008 -0500

i gnore *.gem
This can also be written HEAD*~, which again is the first parent of the first parent of the first parent:

$ git show HEADMA

conmit 1c3618887af b5f bchea25b7c013f 4€2114448bh8d
Aut hor: Tom Prest on- Wer ner <t om@mwj onbo. comp
Dat e: Fri Nov 7 13:47:59 2008 -0500

i gnore *.gem

Y ou can aso combine these syntaxes — you can get the second parent of the previous reference
(assuming it was a merge commit) by using HEAD~3”2, and so on.

124

Pro Git

7.1.7. Commit Ranges

Now that you can specify individual commits, let’ s see how to specify ranges of commits. Thisis
particularly useful for managing your branches — if you have alot of branches, you can use range
specifications to answer questions such as, "What work is on this branch that | haven’t yet merged
into my main branch?’

Double Dot

The most common range specification is the double-dot syntax. This basically asks Git to resolve a
range of commits that are reachable from one commit but aren’t reachable from another. For example,
say you have acommit history that looks like Figure 6-1.

OB -O-1=
-

Y ou want to see what isin your experiment branch that hasn’t yet been merged into your master
branch. Y ou can ask Git to show you alog of just those commits with mast er . . experi nent — that
means "all commits reachable by experiment that aren’t reachable by master." For the sake of brevity
and clarity in these examples, I'll use the letters of the commit objects from the diagram in place of
the actual log output in the order that they would display:

$ git log naster..experinment
D
C

If, on the other hand, you want to see the opposite — all commitsin mast er that aren’t in exper i nent
— you can reverse the branch names. exper i ment . . mast er Shows you everything in mast er not
reachable from experi ment :

$ git | og experinent..mster
F
E

Thisisuseful if you want to keep the exper i nent branch up to date and preview what you’ re about to
merge in. Another very frequent use of this syntax is to see what you’ re about to push to aremote:

$ git log origin/mster..HEAD

This command shows you any commitsin your current branch that aren’t in the mast er branch on
your ori gi n remote. If yourunagit push and your current branch istracking ori gi n/ nast er, the
commitslisted by git | og origi n/ mast er. . HEAD are the commits that will be transferred to the
server. You can aso leave off one side of the syntax to have Git assume HEAD. For example, you
can get the same results as in the previous example by typing git 1 og ori gi n/ master.. — Git
substitutes HEAD if one side is missing.

Multiple Points

The double-dot syntax is useful as a shorthand; but perhaps you want to specify more than two
branches to indicate your revision, such as seeing what commits arein any of several branches that
aren’t in the branch you're currently on. Git allows you to do this by using either the~ character or

125

Pro Git

- -not before any reference from which you don’t want to see reachable commits. Thus these three
commands are equivalent:

$ git log refA .refB
$git log "refArefB
$ git log refB --not refA

Thisis nice because with this syntax you can specify more than two references in your query, which
you cannot do with the double-dot syntax. For instance, if you want to see all commits that are
reachable from r ef A or r ef B but not from r ef C, you can type one of these:

$ git log refArefB ~refC
$ git log refArefB --not refC

This makes for avery powerful revision query system that should help you figure out what isin your
branches.

Triple Dot

The last major range-selection syntax is the triple-dot syntax, which specifies all the commits that
are reachable by either of two references but not by both of them. Look back at the example commit
history in Figure 6-1. If you want to see what isin mast er or experi ment but not any common
references, you can run

$ git |og master...experinment

OommT

Again, this gives you normal | og output but shows you only the commit information for those four
commits, appearing in the traditional commit date ordering.

A common switch to use with thel og command inthiscaseis- -1 eft - ri ght, which shows you
which side of the range each commit isin. This helps make the data more useful:

$ git log --left-right master...experinment

OommT

<
<
>
>

With these tools, you can much more easily let Git know what commit or commits you want to
inspect.

7.2. Interactive Staging

Git comes with a couple of scripts that make some command-line tasks easier. Here, you'll look
at afew interactive commands that can help you easily craft your commits to include only certain
combinations and parts of files. These tools are very helpful if you modify abunch of filesand
then decide that you want those changes to be in several focused commits rather than one big
messy commit. Thisway, you can make sure your commits are logically separate changesets and
can be easily reviewed by the developers working with you. If yourungit add withthe-i or --
i nteractive option, Git goes into an interactive shell mode, displaying something like this:

126

Pro Git

$ git add -
st aged unst aged path
1: unchanged +0/-1 TODO
2: unchanged +1/-1 i ndex. htm
3: unchanged +5/-1 lib/sinplegit.rb

* Commands* 1. status 2: update 3: revert 4: add untracked 5: patch 6: diff 7: quit 8: help What
now>

Y ou can see that this command shows you a much different view of your staging area— basically
the same information you get with gi t st at us but abit more succinct and informative. It lists the
changes you’ ve staged on the left and unstaged changes on the right.

After this comes a Commands section. Here you can do a number of things, including staging files,
unstaging files, staging parts of files, adding untracked files, and seeing diffs of what has been staged.

7.2.1. Staging and Unstaging Files

If you type 2 or u at the what now> prompt, the script prompts you for which files you want to stage:

VWhat now> 2

st aged unst aged path
1: unchanged +0/-1 TODO
2: unchanged +1/-1 index. htm
3: unchanged +5/-1 lib/sinmplegit.rb

Updat e>>

To stage the TODO and index.html files, you can type the numbers:

Update>> 1,2

st aged unst aged path
* 1 unchanged +0/-1 TODO
* 2 unchanged +1/-1 index. htn
3: unchanged +5/-1 lib/sinplegit.rb
Updat e>>

The * next to each file means the file is selected to be staged. If you press Enter after typing nothing at
the Updat e>> prompt, Git takes anything selected and stagesit for you:

Updat e>>
updated 2 paths

e Commands* 1. status 2: update 3: revert 4. add untracked 5: patch 6: diff 7: quit 8: help What
now> 1 staged unstaged path 1: +0/-1 nothing TODO 2: +1/-1 nothing index.html 3: unchanged
+5/-1 lib/simplegit.rb

Now you can see that the TODO and index.html files are staged and the simplegit.rb fileis still
unstaged. If you want to unstage the TODO file at this point, you use the 3 or r (for revert) option:

* Commands* 1. status 2: update 3: revert 4. add untracked 5: patch 6: diff 7: quit 8: help What
now> 3 staged unstaged path 1: +0/-1 nothing TODO 2: +1/-1 nothing index.html 3: unchanged
+5/-1 lib/simplegit.rb Revert>> 1 staged unstaged path

* 1: +0/-1 nothing TODO 2: +1/-1 nothing index.html 3: unchanged +5/-1 lib/simplegit.rb
Revert>> [enter] reverted one path

127

Pro Git

Looking at your Git status again, you can see that you’ ve unstaged the TODO file:

» Commands* 1: status 2: update 3: revert 4: add untracked 5: patch 6: diff 7: quit 8: help What
now> 1 staged unstaged path 1: unchanged +0/-1 TODO 2: +1/-1 nothing index.html 3: unchanged
+5/-1 lib/simplegit.rb

To see the diff of what you’ ve staged, you can usethe 6 or d (for diff) command. It shows you alist of
your staged files, and you can select the ones for which you would like to see the staged diff. Thisis
much like specifyinggit diff --cached onthecommand line:

* Commands* 1. status 2: update 3: revert 4. add untracked 5: patch 6: diff 7: quit 8: help What
now> 6 staged unstaged path 1: 1/ -1 not hing i ndex. htmi Review diff>> 1 diff --git
alindex.htm b/index.htnl index 4d07108..4335f49 100644 --- a/index.htm ++b/
index.html @@ -16,7 +16,7 @@ Date Finder

<p id="out">...</p>

-<div id="footer">contact : support@ithub. conx/div>
+<div id="footer">contact : enmil.support@ithub.conx/div>

<script type="text/javascript">

With these basic commands, you can use the interactive add mode to deal with your staging areaa
little more easily.

7.2.2. Staging Patches

It's aso possible for Git to stage certain parts of files and not the rest. For example, if you make two
changes to your ssimplegit.rb file and want to stage one of them and not the other, doing so is very easy
in Git. From the interactive prompt, type 5 or p (for patch). Git will ask you which files you would
like to partially stage; then, for each section of the selected files, it will display hunks of the file diff
and ask if you would like to stage them, one by one:

diff --git a/lib/sinplegit.rb b/lib/sinplegit.rb
i ndex ddbecc4..57399e0 100644
- allib/sinplegit.rb
+++ b/lib/sinmplegit.rb
@-22,7 +22,7 @@class SinpleGt
end

def log(treeish = '"master')
conmmand("git log -n 25 #{treeish}")
+ command("git log -n 30 #{treeish}")
end

def bl ane(pat h)
Stage this hunk [y,n,a,d,/,j,J,0,e,7]"7

You have alot of options at this point. Typing ? shows alist of what you can do:

Stage this hunk [y,n,a,d,/,j,J,g,e,?]? ?
- stage this hunk

- do not stage this hunk

- stage this and all the remaining hunks in the file

- do not stage this hunk nor any of the remai ning hunks in the file
- select a hunk to go to

- search for a hunk matching the given regex

~—Q 09 o

128

Pro Git

- leave this hunk undeci ded, see next undecided hunk

- leave this hunk undeci ded, see next hunk

- leave this hunk undeci ded, see previous undeci ded hunk
| eave this hunk undeci ded, see previous hunk

- split the current hunk into smaller hunks

- manual ly edit the current hunk

- print help

ND WX X QT
1

Generdly, you'll typey or n if you want to stage each hunk, but staging all of them in certain files
or skipping a hunk decision until later can be helpful too. If you stage one part of the file and leave
another part unstaged, your status output will look like this:

VWhat now> 1

st aged unst aged path
1: unchanged +0/-1 TODO
2: +1/-1 not hi ng i ndex. ht n
3: +1/-1 +4/ -0 lib/sinplegit.rb

The status of the simplegit.rb fileisinteresting. It shows you that a couple of lines are staged and a
couple are unstaged. You' ve partially staged thisfile. At this point, you can exit the interactive adding
scriptandrungit conmit to commit the partially staged files.

Finally, you don’t need to be in interactive add mode to do the partial-file staging — you can start the
same script by usinggit add -porgit add --patch onthecommand line.

7.3. Stashing

Often, when you'’ ve been working on part of your project, things are in amessy state and you want to
switch branches for a bit to work on something else. The problem is, you don’t want to do a commit
of half-done work just so you can get back to this point later. The answer to thisissueisthegi t

st ash command.

Stashing takes the dirty state of your working directory — that is, your modified tracked files and
staged changes — and saves it on a stack of unfinished changes that you can reapply at any time.

7.3.1. Stashing Your Work

To demonstrate, you'll go into your project and start working on a couple of files and possibly stage
one of the changes. If yourungit st atus, you can seeyour dirty state:

git status
On branch naster
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

Changed but not updat ed:
(use "git add <file>. .." to update what will be conmitted)

$

#

#

#

#

nodi fi ed: i ndex. ht m
#

#

#

#

nodi fi ed: lib/sinplegit.rb
#

Now you want to switch branches, but you don’t want to commit what you’ ve been working on yet; so
you'll stash the changes. To push anew stash onto your stack, rungit st ash:

129

Pro Git

$ git stash
Saved working directory and index state \

"WP on master: 049d078 added the index file"
HEAD i s now at 049d078 added the index file
(To restore themtype "git stash apply")

Y our working directory is clean:

$ git status
On branch master
nothing to conmit (working directory clean)

At this point, you can easily switch branches and do work elsewhere; your changes are stored on your
stack. To see which stashes you've stored, you can usegit stash |ist:

$ git stash list

stash@0}: WP on nmaster: 049d078 added the index file
stash@1l}: WP on nmaster: ¢264051... Revert "added file_size"
stash@2}: WP on master: 21d80a5... added nunber to |og

In this case, two stashes were done previoudly, so you have access to three different stashed works.
Y ou can reapply the one you just stashed by using the command shown in the help output of the
original stash command: gi t stash appl y. If you want to apply one of the older stashes, you can
specify it by naming it, likethis: git stash apply stash@2}. If you don't specify a stash, Git
assumes the most recent stash and tries to apply it:

$ git stash apply

On branch naster
Changed but not updat ed:

(use "git add <file>. .." to update what will be committed)
#

nodi fi ed: i ndex. ht n

nodi fi ed: l[ib/sinplegit.rb

#

Y ou can see that Git re-modifies the files you uncommitted when you saved the stash. In this case,
you had a clean working directory when you tried to apply the stash, and you tried to apply it on the
same branch you saved it from; but having a clean working directory and applying it on the same
branch aren’t necessary to successfully apply a stash. Y ou can save a stash on one branch, switch to
another branch later, and try to reapply the changes. Y ou can aso have modified and uncommitted
filesin your working directory when you apply a stash — Git gives you merge conflictsif anything no
longer applies cleanly.

The changesto your files were reapplied, but the file you staged before wasn't restaged. To do that,
you must runthegit stash apply command with a- -i ndex option to tell the command to try

to reapply the staged changes. If you had run that instead, you’ d have gotten back to your original
position:

git stash apply --index

On branch naster

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

nodi fi ed: i ndex. ht m

Changed but not updat ed:

$
#
#
#
#
#
#
#
(use "git add <file>. .." to update what will be committed)

130

Pro Git

#
nodi fi ed: lib/simplegit.rb
#

The apply option only tries to apply the stashed work — you continue to have it on your stack. To
removeit, youcanrungit stash drop withthe name of the stash to remove:

$ git stash list

stash@0}: WP on nmaster: 049d078 added the index file
stash@1l}: WP on master: ¢c264051... Revert "added file_size"
stash@2}: WP on master: 21d80a5... added nunber to |og

$ git stash drop stash@ 0}

Dr opped stash@ 0} (364e91f 3f 268f 0900bc3ee613f 9f 733e82aaed43)

Youcanasorungit stash pop to apply the stash and then immediately drop it from your stack.

7.3.2. Un-applying a Stash

In some use case scenarios you might want to apply stashed changes, do some work, but then un-
apply those changes that originally came form the stash. Git does not provide such ast ash unappl y
command, but it is possible to achieve the effect by simply retrieving the patch associated with a stash
and applying it in reverse:

$ git stash show -p stash@O0} | git apply -R
Again, if you don’'t specify a stash, Git assumes the most recent stash:
$ git stash show -p | git apply -R

Y ou may want to create an alias and effectively add a st ash- unappl y command to your git. For
example:

$ git config --global alias.stash-unapply '!git stash show-p | git apply -R
$ git stash

$ #... work work work

$ git stash-unapply

7.3.3. Creating a Branch from a Stash

If you stash some work, leave it there for awhile, and continue on the branch from which you stashed
the work, you may have a problem reapplying the work. If the apply triesto modify afile that you've
since modified, you' [l get a merge conflict and will haveto try to resolveit. If you want an easier way
to test the stashed changes again, you canrungit stash branch, which creates a new branch for
you, checks out the commit you were on when you stashed your work, reapplies your work there, and
then drops the stash if it applies successfully:

$ git stash branch testchanges

Swi tched to a new branch "testchanges"

On branch testchanges

Changes to be comm tted:

(use "git reset HEAD <file>..." to unstage)

nodi fi ed: i ndex. ht m

Changed but not updat ed:
(use "git add <file>. .." to update what will be committed)

HHHHHHH

131

Pro Git

nodi fi ed: lib/simplegit.rb
#
Dr opped refs/stash@O0} (fOdfc4d5dc332dlcee34a634182e168c4efc3359)

Thisisanice shortcut to recover stashed work easily and work on it in a new branch.

7.4. Rewriting History

Many times, when working with Git, you may want to revise your commit history for some reason.
One of the great things about Git isthat it allows you to make decisions at the last possible moment.
Y ou can decide what files go into which commits right before you commit with the staging area, you
can decide that you didn’t mean to be working on something yet with the stash command, and you
can rewrite commits that already happened so they look like they happened in adifferent way. This
can involve changing the order of the commits, changing messages or modifying filesin a commit,
sguashing together or splitting apart commits, or removing commits entirely — all before you share
your work with others.

In this section, you'll cover how to accomplish these very useful tasks so that you can make your
commit history look the way you want before you share it with others.

7.4.1. Changing the Last Commit

Changing your last commit is probably the most common rewriting of history that you'll do. You'll
often want to do two basic things to your last commit: change the commit message, or change the
snapshot you just recorded by adding, changing and removing files.

If you only want to modify your last commit message, it's very simple:
$ git commit --anend

That drops you into your text editor, which has your last commit message in it, ready for you to
modify the message. When you save and close the editor, the editor writes a new commit containing
that message and makesit your new last commit.

If you’ ve committed and then you want to change the snapshot you committed by adding or changing
files, possibly because you forgot to add a newly created file when you originally committed, the
process works basically the same way. Y ou stage the changes you want by editing afile and running
git addonitorgit rmtoatrackedfile, and the subsequent git conmit --amend takesyour
current staging area and makes it the snapshot for the new commit.

Y ou need to be careful with this technique because amending changes the SHA-1 of the commit. It's
like avery small rebase — don’t amend your last commit if you’ ve already pushed it.

7.4.2. Changing Multiple Commit Messages

To modify acommit that is farther back in your history, you must move to more complex tools. Git
doesn’t have a modify-history tool, but you can use the rebase tool to rebase a series of commits onto
the HEAD they were originally based on instead of moving them to another one. With the interactive
rebase tool, you can then stop after each commit you want to modify and change the message, add
files, or do whatever you wish. Y ou can run rebase interactively by adding the-i optionto gi t
rebase. You must indicate how far back you want to rewrite commits by telling the command which
commit to rebase onto.

132

Pro Git

For example, if you want to change the last three commit messages, or any of the commit messages
in that group, you supply asan argumenttogi t rebase -i the parent of the last commit you want to
edit, which is HEAD~2» or HEAD~3. It may be easier to remember the ~3 because you’ re trying to edit
the last three commits; but keep in mind that you' re actually designating four commits ago, the parent
of the last commit you want to edit:

$ git rebase -i HEAD-3

Remember again that thisis a rebasing command — every commit included in the range

HEAD~3. . HEAD will be rewritten, whether you change the message or not. Don’'t include any commit
you'’ ve already pushed to a central server — doing so will confuse other devel opers by providing an
aternate version of the same change.

Running this command gives you alist of commitsin your text editor that looks something like this:

pi ck f7f3f6d changed ny nane a bit
pi ck 310154e updated README formatting and added bl ane
pi ck a5f4a0d added cat-file

Rebase 710f Of 8. . a5f 4a0d onto 710f0f8
Comands:

p, pick = use commt

e, edit = use commt, but stop for anendi ng

s, squash = use commt, but neld into previous commt

If you renove a |line here THAT COWM T WLL BE LOST
However, if you renbve everything, the rebase will be aborted.

HHHHHHHFHH R

I’ simportant to note that these commits are listed in the opposite order than you normally see them
using thel og command. If you run al og, you see something like this:

$ git log --pretty=format: "% %" HEAD~3..HEAD
abf4a0d added cat-file

310154e updat ed READVE formatting and added bl anme
f7f 3f 6d changed ny nanme a bit

Notice the reverse order. The interactive rebase gives you a script that it’s going to run. It will start at
the commit you specify on the command line (HEAD-3) and replay the changes introduced in each of
these commits from top to bottom. It lists the oldest at the top, rather than the newest, because that’s
thefirst oneit will replay.

Y ou need to edit the script so that it stops at the commit you want to edit. To do so, change the word
pick to the word edit for each of the commits you want the script to stop after. For example, to modify
only the third commit message, you change the file to look like this:

edit f7f3f6d changed nmy nane a bit
pi ck 310154e updated README fornatting and added bl ane
pi ck abf4a0d added cat-file

When you save and exit the editor, Git rewinds you back to the last commit in that list and drops you
on the command line with the following message:

$ git rebase -i HEAD-3
St opped at 7482e0d... updated the genspec to hopefully work better
You can anend the comit now, with

133

Pro Git

git coomt --amend
Once you' re satisfied with your changes, run

git rebase --continue

These instructions tell you exactly what to do. Type

$ git conmit --anend

Change the commit message, and exit the editor. Then, run

$ git rebase --continue

This command will apply the other two commits automatically, and then you' re done. If you change
pick to edit on more lines, you can repeat these steps for each commit you change to edit. Each time,
Git will stop, let you amend the commit, and continue when you' re finished.

7.4.3. Reordering Commits

Y ou can a'so use interactive rebases to reorder or remove commits entirely. If you want to remove the
"added cat-file" commit and change the order in which the other two commits are introduced, you can
change the rebase script from this

pi ck f7f3f6d changed ny nane a bit
pi ck 310154e updated READMVE formatting and added bl ane
pi ck a5f4a0d added cat-file

to this:

pi ck 310154e updated README fornatting and added bl ane
pi ck f7f3f6d changed ny nane a bit

When you save and exit the editor, Git rewinds your branch to the parent of these commits, applies
310154e and then f 7f 3f 6d, and then stops. Y ou effectively change the order of those commits and
remove the "added cat-file" commit completely.

7.4.4. Squashing a Commit

It's aso possible to take a series of commits and squash them down into a single commit with the
interactive rebasing tool. The script puts helpful instructions in the rebase message:

Commands:
p, pick = use commt
e, edit = use commit, but stop for amending

s, squash = use comit, but nmeld into previous commt

If you renpve a line here THAT COM T WLL BE LOST
However, if you renove everything, the rebase will be aborted.

H o HHHHHHF R

If, instead of "pick" or "edit", you specify "squash", Git applies both that change and the change
directly before it and makes you merge the commit messages together. So, if you want to make a
single commit from these three commits, you make the script ook like this:

pi ck f7f3f6d changed ny nane a bit
squash 310154e updated READVE formatting and added bl ane

134

Pro Git

squash abf4a0d added cat-file

When you save and exit the editor, Git applies all three changes and then puts you back into the editor
to merge the three commit messages:

This is a conbination of 3 conmts.
The first commit's nessage is:
changed nmy name a bit

This is the 2nd commit nessage:
updat ed README formatting and added bl ane
This is the 3rd cormit nessage:

added cat-file

When you save that, you have a single commit that introduces the changes of all three previous
commits.

7.4.5. Splitting a Commit

Splitting a commit undoes a commit and then partially stages and commits as many times as commits
you want to end up with. For example, suppose you want to split the middle commit of your three
commits. Instead of "updated README formatting and added blame”, you want to split it into two
commits; "updated README formatting" for the first, and "added blame" for the second. Y ou can do
that intherebase -i script by changing the instruction on the commit you want to split to "edit":

pi ck f7f3f6d changed ny nane a bit
edit 310154e updated READVE formatting and added bl ane
pi ck abf4a0d added cat-file

Then, when the script drops you to the command line, you reset that commit, take the changes that
have been reset, and create multiple commits out of them. When you save and exit the editor, Git
rewinds to the parent of the first commit in your list, applies the first commit (f 7f 3f 6d), applies the
second (310154e), and drops you to the console. There, you can do a mixed reset of that commit with
git reset HEAD, which effectively undoes that commit and leaves the modified files unstaged. Now
you can stage and commit files until you have several commits, andrungit rebase --conti nue
when you' re done:

git reset HEAD®

git add README

git coomit -m'updated README fornatting
git add lib/sinplegit.rb

git comit -m'added bl ane'

git rebase --continue

R

Git applies the last commit (a5f 4a0d) in the script, and your history looks like this:

$git log -4 --pretty=format:" % %"
1c002dd added cat-file

9b29157 added bl ane

35cf b2b updat ed READVE fornmatting
f3cc40e changed ny nane a bit

Once again, this changes the SHAs of all the commitsin your list, so make sure no commit shows up
in that list that you' ve already pushed to a shared repository.

135

Pro Git

7.4.6. The Nuclear Option: filter-branch

There is another history-rewriting option that you can use if you need to rewrite alarger number of
commitsin some scriptable way — for instance, changing your e-mail address globally or removing
afile from every commit. The command isfil t er - br anch, and it can rewrite huge swaths of your
history, so you probably shouldn’t use it unless your project isn’t yet public and other people haven't
based work off the commits you' re about to rewrite. However, it can be very useful. You'll learn a
few of the common uses so you can get an idea of some of the thingsit’s capable of.

Removing aFile from Every Commit

This occurs fairly commonly. Someone accidentally commits a huge binary file with a thoughtless

git add ., andyou want to remove it everywhere. Perhaps you accidentally committed afile that
contained a password, and you want to make your project open source. fi | t er - br anch isthetool you
probably want to use to scrub your entire history. To remove afile named passwords.txt from your
entire history, you can usethe--tree-filter optiontofilter-branch:

$ git filter-branch --tree-filter 'rm-f passwords.txt' HEAD
Rewrite 6b9b3cf04e7c5686a9ch838c3f 36a8cbh6alf c2bd (21/21)
Ref 'refs/heads/master’' was rewitten

The--tree-filter option runsthe specified command after each checkout of the project and then
recommits the results. In this case, you remove afile called passwords.txt from every snapshot,
whether it exists or not. If you want to remove al accidentally committed editor backup files, you can
run something likegit filter-branch --tree-filter 'rm-f *~' HEAD.

You'll be able to watch Git rewriting trees and commits and then move the branch pointer at the end.
It's generally agood ideato do thisin atesting branch and then hard-reset your master branch after
you' ve determined the outcome is what you really want. Torunfi | t er - br anch on all your branches,
you can pass- - al | to the command.

Making a Subdirectory the New Root

Suppose you' ve done an import from another source control system and have subdirectories that make
no sense (trunk, tags, and so on). If you want to make thet r unk subdirectory be the new project root
for every commit, fil t er - branch can help you do that, too:

$ git filter-branch --subdirectory-filter trunk HEAD
Rewrite 856f0bf6le41a27326cdae8f 09f e708d679f 596f (12/12)
Ref 'refs/heads/master’ was rewitten

Now your new project root iswhat wasin thet r unk subdirectory each time. Git will aso
automatically remove commits that did not affect the subdirectory.

Changing E-Mail Addresses Globally

Another common case is that you forgot to rungi t confi g to set your name and e-mail address
before you started working, or perhaps you want to open-source a project at work and change all

your work e-mail addresses to your personal address. In any case, you can change e-mail addressesin
multiple commitsin abatch withfi | ter-branch aswell. You need to be careful to change only the
e-mail addresses that are yours, soyou use--conmit-filter:

$ git filter-branch --commit-filter '
if ["$A T_AUTHOR EMAI L" = "schacon@ ocal host"];

136

Pro Git

t hen
G T_AUTHOR _NAME="Scott Chacon";
G T_AUTHOR _EMAI L="schacon@xanpl e. conf';
git comit-tree "$@;
el se
git comit-tree "$@;
fi' HEAD

This goes through and rewrites every commit to have your new address. Because commits contain
the SHA-1 values of their parents, this command changes every commit SHA in your history, not just
those that have the matching e-mail address.

7.5. Debugging with Git

Git also provides a couple of tools to help you debug issues in your projects. Because Git is designed
to work with nearly any type of project, these tools are pretty generic, but they can often help you hunt
for abug or culprit when things go wrong.

7.5.1. File Annotation

If you track down a bug in your code and want to know when it was introduced and why, file
annotation is often your best tool. It shows you what commit was the last to modify each line of any
file. So, if you see that amethod in your code is buggy, you can annotate the filewith gi t bl ane to
see when each line of the method was last edited and by whom. This example uses the - L option to
limit the output to lines 12 through 22:

$ git blane -L 12,22 sinplegit.rb

n4832fe2 (Scott Chacon 2008-03-15 10:31:28 -0700 12) def show(tree = 'master')
n4832fe2 (Scott Chacon 2008-03-15 10:31:28 -0700 13) comuand("git show #{tree}")
n4832fe2 (Scott Chacon 2008-03-15 10:31:28 -0700 14) end

n4832fe2 (Scott Chacon 2008-03-15 10:31:28 -0700 15)

9f 6560e4 (Scott Chacon 2008-03-17 21:52:20 -0700 16) def log(tree = 'naster')
79eaf 55d (Scott Chacon 2008-04-06 10:15:08 -0700 17) comuand("git log #{tree}")
9f 6560e4 (Scott Chacon 2008-03-17 21:52:20 -0700 18) end

9f 6560e4 (Scott Chacon 2008-03-17 21:52:20 -0700 19)

42cf 2861 (Magnus Chacon 2008-04-13 10:45:01 -0700 20) def bl ane(path)

42cf 2861 (Magnus Chacon 2008-04-13 10:45:01 -0700 21) comuand("git blame #{path}")
42cf 2861 (Magnus Chacon 2008-04-13 10:45:01 -0700 22) end

Notice that the first field is the partial SHA-1 of the commit that last modified that line. The next two
fields are values extracted from that commit—the author name and the authored date of that commit
— s0 you can easily see who modified that line and when. After that come the line number and the
content of the file. Also note the ~4832f e2 commit lines, which designate that those lines werein this
file's origina commit. That commit iswhen this file was first added to this project, and those lines
have been unchanged since. Thisis atad confusing, because now you’ ve seen at least three different
ways that Git usesthe~ to modify acommit SHA, but that iswhat it means here.

Another cool thing about Git isthat it doesn’t track file renames explicitly. It records the snapshots
and then tries to figure out what was renamed implicitly, after the fact. One of the interesting features
of thisisthat you can ask it to figure out all sorts of code movement as well. If you pass- Cto

git bl ame, Git analyzesthe file you' re annotating and tries to figure out where snippets of code
within it originally came from if they were copied from elsewhere. Recently, | was refactoring afile
named G TSer ver Handl er . minto multiple files, one of which was G TPackUpl oad. m By blaming
G TPackUpl oad. mwith the - C option, | could see where sections of the code originally came from:

137

Pro Git

$ git blame -C -L 141, 153 d TPackUpl oad. m

f 344f58d G TServer Handl er. m (Scott 2009-01-04 141)

f 344f58d G TServer Handl er. m (Scott 2009-01-04 142) - (void) gather Qbj ect ShasFronC
f344f58d G TServerHandl er. m (Scott 2009-01-04 143) {

70bef ddd G TServer Handl er. m (Scott 2009-03-22 144) /I NSLog(@ GATHER COW

adllac80 d TPackUpl oad. m (Scott 2009-03-24 145)

adllac80 d TPackUpl oad. m (Scott 2009-03-24 146) NSSt ri ng *parent Sha;
adllac80 d TPackUpl oad. m (Scott 2009-03-24 147) G TCommit *commit = [g
adllac80 d TPackUpl oad. m (Scott 2009-03-24 148)

adllac80 G TPackUpl oad. m (Scott 2009-03-24 149) /I NSLog(@ GATHER COW
adllac80 d TPackUpl oad. m (Scott 2009-03-24 150)

56ef 2caf d TServer Handl er. m (Scott 2009-01-05 151) if(commt) {

56ef 2caf d TServer Handl er. m (Scott 2009-01-05 152) [refDict setCb

56ef 2caf d TServer Handl er. m (Scott 2009-01-05 153)

Thisisreally useful. Normally, you get as the original commit the commit where you copied the code
over, because that is the first time you touched those linesin this file. Git tells you the original commit
where you wrote those lines, evenif it was in another file.

7.5.2. Binary Search

Annotating afile helpsif you know where the issue is to begin with. If you don’t know what is
breaking, and there have been dozens or hundreds of commits since the last state where you know the
code worked, you'll likely turntogi t bi sect for help. The bi sect command does a binary search
through your commit history to help you identify as quickly as possible which commit introduced an
issue.

Let’ssay you just pushed out arelease of your code to a production environment, you' re getting bug
reports about something that wasn’t happening in your devel opment environment, and you can’t
imagine why the code is doing that. Y ou go back to your code, and it turns out you can reproduce the
issue, but you can’t figure out what is going wrong. Y ou can bisect the code to find out. First you run
git bisect start togetthingsgoing, andthenyouusegit bisect bad totell the system that the
current commit you' re on is broken. Then, you must tell bisect when the last known good state was,
usinggit bisect good [good_comit]:

$ git bisect start

$ git bisect bad

$ git bisect good v1.0

Bi secting: 6 revisions left to test after this

[ecb6elbc347ccecchf 9350d878ce677f eb13d3b2] error handling on repo

Git figured out that about 12 commits came between the commit you marked as the last good commit
(v1.0) and the current bad version, and it checked out the middle one for you. At this point, you can
run your test to seeif the issue exists as of this commit. If it does, then it was introduced sometime
before this middle commit; if it doesn’t, then the problem was introduced sometime after the middle
commit. It turns out there is no issue here, and you tell Git that by typing gi t bi sect good and
continue your journey:

$ git bisect good
Bi secting: 3 revisions left to test after this
[b047b02ea83310a70f d603dc8cd7a6¢cd13d15¢c04] secure this thing

Now you’ re on another commit, halfway between the one you just tested and your bad commit. You
run your test again and find that this commit is broken, so you tell Git that with git bi sect bad:

$ git bisect bad

138

Pro Git

Bisecting: 1 revisions left to test after this
[f71ce38690acf 49c1f 3c9bea38e09d82a5ce6014] drop exceptions table

This commit isfine, and now Git has al the information it needs to determine where the issue was
introduced. It tells you the SHA-1 of the first bad commit and show some of the commit information
and which files were modified in that commit so you can figure out what happened that may have
introduced this bug:

$ git bisect good

b047b02ea83310a70f d603dc8cd7a6¢cd13d15¢c04 is first bad commit
commit b047b02ea83310a70f d603dc8cd7a6cd13d15¢c04

Aut hor: PJ Hyett <pjhyett @xanple.conp

Dat e: Tue Jan 27 14:48:32 2009 -0800

secure this thing

: 040000 040000 40ee3e7821b895e52c¢1695092db9bdc4c61d1730
f 24d3c6ebcf c639b1a3814550e62d60b8e68a8e4 M confi g

When you're finished, you should rungi t bi sect reset toreset your HEAD to where you were
before you started, or you'll end up in aweird state:

$ git bisect reset

Thisisapowerful tool that can help you check hundreds of commits for an introduced bug in minutes.
In fact, if you have a script that will exit O if the project is good or non-0 if the project is bad, you can
fully automate gi t bi sect . First, you again tell it the scope of the bisect by providing the known bad
and good commits. Y ou can do this by listing them with the bi sect start command if you want,
listing the known bad commit first and the known good commit second:

$ git bisect start HEAD v1.0
$ git bisect run test-error.sh

Doing so automatically runst est - er r or . sh on each checked-out commit until Git finds the first
broken commit. Y ou can also run something like make or make t ests or whatever you have that runs
automated tests for you.

7.6. Submodules

It often happens that while working on one project, you need to use another project from within it.
Perhapsit’s alibrary that athird party developed or that you' re developing separately and using in
multiple parent projects. A common issue arises in these scenarios: you want to be able to treat the
two projects as separate yet still be able to use one from within the other.

Here' s an example. Suppose you' re developing aweb site and creating Atom feeds. Instead of writing
your own Atom-generating code, you decide to use alibrary. You're likely to have to either include
this code from a shared library like a CPAN install or Ruby gem, or copy the source code into your
own project tree. The issue with including the library isthat it’ s difficult to customize the library in
any way and often more difficult to deploy it, because you need to make sure every client has that
library available. The issue with vendoring the code into your own project is that any custom changes
you make are difficult to merge when upstream changes become available.

Git addresses this issue using submodules. Submodules allow you to keep a Git repository as a
subdirectory of another Git repository. Thislets you clone another repository into your project and
keep your commits separate.

139

Pro Git

7.6.1. Starting with Submodules

Suppose you want to add the Rack library (a Ruby web server gateway interface) to your project,
possibly maintain your own changesto it, but continue to merge in upstream changes. The first thing
you should do is clone the external repository into your subdirectory. Y ou add external projects as
submodules with thegi t subnodul e add command:

$ git subnodul e add git://github. com chneukirchen/rack.git rack
Initialized enpty Gt repository in /opt/subtest/rack/.git/
renote: Counting objects: 3181, done

renote: Conpressing objects: 100% (1534/1534), done.

renote: Total 3181 (delta 1951), reused 2623 (delta 1603)
Recei vi ng obj ects: 100% (3181/3181), 675.42 KiB | 422 Ki B/s, done.
Resol ving deltas: 100% (1951/1951), done.

Now you have the Rack project under a subdirectory named r ack within your project. You can go into
that subdirectory, make changes, add your own writable remote repository to push your changes into,
fetch and merge from the original repository, and more. If you rungi t st at us right after you add the
submodule, you see two things.

$ git status
On branch naster
Changes to be commtted:

(use "git reset HEAD <file>..." to unstage)
#

new file: . gi t nodul es

new file: rack

#

First you notice the . gi t nodul es file. Thisisaconfiguration file that stores the mapping between the
project’s URL and the local subdirectory you' ve pulled it into:

$ cat .gitnodul es
[subnodul e "rack"]
path = rack
url = git://github. conm chneukirchen/rack. git

If you have multiple submodules, you'll have multiple entriesin thisfile. It'simportant to note that
thisfileis version-controlled with your other files, like your . gi ti gnor e file. It's pushed and pulled
with the rest of your project. Thisis how other people who clone this project know where to get the
submodule projects from.

The other listinginthegi t st at us output istherack entry. If yourungit diff onthat, you see
something interesting:

$ git diff --cached rack

diff --git a/rack b/rack

new file node 160000

i ndex 0000000. . 08d709f

--- /dev/nul

+++ b/ rack

@-0,0 +1 @@

+Subproj ect comit 08d709f 78b8c5b0f beb7821e37f a53e69af cf 433

Although r ack isasubdirectory in your working directory, Git seesit as a submodule and doesn’t
track its contents when you’ re not in that directory. Instead, Git records it as a particular commit from

140

Pro Git

that repository. When you make changes and commit in that subdirectory, the superproject notices that
the HEAD there has changed and records the exact commit you' re currently working off of; that way,
when others clone this project, they can re-create the environment exactly.

Thisis an important point with submodules: you record them as the exact commit they're at. Y ou
can’'t record a submodule at mast er or some other symbolic reference.

When you commit, you see something like this:

$ git commit -m'first commit wth submbdul e rack’
[master 0550271] first comit with subnodul e rack
2 files changed, 4 insertions(+), 0 deletions(-)
create node 100644 . gitnodul es
create node 160000 rack

Notice the 160000 mode for the rack entry. That is a special mode in Git that basically means you’'re
recording a commit as a directory entry rather than a subdirectory or afile.

You can treat ther ack directory as a separate project and then update your superproject from time to
time with a pointer to the latest commit in that subproject. All the Git commands work independently
in the two directories:

$git log -1

conmmit 0550271328a0038865aad6331e620cd7238601bb
Aut hor: Scott Chacon <schacon@nmuil . conp

Dat e: Thu Apr 9 09:03:56 2009 -0700

first coommit with subnmodul e rack
$ cd rack/
$git log -1
conmmi t 08d709f 78b8c5b0f beb7821e37f a53e69af cf 433
Aut hor: Christian Neukirchen <chneukirchen@nmail . conp
Dat e: Wed Mar 25 14:49:04 2009 +0100

Docunent version change

7.6.2. Cloning a Project with Submodules

Hereyou'll clone a project with a submodulein it. When you receive such a project, you get the
directories that contain submodules, but none of the files yet:

$ git clone git://github.conl schacon/ nmyproject.git
Initialized enpty Gt repository in /opt/nyproject/.git/
renote: Counting objects: 6, done.

renote: Conpressing objects: 100% (4/4), done.
renote: Total 6 (delta 0), reused O (delta 0)
Recei vi ng obj ects: 100% (6/6), done.

$ cd nyproj ect

$1s -l

total 8

-rwr--r-- 1 schacon adnin 3 Apr 9 09:11 README
drwxr-xr-x 2 schacon admin 68 Apr 9 09:11 rack

$ Is rack/

$

Ther ack directory isthere, but empty. Y ou must run two commands: git subnodul e init to
initialize your local configuration file, and gi t subnodul e updat e to fetch all the data from that
project and check out the appropriate commit listed in your superproject:

141

Pro Git

$ git subnodule init

Subrodul e 'rack' (git://github.conf chneukirchen/rack.git) registered for path 'rack’
$ git subnodul e update

Initialized enpty Gt repository in /opt/myproject/rack/.git/

renote: Counting objects: 3181, done

renote: Conpressing objects: 100% (1534/1534), done.

renote: Total 3181 (delta 1951), reused 2623 (delta 1603)

Recei vi ng obj ects: 100% (3181/3181), 675.42 KiB | 173 Ki B/s, done.

Resol ving deltas: 100% (1951/1951), done.

Subnodul e path "rack': checked out '08d709f 78b8c5b0f beb7821e37f a53e69af cf 433

Now your r ack subdirectory is at the exact state it was in when you committed earlier. If another
devel oper makes changes to the rack code and commits, and you pull that reference down and merge
it in, you get something a bit odd:

$ git merge origin/naster
Updati ng 0550271.. 85a3eee
Fast forward
rack | 2 +-
1 files changed, 1 insertions(+), 1 deletions(-)
[master*]$ git status
On branch naster
Changed but not updat ed:

(use "git add <file>..." to update what will be commtted)

(use "git checkout -- <file>. .." to discard changes in working directory)
#

nodi fi ed: rack

#

Y ou merged in what is basically a change to the pointer for your submodule; but it doesn’t update the
code in the submodule directory, so it looks like you have a dirty state in your working directory:

$git diff

diff --git a/rack b/rack

i ndex 6c5e70b..08d709f 160000

--- alrack

+++ b/ rack

a-1 +1 @@

- Subproj ect comit 6c5e70b984a60b3cecd395edd5b48a7575bf 58e0
+Subproj ect comit 08d709f 78b8c5b0f beb7821e37f a53e69af cf 433

Thisisthe case because the pointer you have for the submoduleisn’t what is actually in the
submodule directory. To fix this, you must rungi t subnodul e updat e again:

$ git subnodul e update
renote: Counting objects: 5, done
renote: Conpressing objects: 100% (3/3), done.
renote: Total 3 (delta 1), reused 2 (delta 0)
Unpacki ng objects: 100% (3/3), done.
From gi t @i t hub. com schacon/ rack
08d709f .. 6¢c5e70b numster -> origin/ master
Subrodul e path 'rack': checked out '6c5e70b984a60b3cecd395edd5b48a7575bf 58e0

Y ou have to do this every time you pull down a submodule change in the main project. It’s strange,
but it works.

One common problem happens when a devel oper makes a change locally in a submodule but doesn’t
push it to a public server. Then, they commit a pointer to that non-public state and push up the

142

Pro Git

superproject. When other developerstry torungit subnodul e updat e, the submodule system
can’'t find the commit that is referenced, because it exists only on the first developer’s system. If that
happens, you see an error like this:

$ git subnodul e update
fatal: reference isn't a tree: 6c5e70b984a60b3cecd395edd5b48a7575bf 58e0
Unabl e to checkout '6c5e70b984a60b3cecd395edd5ba7575bf 58e0' in subnodul e path 'rack'

Y ou have to see who last changed the submodule;

$git log -1 rack

comit 85a3eee996800f cf a91e2119372dd4172bf 76678
Aut hor: Scott Chacon <schacon@mai |l . cons

Dat e: Thu Apr 9 09:19:14 2009 -0700

added a subnodul e reference | will never make public. hahahahaha!

Then, you e-mail that guy and yell at him.

7.6.3. Superprojects

Sometimes, devel opers want to get a combination of alarge project’ s subdirectories, depending on
what team they’re on. Thisis common if you' re coming from CV S or Subversion, where you've
defined amodule or collection of subdirectories, and you want to keep this type of workflow.

A good way to do thisin Git is to make each of the subfolders a separate Git repository and then
create superproject Git repositories that contain multiple submodules. A benefit of this approach is
that you can more specifically define the relationships between the projects with tags and branchesin
the superprojects.

7.6.4. Issues with Submodules

Using submodules isn’t without hiccups, however. First, you must be relatively careful when working
in the submodule directory. Whenyourungi t subrodul e updat e, it checks out the specific version
of the project, but not within a branch. Thisis called having a detached head — it means the HEAD
file points directly to a commit, not to a symbolic reference. The issueisthat you generally don’t
want to work in a detached head environment, because it’ s easy to lose changes. If you do aninitia
subrodul e updat e, commit in that submodule directory without creating a branch to work in, and
thenrungit subnodul e updat e again from the superproject without committing in the meantime,
Git will overwrite your changes without telling you. Technically you won't lose the work, but you
won't have a branch pointing to it, so it will be somewhat difficult to retrieve.

To avoid thisissue, create a branch when you work in a submodule directory with gi t checkout -
b wor k or something equivalent. When you do the submodule update a second time, it will still revert
your work, but at least you have a pointer to get back to.

Switching branches with submodules in them can also be tricky. If you create a new branch, add
a submodule there, and then switch back to a branch without that submodule, you still have the
submodule directory as an untracked directory:

$ git checkout -b rack

Switched to a new branch "rack"

$ git subnodul e add git @it hub.com schacon/rack.git rack
Initialized enpty Gt repository in /opt/nmyproj/rack/.git/

143

Pro Git

Recei vi ng obj ects: 100% (3184/3184), 677.42 KiB | 34 KiB/s, done.
Resol ving deltas: 100% (1952/1952), done.
$ git commt -am ' added rack subnodul e
[rack cc49a69] added rack submodul e
2 files changed, 4 insertions(+), O deletions(-)
create node 100644 . git nodul es
create node 160000 rack
$ git checkout master
Switched to branch "master”
$ git status
On branch naster
Untracked files:
(use "git add <file>..." to include in what will be comrtted)
#
#

rack/

Y ou have to either move it out of the way or remove it, in which case you have to clone it again when
you switch back—and you may lose local changes or branches that you didn’t push up.

The last main caveat that many people run into involves switching from subdirectories to submodules.
If you’ ve been tracking filesin your project and you want to move them out into a submodule, you
must be careful or Git will get angry at you. Assume that you have the rack filesin a subdirectory of
your project, and you want to switch it to a submodule. If you delete the subdirectory and then run
subnodul e add, Git yellsat you:

$rm-Rf rack/
$ git subnodul e add git @ithub.com schacon/rack.git rack
"rack' already exists in the index

Y ou have to unstage the r ack directory first. Then you can add the submodule:

$ git rm-r rack

$ git subnodul e add git @ithub.com schacon/rack.git rack
Initialized enpty Gt repository in /opt/testsub/rack/.git/
renote: Counting objects: 3184, done.

renote: Conpressing objects: 100% (1465/1465), done.

renote: Total 3184 (delta 1952), reused 2770 (delta 1675)
Recei vi ng obj ects: 100% (3184/3184), 677.42 KiB | 88 KiB/s, done.
Resol vi ng deltas: 100% (1952/1952), done.

Now suppose you did that in abranch. If you try to switch back to a branch where those files are still
in the actual tree rather than a submodule — you get this error:

$ git checkout master
error: Untracked working tree file 'rack/ AUTHORS would be overwitten by merge.

Y ou have to move the r ack submodule directory out of the way before you can switch to a branch that
doesn’t haveit:

$ nmv rack /tnp/

$ git checkout master
Switched to branch "naster™
$1s

README rack

Then, when you switch back, you get an empty r ack directory. You can either rungit subnodul e
updat e to reclone, or you can move your / t np/ r ack directory back into the empty directory.

144

Pro Git

7.7. Subtree Merging

Now that you’ ve seen the difficulties of the submodule system, let’slook at an alternate way to solve
the same problem. When Git merges, it looks at what it has to merge together and then chooses an
appropriate merging strategy to use. If you’'re merging two branches, Git uses arecursive strategy.

If you' re merging more than two branches, Git picks the octopus strategy. These strategies are
automatically chosen for you because the recursive strategy can handle complex three-way merge
situations — for example, more than one common ancestor — but it can only handle merging two
branches. The octopus merge can handle multiple branches but is more cautious to avoid difficult
conflicts, so it’s chosen as the default strategy if you' re trying to merge more than two branches.

However, there are other strategies you can choose as well. One of them is the subtree merge, and you
can use it to deal with the subproject issue. Here you' |l see how to do the same rack embedding asin
the last section, but using subtree merges instead.

The idea of the subtree merge is that you have two projects, and one of the projects mapsto a
subdirectory of the other one and vice versa. When you specify a subtree merge, Git is smart enough
to figure out that one is a subtree of the other and merge appropriately — it’s pretty amazing.

Y ou first add the Rack application to your project. You add the Rack project as aremote referencein
your own project and then check it out into its own branch:

$ git renote add rack_renote git@ithub.com schacon/rack. git

$ git fetch rack_renote

war ni ng: no conmon commits

renote: Counting objects: 3184, done.

renote: Conpressing objects: 100% (1465/1465), done.

renote: Total 3184 (delta 1952), reused 2770 (delta 1675)
Recei vi ng obj ects: 100% (3184/3184), 677.42 KiB| 4 KiB/s, done.
Resol vi ng deltas: 100% (1952/1952), done.

From gi t @i t hub. com schacon/ rack

* [new branch] buil d -> rack_renote/ build
* [new branch] nmast er -> rack_renot e/ mast er
* [new branch] rack-0. 4 -> rack_remote/rack-0. 4
* [new branch] rack-0.9 -> rack_remote/rack-0.9

$ git checkout -b rack_branch rack_renote/ naster
Branch rack _branch set up to track renote branch refs/renotes/rack renote/ nmaster.
Swi tched to a new branch "rack_branch"

Now you have the root of the Rack project in your r ack_br anch branch and your own project in the
mast er branch. If you check out one and then the other, you can see that they have different project
roots:

$1s
AUTHORS KNOMWN- | SSUES Rakefile contrib lib
COPYI NG READVE bi n exampl e t est

$ git checkout master
Switched to branch "naster™
$1s

READVE

Y ou want to pull the Rack project into your mast er project as a subdirectory. Y ou can do that in
Gitwithgit read-tree. You'll learn more about r ead- t r ee and its friendsin Chapter 9, but
for now know that it reads the root tree of one branch into your current staging area and working

145

Pro Git

directory. You just switched back to your nast er branch, and you pull ther ack branch into ther ack
subdirectory of your mast er branch of your main project:

$ git read-tree --prefix=rack/ -u rack_branch

When you commit, it looks like you have all the Rack files under that subdirectory — as though you

copied them in from atarball. What gets interesting is that you can fairly easily merge changes from

one of the branchesto the other. So, if the Rack project updates, you can pull in upstream changes by
switching to that branch and pulling:

$ git checkout rack_branch
$ git pull

Then, you can merge those changes back into your master branch. You canusegit nerge -s

subt r ee and it will work fine; but Git will also merge the histories together, which you probably
don’t want. To pull in the changes and prepopul ate the commit message, use the - - squash and - - no-
comi t optionsaswell asthe-s subt r ee strategy option:

$ git checkout master

$ git nerge --squash -s subtree --no-commt rack_branch

Squash conmmit -- not updati ng HEAD

Automatic nmerge went well; stopped before committing as requested

All the changes from your Rack project are merged in and ready to be committed locally. Y ou can
also do the opposite — make changesin ther ack subdirectory of your master branch and then merge
them into your r ack_br anch branch later to submit them to the maintainers or push them upstream.

To get adiff between what you havein your r ack subdirectory and the code in your r ack_br anch
branch — to seeif you need to merge them — you can’'t use the normal di f f command. Instead, you
must rungi t diff-tree with the branch you want to compare to:

$ git diff-tree -p rack_branch

Or, to compare what isin your r ack subdirectory with what the mast er branch on the server was the
last time you fetched, you can run

$ git diff-tree -p rack_renote/ master

7.8. Summary

Y ou’ ve seen a number of advanced tools that allow you to manipulate your commits and staging
areamore precisely. When you notice issues, you should be able to easily figure out what commit
introduced them, when, and by whom. If you want to use subprojects in your project, you' ve learned
afew ways to accommodate those needs. At this point, you should be able to do most of the thingsin
Git that you' [l need on the command line day to day and feel comfortable doing so.

8. Customizing Git

So far, I've covered the basics of how Git works and how to useit, and I’ ve introduced a number of
toolsthat Git provides to help you use it easily and efficiently. In this chapter, I’ll go through some
operations that you can use to make Git operate in a more customized fashion by introducing several
important configuration settings and the hooks system. With these tools, it’s easy to get Git to work
exactly the way you, your company, or your group needsit to.

146

Pro Git

8.1. Git Configuration

Asyou briefly saw in the Chapter 1, you can specify Git configuration settings with thegit confi g
command. One of the first things you did was set up your name and e-mail address:

$ git config --global user.name "John Doe"
$ git config --global user.enmil johndoe@xanple.com

Now you'll learn afew of the more interesting options that you can set in this manner to customize
your Git usage.

Y ou saw some simple Git configuration details in the first chapter, but 1’1l go over them again quickly
here. Git uses a series of configuration files to determine non-default behavior that you may want. The
first place Git looks for these valuesisinan/ et ¢/ gi t confi g file, which contains values for every
user on the system and all of their repositories. If you pass the option - - syst emtogit confi g, it
reads and writes from this file specifically.

The next place Git looksisthe ~/ . gi t confi g file, which is specific to each user. Y ou can make Git
read and write to thisfile by passing the - - gl obal option.

Finally, Git looks for configuration valuesin the config file in the Git directory (. gi t/ confi g)

of whatever repository you' re currently using. These values are specific to that single repository.
Each level overwrites valuesin the previouslevel, so valuesin . gi t / confi g trump thosein/ et c/
gi tconfi g, for instance. Y ou can aso set these values by manually editing the file and inserting the
correct syntax, but it’s generally easier torunthegit confi g command.

8.1.1. Basic Client Configuration

The configuration options recognized by Git fall into two categories: client side and server side. The
majority of the options are client side—configuring your personal working preferences. Although tons
of options are available, I'll only cover the few that either are commonly used or can significantly
affect your workflow. Many options are useful only in edge cases that | won’'t go over here. If you
want to see alist of all the options your version of Git recognizes, you can run

$ git config --help
The manual pagefor git confi g listsal the available optionsin quite a bit of detail.

core.editor

By default, Git uses whatever you' ve set as your default text editor or else falls back to the Vi editor
to create and edit your commit and tag messages. To change that default to something else, you can
usethecore. edi t or Setting:

$ git config --global core.editor emacs

Now, no matter what is set as your default shell editor variable, Git will fire up Emacs to edit
messages.

commit.template

If you set thisto the path of afile on your system, Git will use that file as the default message when
you commit. For instance, suppose you create atemplate file at $SHOVE/ . gi t nessage. t xt that looks
likethis:

147

Pro Git

subj ect line
what happened
[ticket: X]

To tell Git to useit as the default message that appearsin your editor whenyou rungit conmit, Set
theconmi t . t enpl at e configuration value:

$ git config --global comit.tenplate $HOWVE . git message. t xt
$ git commt

Then, your editor will open to something like this for your placeholder commit message when you
commit:

subj ect line

what happened

[ticket: X]
Please enter the conmt nessage for your changes. Lines starting
#with '# wll be ignored, and an enpty nmessage aborts the comit.

On branch master
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)
#

nodi fi ed: lib/test.rb

#

".git/COW T_EDI TMSG' 14L, 297C

If you have a commit-message policy in place, then putting atemplate for that policy on your system
and configuring Git to use it by default can help increase the chance of that policy being followed
regularly.

core.pager

The core.pager setting determines what pager is used when Git pages output such asl og and di f f .
Y ou can set it to nor e or to your favorite pager (by default, it's| ess), or you can turn it off by setting
it to ablank string:

$ git config --gl obal core. pager '
If you run that, Git will page the entire output of all commands, no matter how long they are.
user.signingkey

If you' re making signed annotated tags (as discussed in Chapter 2), setting your GPG signing key asa
configuration setting makes things easier. Set your key 1D like so:

$ git config --global user.signingkey <gpg-key-id>
Now, you can sign tags without having to specify your key every timewith thegi t tag command:
$ git tag -s <tag-nane>

core.excludesfile

148

Pro Git

Y ou can put patternsin your project’s. gi ti gnor e fileto have Git not see them as untracked files or
try to stage them when you run gi t add on them, as discussed in Chapter 2. However, if you want
another file outside of your project to hold those values or have extra values, you can tell Git where
that fileiswith thecor e. excl udesfi | e setting. Simply set it to the path of afile that has content
similar towhat a. gi ti gnor e filewould have.

help.autocorrect

Thisoption isavailable only in Git 1.6.1 and later. If you mistype a command in Git 1.6, it shows you
something like this:

$ git com
git: '"com is not a git-command. See 'git --help'.

Did you nmean this?
conmmi t

If you set hel p. aut ocorrect to 1, Git will automatically run the command if it has only one match
under this scenario.

8.1.2. Colors in Git

Git can color its output to your terminal, which can help you visually parse the output quickly and
easily. A number of options can help you set the coloring to your preference.

#color.ui #

Git automatically colors most of its output if you ask it to. Y ou can get very specific about what you
want colored and how; but to turn on all the default terminal coloring, set col or. ui to true:

$ git config --global color.ui true

When that value is set, Git colorsits output if the output goesto aterminal. Other possible settings
are false, which never colors the output, and always, which sets colors al the time, even if you're
redirecting Git commands to afile or piping them to another command. This setting was added in Git
version 1.5.5; if you have an older version, you’'ll have to specify all the color settings individually.

You'll rarely want col or. ui = al ways. In most scenarios, if you want color codes in your redirected
output, you can instead pass a- - col or flag to the Git command to force it to use color codes. The
col or.ui = true Setting isamost always what you'll want to use.

#color.* #

If you want to be more specific about which commands are colored and how, or you have an older
version, Git provides verb-specific coloring settings. Each of these can be settot r ue, f al se, or
al ways:

col or. branch
color.diff
color.interactive
col or.status

In addition, each of these has subsettings you can use to set specific colors for parts of the output, if
you want to override each color. For example, to set the metainformation in your diff output to blue
foreground, black background, and bold text, you can run

149

Pro Git

$ git config --global color.diff.meta “blue black bold”

Y ou can set the color to any of the following values: normal, black, red, green, yellow, blue, magenta,
cyan, or white. If you want an attribute like bold in the previous example, you can choose from bold,
dim, ul, blink, and reverse.

Seethegit confi g manpage for al the subsettings you can configure, if you want to do that.

8.1.3. External Merge and Diff Tools

Although Git has an internal implementation of diff, which iswhat you’' ve been using, you can set
up an external tool instead. Y ou can also set up a graphical merge conflict-resolution tool instead
of having to resolve conflicts manually. I’ll demonstrate setting up the Perforce Visual Merge Tool
(P4Merge) to do your diffs and merge resolutions, because it’s a nice graphical tool and it’s free.

If you want to try this out, PAMerge works on all major platforms, so you should be able to do so. I'll
use path names in the examples that work on Mac and Linux systems; for Windows, you' || haveto
change/ usr/1 ocal / bi n to an executable path in your environment.

Y ou can download PAMerge here:

http://ww. perforce. con perforce/ downl oads/ conponent . ht ni

To begin, you' Il set up external wrapper scripts to run your commands. I’ [l use the Mac path for
the executable; in other systems, it will be where your p4ner ge binary isinstalled. Set up amerge
wrapper script named ext Mer ge that calls your binary with all the arguments provided:

$ cat /usr/local/bin/extMrge
#!/bin/sh
/ Appl i cati ons/ p4ner ge. app/ Cont ent s/ MacQS/ p4ner ge $*

The diff wrapper checks to make sure seven arguments are provided and passes two of them to your
merge script. By default, Git passes the following arguments to the diff program:

path ol d-file ol d-hex ol d-nbde newfil e new hex new node

Because you only want the ol d-fi | e and new-fi | e arguments, you use the wrapper script to pass the
ones you need.

$ cat /usr/local/bin/extDiff
#!'/ bi n/ sh
[$# -eq 7] && /usr/local/bin/extMerge "$2" "$5"

Y ou aso need to make sure these tools are executabl e;

$ sudo chrmod +x /usr/l ocal / bi n/ ext Merge
$ sudo chnmod +x /usr/local/bin/extDiff

Now you can set up your config file to use your custom merge resolution and diff tools. Thistakes a
number of custom settings: mer ge. t ool totell Git what strategy to use, mer get ool . *. cnd to specify
how to run the command, ner get ool . t r ust Exi t Code to tell Git if the exit code of that program
indicates a successful merge resolution or not, and di f f . ext er nal to tell Git what command to run
for diffs. So, you can either run four config commands

$ git config --global nerge.tool extMerge
$ git config --global nergetool.extMerge.cnd \

150

Pro Git

" ext Merge "$BASE" "$LOCAL" "$REMOTE' "$MERGED''
$ git config --gl obal mergetool.trustExitCode false
$ git config --global diff.external extDiff

or you can edit your ~/ . gi t conf i g file to add these lines:

[mer ge]
tool = extMerge
[mer get ool "ext Merge"]
cmd = extMerge "$BASE' "$LOCAL" "$REMOTE" " $MERGED'
trust Exi t Code = fal se
[diff]
external = extDiff

After al thisis set, if you run diff commands such asthis:

$ git diff 32d1776b1” 32d1776bl

Instead of getting the diff output on the command line, Git fires up PAMerge, which looks something
like Figure 7-1.

Bid:Hh e: @ p @ P X =B =,

1 dills flacaca Uaa i % C 1 C
fhnfrash i_."W“',““?n-du'.g differences) Tab spacing: 4 Encoding: Sysbem

"; :ﬂFuGDJREHJEPII'-:+++Tl.f—Trr1p—H.diH"_-GH.ASI.IP) index_html m
CIDOCTYFE heml PUTALIC "-S/W3C//DTD INTML L.0 SEPlét/ EN € |DOCTYFE heiml FUALIC "-//W3C//DT0D INTML 1.0 Serlse/ EE
chiml =mlne="hitps/fvww . wl.arg/ L3938 xhiml"> <himil smlne="hitpa/fwvww.wl.org/l39% chiml ">
% haasr £ Raasr
stitiexbate Finder< /ticie> stitierbate Finder< ticie>
CEath BELp-aaivecoatsst-Lypa” coabants"text/hesl; S CEath hELp-aqalvesoatest-Lype” conbants"text/hisl; &)
«link rel="sirleshest” href="seiyleshectsfapplication «link rel="siyleshest” bhref="/ eiylecheeisfapplication
o= _‘_wll:rlpt insluds tag proiSiype , elliestia W = _‘_wll::iph inslude Lag protoiype , ellecta W
=/ heaed> =/ head>
ey ey
Date Fisdas Date Fisdas
digpre compubsit="retusrn falmm; = iicre copubsdt="return falme™>
<= pewe field cag| dare"] &> <= pewe field cag| dare’)] &>
LiieTEr LiieTEr
ip ad="gmi x, . .o/p> IR ad="gmi ¥, ..o/ p>
LHAY AES AOOLaT PPLUAEE GENLECL U AL FU RRANE . LAY AE= LOULET X
. ploads SORLASE O AT duppartiglrheh. oom e
LEETLRLE LYPE=TTEELSIavassTIipL "> Zidivs
new Form.Eluseant.Obeerver(LEOTARLE LYPE="tEELS JavascTipL >
"datd”
- niw Form.Elamant.Obsarver(
funstian(el, waloe){ dare’
ne AJEN . Repenst| " /madnSohrondes” + valus, | -
sethod: "L, functian{el,; waloa){
onfoccedss fonotiondLCAnEpaTL] nae AYEN. RepeREt | " /mainSohrondes” + valus, |
S sut j.innesfTHEL = Lranapoci. feapsoaeTexi; =athed: gak .,
] onfoccedss funotion(LCAnEpaTL]q
(¥ H 5| out).lnneriTEL = Lranapoct.reapooeeText |
¥ b
| [}
¥ -
LIBETaphk> | "
) ey £ /meTipt> bl
== = = = = === E] L ERES P

If you try to merge two branches and subsequently have merge conflicts, you can run the command
git merget ool ; it starts PAMerge to let you resolve the conflicts through that GUI tool.

The nice thing about this wrapper setup is that you can change your diff and merge tools easily. For
example, to change your ext Di f f and ext Mer ge toolsto run the KDiff3 tool instead, al you haveto
doisedit your ext Mer ge file:

151

Pro Git

$ cat /usr/local/bin/extMrge
#1/bin/sh
/ Appl i cati ons/ kdi ff 3. app/ Cont ent s/ MacOS/ kdi ff3 $*

Now, Git will use the KDiff3 tool for diff viewing and merge conflict resolution.

Git comes preset to use anumber of other merge-resolution tools without your having to set up the
cmd configuration. Y ou can set your merge tool to kdiff3, opendiff, tkdiff, meld, xxdiff, emerge,
vimdiff, or gvimdiff. If you're not interested in using KDiff3 for diff but rather want to useiit just for
merge resolution, and the kdiff3 command isin your path, then you can run

$ git config --global nerge.tool kdiff3

If you run thisinstead of setting up the ext Mer ge and ext Di f f files, Git will use KDiff3 for merge
resolution and the normal Git diff tool for diffs.

8.1.4. Formatting and Whitespace

Formatting and whitespace issues are some of the more frustrating and subtle problems that many
developers encounter when collaborating, especially cross-platform. It's very easy for patches or other
collaborated work to introduce subtle whitespace changes because editors silently introduce them or
Windows programmers add carriage returns at the end of lines they touch in cross-platform projects.
Git has afew configuration options to help with these issues.

core.autocrl|f

If you' re programming on Windows or using another system but working with people who are
programming on Windows, you'’ Il probably run into line-ending issues at some point. Thisis because
Windows uses both a carriage-return character and a linefeed character for newlinesin itsfiles,
whereas Mac and Linux systems use only the linefeed character. Thisis a subtle but incredibly
annoying fact of cross-platform work.

Git can handle this by auto-converting CRLF line endings into LF when you commit, and vice
versawhen it checks out code onto your filesystem. Y ou can turn on this functionality with the
core. aut ocr | f setting. If you're on a Windows machine, set it tot r ue — this converts LF endings
into CRLF when you check out code:

$ git config --global core.autocrlf true

If you're on aLinux or Mac system that uses LF line endings, then you don’t want Git to
automatically convert them when you check out files; however, if afile with CRLF endings
accidentally gets introduced, then you may want Git to fix it. You can tell Git to convert CRLF to LF
on commit but not the other way around by setting cor e. aut ocr | f to input:

$ git config --global core.autocrlf input

This setup should leave you with CRLF endings in Windows checkouts but L F endings on Mac and
Linux systems and in the repository.

If you're a Windows programmer doing a Windows-only project, then you can turn off this
functionality, recording the carriage returns in the repository by setting the config valueto f al se:

$ git config --global core.autocrlf false

core.whitespace

152

Pro Git

Git comes preset to detect and fix some whitespace issues. It can look for four primary whitespace
issues — two are enabled by default and can be turned off, and two aren’t enabled by default but can
be activated.

The two that are turned on by default aret r ai | i ng- space, which looks for spaces at the end of a
line, and space- bef or e- t ab, which looks for spaces before tabs at the beginning of aline.

The two that are disabled by default but can be turned on arei ndent - wi t h- non- t ab, which looks for
lines that begin with eight or more spaces instead of tabs, and cr - at - eol , which tells Git that carriage
returns at the end of lines are OK.

Y ou can tell Git which of these you want enabled by setting cor e. whi t espace to the values you want
on or off, separated by commas. Y ou can disable settings by either leaving them out of the setting
string or prepending a- in front of the value. For example, if you want all but cr - at - eol to be set,
you can do this:

$ git config --global core.whitespace \
trailing-space, space-before-tab,indent-with-non-tab

Git will detect these issueswhenyourunagit di ff command and try to color them so you can
possibly fix them before you commit. It will also use these values to help you when you apply patches
withgi t appl y. When you're applying patches, you can ask Git to warn you if it's applying patches
with the specified whitespace issues:

$ git apply --whitespace=warn <patch>
Or you can have Git try to automatically fix the issue before applying the patch:
$ git apply --whitespace=fix <patch>

These options apply to the git rebase option as well. If you’ ve committed whitespace issues but
haven't yet pushed upstream, you can run ar ebase with the - - whi t espace=f i x option to have Git
automatically fix whitespace issues asit’ s rewriting the patches.

8.1.5. Server Configuration

Not nearly as many configuration options are available for the server side of Git, but there are afew
interesting ones you may want to take note of.

receive.fsckObjects

By default, Git doesn’'t check for consistency all the objectsit receives during a push. Although Git
can check to make sure each object still matches its SHA-1 checksum and pointsto valid objects, it
doesn’t do that by default on every push. Thisisarelatively expensive operation and may add alot of
time to each push, depending on the size of the repository or the push. If you want Git to check object
consistency on every push, you can force it to do so by setting r ecei ve. f sckbj ect s to true:

$ git config --systemreceive.fsckCbjects true

Now, Git will check the integrity of your repository before each push is accepted to make sure faulty
clients aren’t introducing corrupt data.

receive.denyNonFastForwards

153

Pro Git

If you rebase commits that you’ ve already pushed and then try to push again, or otherwise try to push
acommit to aremote branch that doesn’t contain the commit that the remote branch currently points
to, you'll be denied. Thisis generally good policy; but in the case of the rebase, you may determine
that you know what you’ re doing and can force-update the remote branch with a- f flag to your push
command.

To disable the ability to force-update remote branches to non-fast-forward references, set
recei ve. denyNonFast For war ds:

$ git config --systemreceive. denyNonFast Forwards true

The other way you can do thisis via server-side receive hooks, which I'll cover in abit. That approach
lets you do more complex things like deny non-fast-forwards to a certain subset of users.

receive.denyDeletes

One of the workarounds to the denyNonFast For war ds policy isfor the user to delete the branch and
then push it back up with the new reference. In newer versions of Git (beginning with version 1.6.1),
you can set r ecei ve. denyDel et es tO true:

$ git config --systemreceive.denyDel etes true

This denies branch and tag deletion over a push across the board — no user can do it. To remove
remote branches, you must remove the ref files from the server manually. There are also more
interesting ways to do this on a per-user basisviaACLSs, asyou'll learn at the end of this chapter.

8.2. Git Attributes

Some of these settings can also be specified for a path, so that Git applies those settings only for a
subdirectory or subset of files. These path-specific settings are called Git attributes and are set either
ina.gitattributes filein oneof your directories (normally the root of your project) or inthe. gi t/
info/attributes fileif you don't want the attributes file committed with your project.

Using attributes, you can do things like specify separate merge strategies for individual files or
directoriesin your project, tell Git how to diff non-text files, or have Git filter content before you
check it into or out of Git. In this section, you’ll learn about some of the attributes you can set on your
pathsin your Git project and see afew examples of using this feature in practice.

8.2.1. Binary Files

One cool trick for which you can use Git attributes is telling Git which files are binary (in cases it
otherwise may not be able to figure out) and giving Git special instructions about how to handle those
files. For instance, some text files may be machine generated and not diffable, whereas some binary
files can be diffed — you’ll see how to tell Git which iswhich.

Identifying Binary Files#

Some fileslook like text files but for all intents and purposes are to be treated as binary data. For
instance, Xcode projects on the Mac contain afile that endsin . pbxpr oj , which is basically a JSON
(plain text javascript data format) dataset written out to disk by the IDE that records your build
settings and so on. Although it’ stechnically atext file, becauseit’s all ASCII, you don’'t want to treat

154

Pro Git

it as such because it’ sredlly alightweight database — you can’t merge the contents if two people
changed it, and diffs generally aren’t helpful. The file is meant to be consumed by a machine. In
essence, you want to treat it like abinary file.

Totell Git totreat al pbxproj filesasbinary data, add the following lineto your . gi tattri but es
file:

*. pbxproj -crlf -diff

Now, Git won't try to convert or fix CRLF issues; nor will it try to compute or print adiff for changes
in this file when you run git show or git diff on your project. In the 1.6 series of Git, you can aso use
amacro that is provided that means-crif -diff:

* . pbxproj binary
Diffing Binary Files#

In the 1.6 series of Git, you can use the Git attributes functionality to effectively diff binary files. You
do this by telling Git how to convert your binary datato atext format that can be compared via the
normal diff.

Because thisis a pretty cool and not widely known feature, I'll go over afew examples. First,

you' Il use this technique to solve one of the most annoying problems known to humanity: version-
controlling Word documents. Everyone knows that Word is the most horrific editor around; but,
oddly, everyone usesit. If you want to version-control Word documents, you can stick themina
Git repository and commit every once in awhile; but what good does that do? If yourungit diff
normally, you only see something like this:

$git diff

diff --git al/chapterl.doc b/chapterl. doc

i ndex 88839c4. . 4af cb7c 100644

Binary files a/chapterl.doc and b/chapterl.doc differ

Y ou can’t directly compare two versions unless you check them out and scan them manually,
right? It turns out you can do thisfairly well using Git attributes. Put the following line in your
.gitattributes file

* doc di ff=word

Thistells Git that any file that matches this pattern (.doc) should use the "word" filter when you try
to view a diff that contains changes. What is the "word" filter? Y ou have to set it up. Hereyou'll
configure Git to use the st ri ngs program to convert Word documents into readable text files, which
it will then diff properly:

$ git config diff.word.textconv strings

Now Git knows that if it tries to do a diff between two snapshots, and any of thefilesend in . doc,
it should run those files through the "word" filter, which is defined asthe st ri ngs program. This
effectively makes nice text-based versions of your Word files before attempting to diff them.

Here' s an example. | put Chapter 1 of thisbook into Git, added some text to a paragraph, and saved
the document. Then, | rangit diff to see what changed:

$git diff
diff --git a/chapterl.doc b/chapterl. doc

155

Pro Git

i ndex clc8ala..b93c9e4 100644
--- alchapterl. doc
+++ b/ chapt er 1. doc

@-8,7 +8,8 @re going to cover Version Control Systems (VCS) and Gt basics
re going to cover howto get it and set it up for the first tine if you don

t already have it on your system

In Chapter Two we will go over basic Gt usage - howto use Gt for the 80%
-s going on, nodify stuff and contribute changes. If the book spontaneously
+s going on, nodify stuff and contribute changes. If the book spontaneously
+Let's see if this works.

Git successfully and succinctly tells me that | added the string "Let’s see if thisworks®, which is
correct. It’s not perfect — it adds a bunch of random stuff at the end — but it certainly works. If you
can find or write a Word-to-plain-text converter that works well enough, that solution will likely be
incredibly effective. However, st ri ngs isavailable on most Mac and Linux systems, so it may be a
good first try to do this with many binary formats.

Another interesting problem you can solve this way involves diffing image files. One way to do
thisisto run JPEG files through afilter that extracts their EXIF information — metadatathat is
recorded with most image formats. If you download and install the exi f t ool program, you can use
it to convert your images into text about the metadata, so at least the diff will show you atextual
representation of any changes that happened:

$ echo '*.png diff=exif' >> .gitattributes
$ git config diff.exif.textconv exiftool

If you replace an image in your project and rungi t di f f, you see something like this:

diff --git a/imge.png b/imge. png
i ndex 88839c4. . 4af cb7c 100644

--- alinmage. png

+++ b/ i nmage. png

@@-1,12 +1,12 @@

Exi f Tool Versi on Nunber D 7.74
-File Size . 70 kB
-File Modification Date/Tine : 2009: 04: 21 07:02:45-07:00
+File Size : 94 kB
+File Mdification Date/Tine : 2009:04: 21 07:02:43-07:00
File Type : PNG
M ME Type : i nmage/ png
-l mage Wdth : 1058
- mage Hei ght : 889
+l mage Wdth : 1056
+I mage Hei ght . 827
Bit Depth : 8
Col or Type : RE&B with Al pha

Y ou can easily seethat the file size and image dimensions have both changed.

8.2.2. Keyword Expansion

SVN- or CVS-style keyword expansion is often requested by developers used to those systems. The
main problem with thisin Git isthat you can’t modify afile with information about the commit after
you’ ve committed, because Git checksums the file first. However, you can inject text into afile when
it's checked out and remove it again before it' s added to a commit. Git attributes offers you two ways
to do this.

156

Pro Git

First, you can inject the SHA-1 checksum of ablob into an $1 d$ field in the file automatically. If you
set this attribute on afile or set of files, then the next time you check out that branch, Git will replace
that field with the SHA-1 of the blob. It'simportant to notice that it isn't the SHA of the commit, but
of the blob itself:

$ echo "*.txt ident' >> .gitattributes
$ echo 'Id" > test.txt

The next time you check out thisfile, Git injects the SHA of the blob:

$ rmtext.txt

$ git checkout -- text.txt

$ cat test.txt

$1d: 42812b7653c7b88933f 8a9d6cad0cal6714b9bb3 $

However, that result is of limited use. If you’ ve used keyword substitution in CV'S or Subversion, you
can include a datestamp — the SHA isn't al that helpful, because it’ s fairly random and you can’t tell
if one SHA isolder or newer than another.

It turns out that you can write your own filters for doing substitutions in files on commit/checkout.
These are the "clean” and "smudge” filters. Inthe. gi tat t ri but es file, you can set afilter for
particular paths and then set up scripts that will process files just before they’ re checked out
("smudge", see Figure 7-2) and just before they’ re committed ("clean”, see Figure 7-3). Thesefilters
can be set to do al sorts of fun things.

Staging Area Working Directory
*.txt Filter
fileA.txt B smudge —T* fileA.txt'

fileB.txt clean fileB. txt'

11

41

fileC.rb - fileC.rb

git checkout

Staging Area Working Directory
*.txt Filter

|
11

fileA.txt smudge fileA.txt'

.

| fileB.xt |-—: clean b fileB.txt'
| fileC.rb I “

fileC.rb

git add

The original commit message for this functionality gives a simple example of running all your C
source code through the i ndent program before committing. Y ou can set it up by setting the filter
atributeinyour . gi tat tri but es filetofilter *. ¢ fileswith the "indent" filter:

157

Pro Git

*. C filter=indent

Then, tell Git what the "indent"" filter does on smudge and clean:

$ git config --global filter.indent.clean indent
$ git config --global filter.indent.snmdge cat

In this case, when you commit files that match *. ¢, Git will run them through the indent program
before it commits them and then run them through the cat program before it checks them back
out onto disk. The cat program isbasically ano-op: it spits out the same data that it getsin. This
combination effectively filtersall C source code files through i ndent before committing.

Another interesting example gets $Dat e$ keyword expansion, RCS style. To do this properly, you
need a small script that takes a filename, figures out the last commit date for this project, and inserts
the date into the file. Here is a small Ruby script that does that:

#! [usr/bin/env ruby

data = STDI N. r ead

| ast _date = "git log --pretty=format:"%d" -1

puts data.gsub(' $Date$', '$Date: ' + last_date.to_s + '$')

All the script doesis get the latest commit date from thegi t |1 og command, stick that into any $Dat e
$ stringsit seesin stdin, and print the results — it should be simple to do in whatever language you're
most comfortable in. Y ou can namethisfile expand_dat e and put it in your path. Now, you need to
set up afilter in Git (call it dat er) and tell it to use your expand_dat e filter to smudge the files on
checkout. You'll use a Perl expression to clean that up on commit:

$ git config filter.dater.snmudge expand_date
$ git config filter.dater.clean 'perl -pe "s/\\\$Date["\ \\$] *\\\$/\\\ $Date\\\$/ "'

This Perl snippet strips out anything it seesin a$Dat e$ string, to get back to where you started. Now
that your filter isready, you can test it by setting up afile with your $Dat e$ keyword and then setting
up a Git attribute for that file that engages the new filter:

$ echo '# $Date$’ > date_test.txt
$ echo 'date*.txt filter=dater' >> .gitattributes

If you commit those changes and check out the file again, you see the keyword properly substituted:

git add date test.txt .gitattributes

git coomit -m"Testing date expansion in Gt"
rmdate test.txt

git checkout date_ test.txt

cat date test.txt

$Date: Tue Apr 21 07:26:52 2009 -0700%

TP

Y ou can see how powerful this technique can be for customized applications. Y ou have to be careful,
though, becausethe . gi t at t ri but es file is committed and passed around with the project but the
driver (in this case, dat er) isn't; so, it won't work everywhere. When you design these filters, they
should be able to fail gracefully and have the project still work properly.

8.2.3. Exporting Your Repository

Git attribute data also allows you to do some interesting things when exporting an archive of your
project.

158

Pro Git

export-ignore

You can tell Git not to export certain files or directories when generating an archive. If thereisa
subdirectory or file that you don’t want to include in your archive file but that you do want checked
into your project, you can determine those files viathe export - i gnor e attribute.

For example, say you have sometest filesin at est / subdirectory, and it doesn’t make sense to
include them in the tarball export of your project. You can add the following line to your Git attributes
file:

test/ export-ignore

Now, when you run git archive to create atarball of your project, that directory won’'t be included in
the archive.

export-subst

Another thing you can do for your archives is some simple keyword substitution. Git lets you put the
string $For mat : $ in any file with any of the - - pret t y=f or mat formatting shortcodes, many of which
you saw in Chapter 2. For instance, if you want to include afile named LAST_COWM T in your project,
and the last commit date was automatically injected into it when gi t ar chi ve ran, you can set up the
filelikethis:

$ echo 'Last commit date: $Format: %d$' > LAST_COWM T
$ echo "LAST_COW T export-subst" >> .gitattributes

$ git add LAST_COWT .gitattributes

$ git commt -am'adding LAST_ COWMT file for archives'

Whenyourungit archive, the contents of that file when people open the archive file will look like
this:

$ cat LAST_ COWM T
Last comit date: $Format: Tue Apr 21 08:38:48 2009 -0700%

8.2.4. Merge Strategies

Y ou can also use Git attributes to tell Git to use different merge strategies for specific filesin your
project. One very useful option isto tell Git to not try to merge specific files when they have conflicts,
but rather to use your side of the merge over someone else’s.

Thisishelpful if abranch in your project has diverged or is specialized, but you want to be able to
merge changes back in from it, and you want to ignore certain files. Say you have a database settings
file called database.xml that is different in two branches, and you want to merge in your other branch
without messing up the database file. Y ou can set up an attribute like this:

dat abase. xnml mer ge=ours

If you merge in the other branch, instead of having merge conflicts with the database.xml file, you see
something like this:

$ git nmerge topic
Aut o- ner gi ng dat abase. xm
Merge nmade by recursive.

159

Pro Git

In this case, database.xml stays at whatever version you originally had.

8.3. Git Hooks

Like many other Version Control Systems, Git has away to fire off custom scripts when certain
important actions occur. There are two groups of these hooks: client side and server side. The client-
side hooks are for client operations such as committing and merging. The server-side hooks are for Git
server operations such as receiving pushed commits. Y ou can use these hooks for all sorts of reasons,
and you'll learn about a few of them here.

8.3.1. Installing a Hook

The hooks are all stored in the hooks subdirectory of the Git directory. In most projects, that's. gi t/
hooks. By default, Git populates this directory with a bunch of example scripts, many of which are
useful by themselves; but they also document the input values of each script. All the examples are
written as shell scripts, with some Perl thrown in, but any properly named executabl e scripts will work
fine— you can write them in Ruby or Python or what have you. For post-1.6 versions of Git, these
example hook files end with .sample; you'll need to rename them. For pre-1.6 versions of Git, the
example files are named properly but are not executable.

To enable a hook script, put afilein the hooks subdirectory of your Git directory that is named
appropriately and is executable. From that point forward, it should be called. I'll cover most of the
major hook filenames here.

8.3.2. Client-Side Hooks

Thereare alot of client-side hooks. This section splits them into committing-workflow hooks, e-mail-
workflow scripts, and the rest of the client-side scripts.

Committing-Workflow Hooks

The first four hooks have to do with the committing process. The pr e- commi t hook is run first, before
you even type in acommit message. It's used to inspect the snapshot that’ s about to be committed,

to seeif you' ve forgotten something, to make sure tests run, or to examine whatever you need to
inspect in the code. Exiting non-zero from this hook aborts the commit, although you can bypass it
withgit commit --no-verify.You cando thingslike check for code style (run lint or something
equivalent), check for trailing whitespace (the default hook does exactly that), or check for appropriate
documentation on new methods.

The pr epar e- commi t - msg hook is run before the commit message editor isfired up but after the
default message is created. It lets you edit the default message before the commit author seesit.
This hook takes afew options: the path to the file that holds the commit message so far, the type of
commit, and the commit SHA-1 if thisis an amended commit. This hook generally isn’t useful for
normal commits; rather, it’s good for commits where the default message is auto-generated, such as
templated commit messages, merge commits, squashed commits, and amended commits. Y ou may
use it in conjunction with acommit template to programmatically insert information.

The comi t - msg hook takes one parameter, which again is the path to atemporary file that contains
the current commit message. If this script exits non-zero, Git aborts the commit process, so you can
useit to validate your project state or commit message before allowing a commit to go through. In

160

Pro Git

the last section of this chapter, I’ll demonstrate using this hook to check that your commit message is
conformant to arequired pattern.

After the entire commit process is completed, the post - conmi t hook runs. It doesn’t take any
parameters, but you can easily get the last commit by running git | og -1 HEAD. Generaly, this
script is used for notification or something similar.

The committing-workflow client-side scripts can be used in just about any workflow. They’ re often
used to enforce certain policies, although it’s important to note that these scripts aren’t transferred
during a clone. Y ou can enforce policy on the server side to reject pushes of commits that don’t
conform to some policy, but it’s entirely up to the devel oper to use these scripts on the client side. So,
these are scripts to help developers, and they must be set up and maintained by them, although they
can be overridden or modified by them at any time.

E-mail Workflow Hooks

Y ou can set up three client-side hooks for an e-mail-based workflow. They’re al invoked by the gi t
amcommand, so if you aren’t using that command in your workflow, you can safely skip to the next
section. If you're taking patches over e-mail prepared by git f or mat - pat ch, then some of these may
be helpful to you.

The first hook that isrun isappl ypat ch- nsg. It takes a single argument: the name of the temporary
file that contains the proposed commit message. Git aborts the patch if this script exits non-zero. Y ou
can use this to make sure a commit message is properly formatted or to normalize the message by
having the script edit it in place.

The next hook to run when applying patchesviagi t amispr e- appl ypat ch. It takes no arguments
and is run after the patch is applied, so you can use it to inspect the snapshot before making the
commit. Y ou can run tests or otherwise inspect the working tree with this script. If something is
missing or the tests don’t pass, exiting non-zero also abortsthe gi t amscript without committing the
patch.

Thelast hook to run during agi t amoperation ispost - appl ypat ch. You can useit to notify a group
or the author of the patch you pulled in that you’ ve done so. Y ou can’t stop the patching process with
this script.

Other Client Hooks

The pr e- r ebase hook runs before you rebase anything and can halt the process by exiting non-zero.
Y ou can use this hook to disallow rebasing any commits that have already been pushed. The example
pre-rebase hook that Git installs does this, although it assumes that next is the name of the branch
you publish. You'll likely need to change that to whatever your stable, published branchis.

After you run asuccessful gi t checkout , the post - checkout hook runs; you can useit to set up
your working directory properly for your project environment. This may mean moving in large binary
filesthat you don’'t want source controlled, auto-generating documentation, or something along those
lines.

Finally, the post - mer ge hook runs after a successful mer ge command. Y ou can use it to restore data
in the working tree that Git can’t track, such as permissions data. This hook can likewise validate the
presence of files external to Git control that you may want copied in when the working tree changes.

161

Pro Git

8.3.3. Server-Side Hooks

In addition to the client-side hooks, you can use a couple of important server-side hooks as a system
administrator to enforce nearly any kind of policy for your project. These scripts run before and after
pushes to the server. The pre hooks can exit non-zero at any time to reject the push as well as print an
error message back to the client; you can set up a push policy that’s as complex as you wish.

pre-receive and post-receive

The first script to run when handling a push from aclient ispre-r ecei ve. It takesalist of references
that are being pushed from stdin; if it exits non-zero, none of them are accepted. Y ou can use this
hook to do things like make sure none of the updated references are non-fast-forwards; or to check
that the user doing the pushing has create, delete, or push access or access to push updates to all the
filesthey’ re modifying with the push.

The post - r ecei ve hook runs after the entire process is completed and can be used to update other
services or notify users. It takes the same stdin data asthe pr e- r ecei ve hook. Examplesinclude e-
mailing alist, notifying a continuous integration server, or updating a ticket-tracking system — you
can even parse the commit messages to see if any tickets need to be opened, modified, or closed.
This script can’t stop the push process, but the client doesn’t disconnect until it has completed; so, be
careful when you try to do anything that may take along time.

update

The update script is very similar to the pr e- r ecei ve script, except that it’s run once for each branch
the pusher istrying to update. If the pusher is trying to push to multiple branches, pr e- r ecei ve runs
only once, whereas update runs once per branch they’ re pushing to. Instead of reading from stdin, this
script takes three arguments: the name of the reference (branch), the SHA-1 that reference pointed to
before the push, and the SHA-1 the user is trying to push. If the update script exits non-zero, only that
reference is rejected; other references can still be updated.

8.4. An Example Git-Enforced Policy

In this section, you'll use what you've learned to establish a Git workflow that checks for a custom
commit message format, enforces fast-forward-only pushes, and allows only certain users to modify
certain subdirectoriesin aproject. You'll build client scripts that help the developer know if their push
will be rejected and server scripts that actually enforce the policies.

| used Ruby to write these, both because it’s my preferred scripting language and because | fedl it's
the most pseudocode-looking of the scripting languages; thus you should be able to roughly follow the
code even if you don’'t use Ruby. However, any language will work fine. All the sample hook scripts
distributed with Git are in either Perl or Bash scripting, so you can also see plenty of examples of
hooks in those languages by looking at the samples.

8.4.1. Server-Side Hook

All the server-side work will go into the update file in your hooks directory. The update file runs once
per branch being pushed and takes the reference being pushed to, the old revision where that branch
was, and the new revision being pushed. Y ou also have access to the user doing the pushing if the
push is being run over SSH. If you’' ve allowed everyone to connect with asingle user (like "git") via

162

Pro Git

public-key authentication, you may have to give that user a shell wrapper that determines which user
is connecting based on the public key, and set an environment variable specifying that user. Here |
assume the connecting user isin the $USER environment variable, so your update script begins by
gathering all the information you need:

#!/ usr/ bin/env ruby

$ref name = ARGV[0]
$oldrev = ARGV 1]
$newev = ARGV 2]
$user = ENV[' USER]

puts "Enforcing Policies... \n(#{$refname}) (#{$oldrev[0,6]}) (#{$newev[0,6]})"
Yes, I'musing global variables. Don’t judge me — it’s easier to demonstrate in this manner.
Enforcing a Specific Commit-Message Format

Your first challenge is to enforce that each commit message must adhere to a particular format. Just

to have atarget, assume that each message has to include a string that looks like "ref: 1234" because
you want each commit to link to awork item in your ticketing system. Y ou must look at each commit
being pushed up, seeif that string isin the commit message, and, if the string is absent from any of the
commits, exit non-zero so the push is rejected.

Y ou can get alist of the SHA-1 values of all the commits that are being pushed by taking the $new ev
and $ol dr ev values and passing them to a Git plumbing command called gi t rev-1ist. Thisis
basically thegi t | og command, but by default it prints out only the SHA-1 values and no other
information. So, to get alist of all the commit SHAs introduced between one commit SHA and
another, you can run something like this:

$ git rev-list 538c33..d14fc7

d14f c7¢c847ab946ec39590d87783¢c69b031bdf b7
9f 585da4401b0a3999e84113824d15245¢c13f Obe
234071albe950e2a8d078e6141f 5cd20cle6lad3
df a04c9ef 3d5197182f 13f b5b9b1f b7717d2222a
17716ecOf 1f f 5¢c77ef f 40b7f €912f 9f 6¢f d0e475

Y ou can take that output, loop through each of those commit SHAS, grab the message for it, and test
that message against aregular expression that looks for a pattern.

Y ou have to figure out how to get the commit message from each of these commitsto test. To get the
raw commit data, you can use another plumbing command called git cat-file.|'ll go over all these
plumbing commands in detail in Chapter 9; but for now, here’ s what that command gives you:

$ git cat-file commit ca82a6

tree cfda3bf379e4f 8dba8717dee55aab78aef 7f 4daf

parent 085bb3bcb608ele8451d4b2432f 8eche6306e7e7

aut hor Scott Chacon <schacon@nuail.conmr 1205815931 -0700
conmitter Scott Chacon <schacon@nuail.conm> 1240030591 -0700

changed the version nunber

A simple way to get the commit message from a commit when you have the SHA-1 valueisto go
to thefirst blank line and take everything after that. Y ou can do so with the sed command on Unix
systems:

163

Pro Git

$ git cat-file commt ca82a6 | sed '1,/7$/d'
changed the version nunber

Y ou can use that incantation to grab the commit message from each commit that is trying to be pushed
and exit if you see anything that doesn’t match. To exit the script and reject the push, exit non-zero.
The whole method looks like this:

$regex = /\[ref: (\d+)\]/

enforced custom commit nessage format
def check_nessage format

mssed_revs = “git rev-list #{$oldrev}..#{$newev} .split("\n")
m ssed_revs. each do |rev|
nessage = ‘git cat-file conmt #{rev} | sed '1,/"$/d""

i f !$regex. mat ch(message)
puts "[POLICY] Your nessage is not formatted correctly"
exit 1
end
end
end
check _nessage_f or nat

Putting that in your updat e script will rgject updates that contain commits that have messages that
don’'t adhere to your rule.

Enforcing a User-Based ACL System

Suppose you want to add a mechanism that uses an access control list (ACL) that specifies which
users are allowed to push changes to which parts of your projects. Some people have full access, and
others only have access to push changes to certain subdirectories or specific files. To enforce this,
you' Il write those rules to afile named acl that livesin your bare Git repository on the server. You'll
have the updat e hook look at those rules, see what files are being introduced for all the commits
being pushed, and determine whether the user doing the push has access to update all those files.

The first thing you'll do iswrite your ACL. Here you' Il use aformat very much likethe CVS ACL
mechanism: it uses a series of lines, wherethefirst field isavai | or unavai | , thenextfieldisa
comma-delimited list of the usersto which the rule applies, and the last field is the path to which the
rule applies (blank meaning open access). All of these fields are delimited by a pipe (|) character.

In this case, you have a couple of administrators, some documentation writers with access to the doc
directory, and one developer who only has accessto thel i b andt est s directories, and your ACL file
looks like this:

avai | | ni ckh, pj hyett, def unkt, t pw

avai |l | usi ncl ai r, cdi ckens, ebront e| doc
avail | schacon|lib

avai |l | schacon|tests

Y ou begin by reading this data into a structure that you can use. In this case, to keep the example
simple, you'll only enforcetheavai | directives. Hereis a method that gives you an associative array
where the key is the user name and the value is an array of paths to which the user has write access:

def get _acl _access _data(acl _file)
read in ACL data
acl _file = File.read(acl _file).split("\n").reject { |line|] line =="" }
access = {}

164

Pro Git

acl _file.each do |line
avail, users, path = line.split('|")
next unless avail == "avail"
users.split(',").each do |user
access[user] ||=1]
access[user] << path
end
end
access
end

Onthe ACL fileyou looked at earlier, thisget _acl _access_dat a method returns a data structure that
looks like this:

{"defunkt"=>[nil],
"tpw'=>[nil],
"nickh"=>[nil],

"pj hyett"=>[nil],
"schacon"=>["lib", "tests"],
"cdi ckens"=>["doc"],
"usinclair"=>["doc"],
"ebronte"=>["doc"]}

Now that you have the permissions sorted out, you need to determine what paths the commits being
pushed have modified, so you can make sure the user who's pushing has accessto all of them.

Y ou can pretty easily see what files have been modified in a single commit with the - - nane- onl y
optiontothegit 1 og command (mentioned briefly in Chapter 2):

$ git log -1 --nanme-only --pretty=format:'' 9f585d

README
lib/test.rb

If you use the ACL structure returned from the get _acl _access_dat a method and check it against
the listed files in each of the commits, you can determine whether the user has access to push all of
their commits:
only allows certain users to nodify certain subdirectories in a project
def check_directory_ perns

access = get_acl _access_data('acl"')

see if anyone is trying to push sonmething they can't

new _comrits = “git rev-list #{$oldrev}..#{$newev} .split("\n")
new_commits. each do |rev|
files nodified = "git log -1 --name-only --pretty=format:'"' #{rev} .split("\n")

files_nodified.each do |path
next if path.size ==
has file_ access = fal se
access[$user] . each do | access_path
if laccess_path # user has access to everything
|| (path.index(access_path) == 0) # access to this path
has file_access = true
end
end
if 'has file_ access
puts "[POLICY] You do not have access to push to #{path}"
exit 1

165

Pro Git

end
end
end
end

check_directory_pernmns

Most of that should be easy to follow. You get alist of new commits being pushed to your server
withgit rev-1ist. Then, for each of those, you find which files are modified and make sure the
user who' s pushing has access to all the paths being modified. One Rubyism that may not be clear is
pat h. i ndex(access_path) == 0, whichistrueif path beginswith access_pat h — this ensures that
access_pat h isnot just in one of the allowed paths, but an allowed path begins with each accessed
path.

Now your users can’t push any commits with badly formed messages or with modified files outside of
their designated paths.

Enforcing Fast-Forward-Only Pushes

The only thing left is to enforce fast-forward-only pushes. In Git versions 1.6 or newer, you can set
ther ecei ve. denyDel et es and r ecei ve. denyNonFast For war ds Settings. But enforcing this with
a hook will work in older versions of Git, and you can modify it to do so only for certain users or
whatever else you come up with later.

Thelogic for checking thisisto see if any commits are reachable from the older revision that aren’t
reachable from the newer one. If there are none, then it was a fast-forward push; otherwise, you deny
it:

enforces fast-forward only pushes
def check fast forward
m ssed_refs = “git rev-list #{$newev}..#{$oldrev}"
m ssed_ref _count = mssed_refs.split("\n").size
if mssed ref _count > 0
puts "[POLI CY] Cannot push a non fast-forward reference"
exit 1
end
end

check fast_ forward

Everything isset up. If you run chnmod u+x . gi t/ hooks/ updat e, which isthe file you into which
you should have put all this code, and then try to push a non-fast-forwarded reference, you get
something like this:

$ git push -f origin master

Counting objects: 5, done.

Conpressi ng objects: 100% (3/3), done.

Witing objects: 100% (3/3), 323 bytes, done.
Total 3 (delta 1), reused 0 (delta 0)

Unpacki ng objects: 100% (3/3), done.

Enforcing Policies...

(refs/heads/ master) (8338c5) (c5hb616)

[POLI CY] Cannot push a non-fast-forward reference
error: hooks/update exited with error code 1
error: hook declined to update refs/heads/ master
To git@jitserver:project.git

166

Pro Git

I [renpte rejected] nmaster -> master (hook decli ned)
error: failed to push sonme refs to 'git@itserver:project.git

There are a couple of interesting things here. First, you see this where the hook starts running.

Enforcing Policies...
(refs/heads/ master) (fb8c72) (c56860)

Notice that you printed that out to stdout at the very beginning of your update script. It'simportant to
note that anything your script prints to stdout will be transferred to the client.

The next thing you’ll notice is the error message.

[POLI CY] Cannot push a non fast-forward reference
error: hooks/update exited with error code 1
error: hook declined to update refs/heads/ master

Thefirst line was printed out by you, the other two were Git telling you that the update script exited
non-zero and that is what is declining your push. Lastly, you have this:

To git@jitserver:project.git
I [renpte rejected] master -> master (hook declined)
error: failed to push some refs to 'git@itserver:project.git

You'll see aremote rejected message for each reference that your hook declined, and it tells you that it
was declined specifically because of a hook failure.

Furthermore, if the ref marker isn’t there in any of your commits, you’ll see the error message you're
printing out for that.

[POLI CY] Your nessage is not formatted correctly

Or if someonetriesto edit afile they don’t have access to and push a commit containing it, they will
see something similar. For instance, if a documentation author tries to push a commit modifying
something inthel i b directory, they see

[POLI CY] You do not have access to push to lib/test.rb

That's all. From now on, aslong as that updat e script is there and executable, your repository will
never be rewvound and will never have a commit message without your pattern in it, and your users
will be sandboxed.

8.4.2. Client-Side Hooks

The downside to this approach is the whining that will inevitably result when your users' commit
pushes are rejected. Having their carefully crafted work rejected at the last minute can be extremely
frustrating and confusing; and furthermore, they will have to edit their history to correct it, which isn’'t
always for the faint of heart.

The answer to this dilemmais to provide some client-side hooks that users can use to notify them
when they’ re doing something that the server islikely to reject. That way, they can correct any
problems before committing and before those issues become more difficult to fix. Because hooks
aren’t transferred with a clone of a project, you must distribute these scripts some other way and
then have your users copy them to their . gi t / hooks directory and make them executable. Y ou can

167

Pro Git

distribute these hooks within the project or in a separate project, but there is no way to set them up
automatically.

To begin, you should check your commit message just before each commit is recorded, so you know
the server won't reject your changes due to badly formatted commit messages. To do this, you can add
the conmi t - nsg hook. If you have it read the message from the file passed as the first argument and
compare that to the pattern, you can force Git to abort the commit if there is no match:

#!/ usr/ bin/env ruby
nessage file = ARGV[0]
nessage = File.read(nessage file)

$regex = /\[ref: (\d+)\]/

i f !$regex. mat ch(nessage)
puts "[POLI CY] Your nessage is not formatted correctly”
exit 1

end

If that script isin place (in. gi t/ hooks/ conmi t - nsg) and executable, and you commit with a
message that isn’t properly formatted, you see this:

$ git conmit -am'test
[POLI CY] Your nessage is not formatted correctly

No commit was completed in that instance. However, if your message contains the proper pattern, Git
allows you to commit:

$ git conmit -am'test [ref: 132]'
[master e05c914] test [ref: 132]
1 files changed, 1 insertions(+), O deletions(-)

Next, you want to make sure you aren’t modifying files that are outside your ACL scope. If your
project’s. gi t directory contains a copy of the ACL file you used previously, then the following pr e-
conmmi t script will enforce those constraints for you:

#! [/ usr/ bi n/ env ruby
$user = ENV[' USER]
[insert acl_access_data nmethod from above]

only allows certain users to nodify certain subdirectories in a project
def check_directory_pernmns
access = get_acl _access_data('.git/acl")

files nodified = "git diff-index --cached --name-only HEAD .split("\n")
files_nodified.each do |path
next if path.size ==
has file_ access = fal se
access[$user] . each do | access_path
if laccess_path || (path.index(access_path) == 0)
has file_access = true
end
if 'has file_ access
puts "[POLICY] You do not have access to push to #{path}"
exit 1
end
end

168

Pro Git

end

check _directory_perms

Thisisroughly the same script as the server-side part, but with two important differences. First, the
ACL fileisin adifferent place, because this script runs from your working directory, not from your
Git directory. Y ou have to change the path to the ACL file from this

access = get_acl _access_data(' acl')

to this:

access = get_acl _access data('.git/acl")

The other important difference is the way you get alisting of the files that have been changed.
Because the server-side method looks at the log of commits, and, at this point, the commit hasn’'t been
recorded yet, you must get your file listing from the staging areainstead. Instead of

files nodified = "git log -1 --nane-only --pretty=fornmat:'' #{ref}"

you haveto use

files_modified = “git diff-index --cached --nanme-only HEAD

But those are the only two differences — otherwise, the script works the same way. One caveat is
that it expects you to be running locally as the same user you push as to the remote machine. If that is
different, you must set the suser variable manually.

The last thing you have to do is check that you' re not trying to push non-fast-forwarded references,
but that is a bit less common. To get areference that isn’t a fast-forward, you either have to rebase
past acommit you’ ve already pushed up or try pushing a different local branch up to the same remote
branch.

Because the server will tell you that you can’t push a non-fast-forward anyway, and the hook prevents
forced pushes, the only accidental thing you can try to catch is rebasing commits that have already
been pushed.

Hereis an example pre-rebase script that checks for that. It getsalist of all the commits you're
about to rewrite and checks whether they exist in any of your remote references. If it seesonethat is
reachable from one of your remote references, it aborts the rebase:

#!/ usr/ bin/env ruby

base branch = ARGV[0]

if ARGV 1]

topi c_branch = ARGV 1]
el se

topi c_branch = "HEAD"
end

t arget _shas
renote refs

"git rev-list #{base_branch}..#{topic_branch} .split("\n")
“git branch -r .split("\n").map { |r|] r.strip}

target _shas. each do | sha
renote_refs.each do |renote_ref
shas_pushed = “git rev-list *#{sha}"@refs/renotes/#{renmote ref}"
i f shas_pushed.split(“\'n”).include?(sha)

169

Pro Git

puts "[POLICY] Commit #{sha} has al ready been pushed to #{renote_ ref}"
exit 1
end
end
end

This script uses a syntax that wasn't covered in the Revision Selection section of Chapter 6. You get a
list of commits that have already been pushed up by running this:

git rev-list *"#{sha}"@refs/renotes/#{renote_ref}

The sHA* @syntax resolves to all the parents of that commit. Y ou’ re looking for any commit that is
reachable from the last commit on the remote and that isn’t reachable from any parent of any of the
SHAsyou're trying to push up — meaning it’s a fast-forward.

The main drawback to this approach is that it can be very slow and is often unnecessary — if you
don't try to force the push with - , the server will warn you and not accept the push. However, it’s an
interesting exercise and can in theory help you avoid arebase that you might later have to go back and
fix.

8.5. Summary

Y ou’ ve covered most of the major ways that you can customize your Git client and server to best

fit your workflow and projects. You've learned about all sorts of configuration settings, file-based
attributes, and event hooks, and you’ ve built an example policy-enforcing server. Y ou should now be
able to make Git fit nearly any workflow you can dream up.

9. Git and Other Systems

Theworld isn't perfect. Usually, you can’t immediately switch every project you come in contact
with to Git. Sometimes you' re stuck on a project using another VCS, and many times that system
is Subversion. You' Il spend the first part of this chapter learning about gi t svn, the bidirectional
Subversion gateway tool in Git.

At some point, you may want to convert your existing project to Git. The second part of this chapter
covers how to migrate your project into Git: first from Subversion, then from Perforce, and finally via
acustom import script for a nonstandard importing case.

9.1. Git and Subversion

Currently, the majority of open source development projects and a large number of corporate projects
use Subversion to manage their source code. It’s the most popular open source VCS and has been
around for nearly adecade. It's aso very similar in many waysto CV'S, which was the big boy of the
source-control world before that.

One of Git'sgreat featuresis abidirectional bridge to Subversion called gi t svn. Thistool allows
you to use Git asavalid client to a Subversion server, so you can use all the local features of Git and
then push to a Subversion server asif you were using Subversion locally. This means you can do local
branching and merging, use the staging area, use rebasing and cherry-picking, and so on, while your
collaborators continue to work in their dark and ancient ways. I1t’s a good way to sneak Git into the

170

Pro Git

corporate environment and help your fellow devel opers become more efficient while you lobby to
get the infrastructure changed to support Git fully. The Subversion bridge is the gateway drug to the
DVCSworld.

9.1.1. git svn

The base command in Git for all the Subversion bridging commandsisgit svn. You preface
everything with that. It takes quite afew commands, so you’ll learn about the common ones while
going through a few small workflows.

It'simportant to note that when you'reusing gi t svn, you're interacting with Subversion, whichisa
system that is far less sophisticated than Git. Although you can easily do local branching and merging,
it's generally best to keep your history as linear as possible by rebasing your work and avoiding doing
things like smultaneously interacting with a Git remote repository.

Don't rewrite your history and try to push again, and don’t push to a parallel Git repository to
collaborate with fellow Git developers at the same time. Subversion can have only asingle linear
history, and confusing it is very easy. If you' re working with ateam, and some are using SVN and
others are using Git, make sure everyone is using the SVN server to collaborate — doing so will make
your life easier.

9.1.2. Setting Up

To demonstrate this functionality, you need atypical SVN repository that you have write access to.
If you want to copy these examples, you'll have to make a writeable copy of my test repository. In
order to do that easily, you can use atool called svnsync that comes with more recent versions of
Subversion — it should be distributed with at least 1.4. For these tests, | created a new Subversion
repository on Google code that was a partial copy of the pr ot obuf project, which isatool that
encodes structured data for network transmission.

To follow along, you first need to create anew local Subversion repository:

$ nkdir /tnp/test-svn
$ svnadmin create /tnp/test-svn

Then, enable all users to change revprops — the easy way is to add a pre-revprop-change script that
always exits O:

$ cat /tnp/test-svn/hooks/ pre-revprop-change
#!/bin/sh

exit 0;

$ chnod +x /tnp/test-svn/ hooks/ pre-revprop-change

Y ou can now sync this project to your local machine by calling svnsync i ni t with the to and from
repositories.

$ svnsync init file:///tnp/test-svn http://progit-exanple.googl ecode. conf svn/
This sets up the properties to run the sync. Y ou can then clone the code by running

$ svnsync sync file:///tnp/test-svn

Committed revision 1

Copi ed properties for revision 1.
Committed revision 2.

171

Pro Git

Copi ed properties for revision 2.
Conmmitted revision 3.

Although this operation may take only afew minutes, if you try to copy the original repository to
another remote repository instead of alocal one, the process will take nearly an hour, even though
there are fewer than 100 commits. Subversion has to clone one revision at atime and then push it back
into another repository — it’ sridiculously inefficient, but it’s the only easy way to do this.

9.1.3. Getting Started

Now that you have a Subversion repository to which you have write access, you can go through
atypical workflow. You'll start withthegit svn cl one command, which imports an entire
Subversion repository into alocal Git repository. Remember that if you' re importing from areal
hosted Subversion repository, you should replacethefil e: ///t np/ t est - svn here with the URL of
your Subversion repository:

$ git svn clone file:///tnp/test-svn -T trunk -b branches -t tags
Initialized enpty Gt repository in /Users/schacon/projects/testsvnsync/svn/.git/
ri = b4e387hbc68740b5af 56c2a5f af 4003ae42bd135¢c ('t runk)

A md/ acx_pt hread. n4

A md/ st _hash. nm

r75 = d1957f 3b307922124eec6314el5bcda59e3d9610 (trunk)

Found possible branch point: file:///tnmp/test-svn/trunk =>\
file:///tnp/test-svn /branches/ ny-cal c-branch, 75

Found branch parent: (my-calc-branch) d1957f3b307922124eec6314el15bcda59e3d9610

Fol | owi ng parent with do_swi tch

Successfully foll owed parent

r76 = 8624824eccObadd73f 40ea2f 01f ce51894189b01 (my-cal c- branch)

Checked out HEAD

file:///tnp/test-svn/branches/ ny-cal c-branch r76

This runs the equivalent of two commands—git svn init followedbygit svn fetch—onthe
URL you provide. This can take awhile. The test project has only about 75 commits and the codebase
isn't that big, so it takes just afew minutes. However, Git has to check out each version, one a atime,
and commit it individually. For a project with hundreds or thousands of commits, this can literally
take hours or even days to finish.

The-T trunk -b branches -t tags parttells Git that this Subversion repository follows the basic
branching and tagging conventions. If you name your trunk, branches, or tags differently, you can
change these options. Because thisis so common, you can replace this entire part with - s, which
means standard layout and implies all those options. The following command is equivalent:

$ git svn clone file:///tnp/test-svn -s
At this point, you should have avalid Git repository that has imported your branches and tags:

$ git branch -a

* master
ny-cal c- branch
tags/2.0.2

tags/rel ease-2.0.1
tags/rel ease-2.0.2
tags/rel ease-2.0.2rcl
t runk

172

Pro Git

It'simportant to note how this tool namespaces your remote references differently. When you're
cloning anormal Git repository, you get al the branches on that remote server available locally as
something like or i gi n/ [branch] - namespaced by the name of the remote. However, git svn
assumes that you won'’t have multiple remotes and saves all its references to points on the remote
server with no namespacing. Y ou can use the Git plumbing command show-r ef to look at al your
full reference names:

$ git showref

1cbd4904d9982f 386d87f 88f celc24ad7c0f 0471 ref s/ heads/ master
aeelecc26318164f 355a883f 5d99cf f 0c852d3c4 ref s/ renotes/ ny-cal c- branch
03d09b0e2aad427e34a6d50f f 147128e76c0e0f 5 ref s/ renotes/tags/ 2.0.2
50d02cc0adc9da4319eeba0900430ba219b9c376 refs/renotes/tags/rel ease-2.0.1
4caaa711a50c77879a91b8b90380060f 672745ch refs/renotes/tags/rel ease-2.0.2
1c4chb508144c513ff1214c3488abe66dch92916f refs/renotes/tags/rel ease-2.0.2rcl
1cbhd4904d9982f 386d87f 88f celc24ad7c0f 0471 refs/renotes/trunk

A normal Git repository looks more like this:

$ git showref

83e38c7alaf 325a9722f 2f dc56b10188806d83al ref s/ heads/ mast er
3el5e38c198baac84223acf c6224bb8b99f f 2281 ref s/ renotes/ gi t server/ nast er
0a30dd3b0c795b80212ae723640d4e5d48cabdf f refs/renotes/origi n/ master
25812380387f dd55f 916652be4881c6f 11600d6f refs/renptes/origin/testing

Y ou have two remote servers. one named gi t ser ver with amast er branch; and another named
ori gi n with two branches, mast er andt est i ng.

Notice how in the example of remote references imported from gi t svn, tags are added as remote
branches, not asreal Git tags. Y our Subversion import looks like it has a remote named tags with
branches under it.

9.1.4. Committing Back to Subversion

Now that you have aworking repository, you can do some work on the project and push your commits
back upstream, using Git effectively asa SVN client. If you edit one of the files and commit it, you
have a commit that existsin Git locally that doesn’t exist on the Subversion server:

$ git commit -am ' Adding git-svn instructions to the READMVE
[master 97031e5] Adding git-svn instructions to the README
1 files changed, 1 insertions(+), 1 deletions(-)

Next, you need to push your change upstream. Notice how this changes the way you work with
Subversion — you can do several commits offline and then push them all at once to the Subversion
server. To push to a Subversion server, you runthegit svn dconmi t command:

$ git svn dcommit
Committing to file:///tnmp/test-svn/trunk ..

M README. t xt
Committed r79
M README. t xt

r79 = 938b1a547c2cc92033b74d32030e86468294a5¢c8 (trunk)
No changes between current HEAD and refs/renotes/trunk
Resetting to the latest refs/renotes/trunk

Thistakes all the commits you’ ve made on top of the Subversion server code, does a Subversion
commit for each, and then rewrites your local Git commit to include a unique identifier. Thisis

173

Pro Git

important because it means that all the SHA-1 checksums for your commits change. Partly for this
reason, working with Git-based remote versions of your projects concurrently with a Subversion
server isn't agood idea. If you look at the last commit, you can see the new gi t - svn-i d that was
added:

$git log -1

commit 938b1a547¢c2cc92033b74d32030e86468294a5¢c8

Aut hor: schacon <schacon@c93b258-373f-11de- be05-5f 7a86268029>
Dat e: Sat May 2 22:06:44 2009 +0000

Addi ng git-svn instructions to the README

git-svn-id: file:///tnp/test-svn/trunk@9 4c93b258-373f-11de- be05-5f 7a86268029

Notice that the SHA checksum that originally started with 97031e5 when you committed now begins
with 938b1a5. If you want to push to both a Git server and a Subversion server, you have to push
(dconmi t) to the Subversion server first, because that action changes your commit data.

9.1.5. Pulling in New Changes

If you' re working with other developers, then at some point one of you will push, and then the other
one will try to push a change that conflicts. That change will be rejected until you merge in their work.
Ingit svn,itlookslikethis:

$ git svn dcommit

Conmitting to file:///tnmp/test-svn/trunk ..

Merge conflict during commit: Your file or directory ' README. txt' is probably \
out -of -date: resource out of date; try updating at /Users/schacon/libexec/git-\
core/git-svn line 482

To resolve thissituation, you canrungit svn rebase, which pulls down any changes on the server
that you don’t have yet and rebases any work you have on top of what is on the server:

$ git svn rebase

M READMVE. t xt
r80 = ff829ab914e8775c7c025d741beb3d523ee30bc4 (trunk)
First, rew nding head to replay your work on top of it...
Applying: first user change

Now, all your work ison top of what is on the Subversion server, so you can successfully dconmi t :

$ git svn dcommit
Committing to file:///tnmp/test-svn/trunk ..

M README. t xt
Committed r81
M README. t xt

r8l = 456cbe6337abe49154db70106d1836bc1332deed (trunk)
No changes between current HEAD and refs/renotes/trunk
Resetting to the latest refs/renotes/trunk

I’ simportant to remember that unlike Git, which requires you to merge upstream work you don't yet
have locally before you can push, gi t svn makes you do that only if the changes conflict. If someone
el se pushes a change to one file and then you push a change to another file, your dconmi t will work
fine:

$ git svn dcommit

174

Pro Git

Committing to file:///tnmp/test-svn/trunk ..

M configure. ac

Committed r84
M aut ogen. sh

r83 = 8aab4a74d452f 82eeel0076ab2584c1f c424853b (trunk)
M configure. ac

r84 = cdbac939211cchl8aa744e581e46563af 5d962d0 (trunk)

W d2f 23b80f 67aaaalf 6f 5aaef 48f ce3263ac71a92 and refs/renotes/trunk differ, \
usi ng rebase:

: 100755 100755 ef a5a59965f bbb5b2b0a12890f 1b351bb5493¢c18 \
015e4c98c482f 0f a71e4d5434338014530b37f a6 M aut ogen. sh

First, rew nding head to replay your work on top of it...

Not hi ng to do.

Thisisimportant to remember, because the outcome is a project state that didn’t exist on either of
your computers when you pushed. If the changes are incompatible but don’t conflict, you may get
issues that are difficult to diagnose. Thisis different than using a Git server — in Git, you can fully
test the state on your client system before publishing it, whereasin SVN, you can’t ever be certain that
the states immediately before commit and after commit are identical.

Y ou should a'so run this command to pull in changes from the Subversion server, even if you're not
ready to commit yourself. Youcanrungit svn fetch tograbthenew data, butgit svn rebase
does the fetch and then updates your local commits.

$ git svn rebase

M gener at e_descri ptor_proto. sh
r82 = bdl6df 9173e424c6f 52c337ab6ef a7f 7643282f 1 (trunk)
First, rewinding head to replay your work on top of it...
Fast-forwarded master to refs/renotes/trunk

Running gi t svn rebase every oncein awhile makes sure your code is aways up to date. Y ou need
to be sure your working directory is clean when you run this, though. If you have local changes, you
must either stash your work or temporarily commit it beforerunninggit svn rebase — otherwise,
the command will stop if it sees that the rebase will result in a merge conflict.

9.1.6. Git Branching Issues

When you’ ve become comfortable with a Git workflow, you'll likely create topic branches, do work
on them, and then merge them in. If you’ re pushing to a Subversion server via git svn, you may want
to rebase your work onto a single branch each time instead of merging branches together. The reason
to prefer rebasing is that Subversion has alinear history and doesn’'t deal with mergeslike Git does, so
git svn follows only the first parent when converting the snapshots into Subversion commits.

Suppose your history looks like the following: you created an exper i ment branch, did two commits,
and then merged them back into mast er . When you dconmi t , you see output like this:

$ git svn dcommit
Committing to file:///tnp/test-svn/trunk ..

M CHANGES. t xt
Committed r85
M CHANGES. t xt

r85 = 4bf ebeec434d156¢c36f 2bcd18f 4e3d97dc3269a2 (trunk)
No changes between current HEAD and refs/renotes/trunk
Resetting to the latest refs/renptes/trunk

COPYING txt: locally nodified

175

Pro Git

I NSTALL. txt: locally nodified

M COPYI NG. t xt

M | NSTALL. t xt
Conmtted r86

M | NSTALL. t xt

M COPYI NG. t xt

r86 = 2647f 6b86ccf caad4ec58c520e369ec81f 7¢283c (trunk)
No changes between current HEAD and refs/renotes/trunk
Resetting to the latest refs/renotes/trunk

Running dconmi t on abranch with merged history works fine, except that when you look at your
Git project history, it hasn't rewritten either of the commits you made on the experi nent branch —
instead, all those changes appear in the SVN version of the single merge commit.

When someone el se clones that work, all they see is the merge commit with all the work squashed into
it; they don’t see the commit data about where it came from or when it was committed.

9.1.7. Subversion Branching

Branching in Subversion isn’t the same as branching in Git; if you can avoid using it much, that’s
probably best. However, you can create and commit to branches in Subversion using git svn.

Creating aNew SVN Branch

To create anew branch in Subversion, yourungit svn branch [branchnane] :

$ git svn branch opera

Copying file:///tnp/test-svn/trunk at r87 to file:///tnp/test-svn/branches/opera..

Found possible branch point: file:///tnmp/test-svn/trunk =>\
file:///tnp/test-svn/branches/opera, 87

Found branch parent: (opera) 1f6bfed471083cbcal06ac8d4176f7ad4de0d62e5f

Fol | owi ng parent with do_sw tch

Successful ly foll owed parent

r89 = 9b6f e0b90c5c9adf 9165f 700897518dbc54a7cbf (opera)

This does the equivalent of thesvn copy trunk branches/ opera command in Subversion and
operates on the Subversion server. It'simportant to note that it doesn’t check you out into that branch;
if you commit at this point, that commit will go tot r unk on the server, not oper a.

9.1.8. Switching Active Branches

Git figures out what branch your dcommits go to by looking for the tip of any of your Subversion
branches in your history — you should have only one, and it should be the last one with agi t - svn-
i d inyour current branch history.

If you want to work on more than one branch simultaneously, you can set up local branches to
dconmi t to specific Subversion branches by starting them at the imported Subversion commit for that
branch. If you want an oper a branch that you can work on separately, you can run

$ git branch opera renotes/opera

Now, if you want to merge your oper a branch into t r unk (your mast er branch), you can do so with a
normal gi t mer ge. But you need to provide a descriptive commit message (via- m), or the merge will
say "Merge branch opera’ instead of something useful.

176

Pro Git

Remember that although you're using gi t ner ge to do this operation, and the merge likely will be
much easier than it would be in Subversion (because Git will automatically detect the appropriate
merge base for you), thisisn’t anormal Git merge commit. Y ou have to push this data back to a
Subversion server that can’t handle a commit that tracks more than one parent; so, after you push it
up, it will look like a single commit that squashed in al the work of another branch under asingle
commit. After you merge one branch into another, you can’t easily go back and continue working on
that branch, as you normally can in Git. The dcomi t command that you run erases any information
that says what branch was merged in, so subsequent merge-base calculations will be wrong — the
dcommit makesyour gi t ner ge result look likeyourangit nerge --squash. Unfortunately,
there’ s no good way to avoid this situation — Subversion can’'t store this information, so you'll
always be crippled by its limitations while you' re using it as your server. To avoid issues, you should
delete the local branch (in this case, oper a) after you merge it into trunk.

9.1.9. Subversion Commands

Thegit svn toolset provides anumber of commands to help ease the transition to Git by providing
some functionality that’s similar to what you had in Subversion. Here are afew commands that give
you what Subversion used to.

SVN Style History

If you' re used to Subversion and want to see your history in SVN output style, you canrungit svn
| og to view your commit history in SVN formatting:

$ git svn log

r86 | schacon | 2009-05-02 16:00:21 -0700 (Sat, 02 May 2009) | 2 lines

Mer ge branch ' experi nent

r85 | schacon | 2009-05-02 16:00:09 -0700 (Sat, 02 May 2009) | 2 lines

updat ed t he changel og

Y ou should know two important things about gi t svn | og. First, it works offline, unlike the real svn
| og command, which asks the Subversion server for the data. Second, it only shows you commits that
have been committed up to the Subversion server. Local Git commits that you haven't dcommited
don’t show up; neither do commits that people have made to the Subversion server in the meantime.
It's more like the last known state of the commits on the Subversion server.

SVN Annotation

Much asthegit svn | og command simulatesthesvn | og command offline, you can get the
equivalent of svn annot at e by runninggit svn bl ane [FI LE] . The output looks like this:

$ git svn bl ame README. t xt
2 tenporal Protocol Buffers - Google's data interchange format
2 t enmporal Copyright 2008 Google Inc.
2 tenporal http://code. googl e. conl api s/ pr ot ocol buf fers/

177

Pro Git

2 t errpor al
22 temporal C++ Installation - Unix
22 t empor al =========—=—=——mmmmm=——

2 t errpor al
79 schacon Committing in git-svn.
78 schacon

2 temporal To build and install the C++ Protocol Buffer runtime and the Protoco
2 temporal Buffer conpiler (protoc) execute the follow ng:
2 t errpor al

Again, it doesn’t show commits that you did locally in Git or that have been pushed to Subversionin
the meantime.

SVN Server Information

Y ou can aso get the same sort of information that svn i nf o givesyou by runninggit svn i nfo:

$ git svn info

Pat h:

URL: https://schacon-test. googl ecode. coni svn/trunk
Repository Root: https://schacon-test. googl ecode. com svn
Repository UUI D: 4c93b258-373f - 11de- be05- 5f 7a86268029
Revi si on: 87

Node Kind: directory

Schedul e: nor mal

Last Changed Author: schacon

Last Changed Rev: 87

Last Changed Date: 2009-05-02 16:07:37 -0700 (Sat, 02 May 2009)

Thisislikebl ame and | og in that it runs offline and is up to date only as of the last time you
communicated with the Subversion server.

Ignoring What Subversion Ignores

If you clone a Subversion repository that hassvn: i gnor e properties set anywhere, you'll likely want
to set corresponding . gi t i gnor e files so you don’'t accidentally commit files that you shouldn’t.
gi t svn hastwo commands to help with thisissue. Thefirstisgit svn create-ignore, which
automatically creates corresponding . gi ti gnor e filesfor you so your next commit can include them.

The second commandisgit svn showi gnore, which printsto stdout the lines you need to put in a
. gi tignore file soyou can redirect the output into your project excludefile:

$ git svn showignore > .git/info/exclude

That way, you don't litter the project with . gi ti gnor e files. Thisisagood option if you're the only
Git user on a Subversion team, and your teammates don’t want . gi t i gnor e filesin the project.

9.1.10. Git-Svn Summary

Thegit svn toolsare useful if you're stuck with a Subversion server for now or are otherwisein

a development environment that necessitates running a Subversion server. Y ou should consider it
crippled Git, however, or you'll hit issues in tranglation that may confuse you and your collaborators.
To stay out of trouble, try to follow these guidelines:

» Keep alinear Git history that doesn’t contain merge commits made by git ner ge. Rebase any
work you do outside of your mainline branch back onto it; don’t mergeit in.

178

Pro Git

» Don't set up and collaborate on a separate Git server. Possibly have one to speed up clones for new
developers, but don’t push anything to it that doesn’t have agi t - svn-i d entry. You may even want
to add apr e- r ecei ve hook that checks each commit message for agi t - svn-i d and rejects pushes
that contain commits without it.

If you follow those guidelines, working with a Subversion server can be more bearable. However, if
it's possible to move to areal Git server, doing so can gain your team alot more.

9.2. Migrating to Git

If you have an existing codebase in another VCS but you’ ve decided to start using Git, you must
migrate your project one way or another. This section goes over some importers that are included with
Git for common systems and then demonstrates how to develop your own custom importer.

9.2.1. Importing

You'll learn how to import data from two of the bigger professionally used SCM systems —
Subversion and Perforce — both because they make up the majority of users| hear of who are
currently switching, and because high-quality tools for both systems are distributed with Git.

9.2.2. Subversion

If you read the previous section about using gi t svn, you can easily use those instructionsto gi t
svn cl one arepository; then, stop using the Subversion server, push to anew Git server, and start
using that. If you want the history, you can accomplish that as quickly as you can pull the data out of
the Subversion server (which may take awhile).

However, the import isn't perfect; and because it will take so long, you may aswell do it right.

The first problem is the author information. In Subversion, each person committing has a user on

the system who is recorded in the commit information. The examples in the previous section show
schacon in some places, such asthe bl ane output and thegit svn | og. If you want to map thisto
better Git author data, you need a mapping from the Subversion users to the Git authors. Create afile
caledusers. txt that hasthis mapping in aformat like this:

schacon = Scott Chacon <schacon@eenuil . conp
sel se = Sonmeo Nel se <sel se@eemail . conp

To get alist of the author names that SVN uses, you can run this:
$ svn log --xml | grep author | sort -u | perl -pe 's/.>(.?2)<./$1 = /'

That gives you the log output in XML format — you can look for the authors, create a unique list,

and then strip out the XML. (Obviously this only works on a machine with gr ep, sort, and per |
installed.) Then, redirect that output into your users.txt file so you can add the equivalent Git user data
next to each entry.

You can providethisfiletogit svn to help it map the author data more accurately. Y ou can also tell
git svn not to include the metadata that Subversion normally imports, by passing - - no- net adat a to
thecl one ori ni t command. This makesyour i mport command look like this:

$ git-svn clone http://my-project.googl ecode. conl svn/ \
--authors-file=users.txt --no-netadata -s my_project

179

Pro Git

Now you should have a nicer Subversion import in your ny_pr oj ect directory. Instead of commits
that ook like this

commit 37ef a680e8473b615de980f a935944215428a35a
Aut hor: schacon <schacon@c93b258-373f-11de- be05-5f 7a86268029>
Dat e: Sun May 3 00:12:22 2009 +0000

fixed install - go to trunk

git-svn-id: https://ny-project.googl ecode. conl svn/trunk@4 4c93b258-373f - 11de-
be05- 5f 7a86268029
they |l ook like this:

comit 03a8785f 44c8ea5cdb0e8834b7c8e6c469be2f f 2
Aut hor: Scott Chacon <schacon@eenuil . conp
Dat e: Sun May 3 00: 12:22 2009 +0000

fixed install - go to trunk
Not only does the Author field look a lot better, but the gi t - svn-i d isno longer there, either.

Y ou need to do a bit of post -i nport cleanup. For one thing, you should clean up the weird references
that gi t svn set up. First you'll move the tags so they’ re actual tags rather than strange remote
branches, and then you’ Il move the rest of the branches so they’re local.

To move the tags to be proper Git tags, run

$cp -Rf .git/refs/renotes/tags/* .git/refs/tags/
$rm-Rf .git/refs/renotes/tags

This takes the references that were remote branches that started with t ag/ and makes them real
(lightweight) tags.

Next, move the rest of the references under r ef s/ r enot es to be local branches:

$cp -Rf .git/refs/renptes/* .git/refs/heads/
$rm-Rf .git/refs/renotes

Now all the old branches arereal Git branches and all the old tags are real Git tags. The last thing to
do isadd your new Git server as aremote and push to it. Here is an example of adding your server asa
remote:

$ git renote add origin git@ry-git-server:nyrepository.git
Because you want al your branches and tags to go up, you can now run this:
$ git push origin --al

All your branches and tags should be on your new Git server in anice, clean import.

9.2.3. Perforce

The next system you'll look at importing from is Perforce. A Perforce importer is aso distributed with
Git, but only in the cont ri b section of the source code — it isn’t available by default likegi t svn.
To run it, you must get the Git source code, which you can download from git.kernel.org:

$ git clone git://git.kernel.org/pub/scmgit/git.git
$ cd git/contrib/fast-inport

180

Pro Git

Inthisfast -i nport directory, you should find an executable Python script named gi t - p4. Y ou must
have Python and the p4 tool installed on your machine for thisimport to work. For example, you'll
import the Jam project from the Perforce Public Depot. To set up your client, you must export the
PAPORT environment variable to point to the Perforce depot:

$ export PA4PORT=public. perforce.com 1666

Runthegit-p4 cl one command to import the Jam project from the Perforce server, supplying the
depot and project path and the path into which you want to import the project:

$ git-p4 clone //public/jam src@l| /opt/p4inmport

I mporting from//public/jamsrc@ll into /opt/pdinport
Reinitialized existing Gt repository in /opt/p4inport/.git/
| mport destination: refs/renotes/pd/ master

| mporting revision 4409 (100%

If you go to the/ opt / p4i mpor t directory and rungit | og, you can see your imported work:

$git log -2

commt 1fd4ec126171790ef d2db83548b85b1bbbc07dc2
Aut hor: Perforce staff <support @erforce.conp
Dat e: Thu Aug 19 10: 18: 45 2004 -0800

Drop 'rc3' noniker of jam2.5. Folded rc2 and rc3 RELNOTES into
the main part of the docunment. Built new tar/zip balls.

Only 16 nonths | ater.

[git-p4: depot-paths = "//public/jam src/": change 4409]

conmmi t ca8870db541a23ed867f 38847eda65bf 4363371d
Aut hor: Richard Gei ger <rng@erforce.conp
Dat e: Tue Apr 22 20:51:34 2003 -0800

Updat e derived jangramc

[git-p4: depot-paths = "//public/jam src/": change = 3108]

Y ou can seethegi t - p4 identifier in each commit. It’s fine to keep that identifier there, in case you
need to reference the Perforce change number later. However, if you'd like to remove the identifier,
now isthe timeto do so — before you start doing work on the new repository. Y ou can usegi t
filter-branch toremovetheidentifier strings en masse:

$ git filter-branch --nmsg-filter *
sed -e "/M[git-p4:/d"

Rewite 1fd4ec126171790ef d2db83548b85blbbbc07dc2 (123/123)
Ref 'refs/heads/ master' was rewitten

If yourungit | og,you can seethat all the SHA-1 checksums for the commits have changed, but the
gi t - p4 strings are no longer in the commit messages:

$ git log -2

comm t 10a16d60cffcaldd454a15c6164378f 4082bc5b0
Aut hor: Perforce staff <support @erforce.conp
Dat e: Thu Aug 19 10:18: 45 2004 -0800

Drop 'rc3' noniker of jam2.5. Folded rc2 and rc3 RELNOTES into
the main part of the docunment. Built new tar/zip balls.

181

Pro Git

Only 16 nonths | ater.

conmit 2b6c6db311dd76c34c66eclc40a49405e6b527b2
Aut hor: Richard Gei ger <rng@erforce.conp
Dat e: Tue Apr 22 20:51:34 2003 -0800

Updat e derived jangramc

Y our import is ready to push up to your new Git server.

9.2.4. A Custom Importer

If your system isn’'t Subversion or Perforce, you should look for an importer online — quality
importers are available for CVS, Clear Case, Visua Source Safe, even adirectory of archives. If none
of these tools works for you, you have ararer tool, or you otherwise need a more custom importing
process, you should use gi t fast-i nport . Thiscommand reads simple instructions from stdin

to write specific Git data. It's much easier to create Git objects this way than to run the raw Git
commands or try to write the raw objects (see Chapter 9 for more information). Thisway, you can
write an import script that reads the necessary information out of the system you’ re importing from
and prints straightforward instructions to stdout. Y ou can then run this program and pipe its output
throughgit fast-inport.

To quickly demonstrate, you'll write a simple importer. Suppose you work in current, you back up
your project by occasionally copying the directory into atime-stamped back_YYYY_Mv_DD backup
directory, and you want to import thisinto Git. Y our directory structure looks like this:

$ Is /opt/inport_from
back 2009 01 02
back_2009_01_04

back 2009 01 14
back_2009_02_03
current

In order to import a Git directory, you need to review how Git stores its data. As you may remember,
Git isfundamentally alinked list of commit objects that point to a snapshot of content. All you have
todoistel f ast - i nport what the content snapshots are, what commit data points to them, and the
order they go in. Your strategy will be to go through the snapshots one at a time and create commits
with the contents of each directory, linking each commit back to the previous one.

Asyou did in the"An Example Git Enforced Policy" section of Chapter 7, we'll write thisin Ruby,
because it’swhat | generally work with and it tends to be easy to read. Y ou can write this example
pretty easily in anything you' re familiar with — it just needs to print the appropriate information

to stdout. And, if you are running on Windows, this means you’ll need to take special care to not
introduce carriage returns at the end your lines — git fast-import is very particular about just wanting
line feeds (LF) not the carriage return line feeds (CRLF) that Windows uses.

To begin, you' Il change into the target directory and identify every subdirectory, each of whichis
a snapshot that you want to import as a commit. You'll change into each subdirectory and print the
commands necessary to export it. Y our basic main loop looks like this:

last_nmark = nil
loop through the directories

Dir.chdir(ARGV[0]) do
Dir.glob("*").each do |dir

182

Pro Git

next if File.file?(dir)

move into the target directory
Dir.chdir(dir) do
last_nmark = print_export(dir, |ast_mark)
end
end
end

Yourunprint_export inside each directory, which takes the manifest and mark of the previous
snapshot and returns the manifest and mark of this one; that way, you can link them properly. "Mark"
isthef ast -i nport term for an identifier you give to acommit; as you create commits, you give
each one amark that you can useto link to it from other commits. So, the first thing to do in your
print _export method is generate amark from the directory name:

mark = convert _dir_to_mark(dir)

You'll do this by creating an array of directories and using the index value as the mark, because a
mark must be an integer. Y our method looks like this:

$marks = []
def convert_dir_to_mark(dir)
if !'$marks.include?(dir)
$marks << dir
end
($marks. i ndex(dir) + 1).to_s
end

Now that you have an integer representation of your commit, you need a date for the commit
metadata. Because the date is expressed in the name of the directory, you' |l parse it out. The next line
inyour print_export fileis

date = convert_dir_to_date(dir)
whereconvert _dir_to_date isdefined as

def convert_dir_to_date(dir)

if dir == "'current’
return Time.now().to_i
el se
dir = dir.gsub('back_', "")

(year, nonth, day) =dir.split('_")
return Tinme.local (year, nonth, day).to_i
end
end

That returns an integer value for the date of each directory. The last piece of meta-information you
need for each commit is the committer data, which you hardcode in a global variable:

$author = 'Scott Chacon <schacon@xanpl e. cons'

Now you're ready to begin printing out the commit datafor your importer. The initial information
states that you’ re defining a commit object and what branch it’s on, followed by the mark you’ve
generated, the committer information and commit message, and then the previous commit, if any. The
code looks like this:

print the inport information
puts 'conmmt refs/heads/ nmaster'’

183

Pro Git

puts 'mark :' + mark

puts "conmitter #{$author} #{date} -0700"
export_data('inported from' + dir)

puts 'from:' + last_mark if last_mark

Y ou hardcode the time zone (-0700) because doing so is easy. If you're importing from another
system, you must specify the time zone as an offset. The commit message must be expressed in a
special format:

data (size)\n(contents)

The format consists of the word data, the size of the data to be read, a newline, and finally the data.
Because you need to use the same format to specify the file contents later, you create a helper method,
export _data:

def export _data(string)
print "data #{string.size}\n#{string}"
end

All that’ s left isto specify the file contents for each snapshot. Thisis easy, because you have each one
in adirectory — you can print out the del et eal | command followed by the contents of each filein
the directory. Git will then record each snapshot appropriately:

puts 'del eteall

Dir.glob("**/*").each do |file
next if 'File.file?(file)
inline_data(file)

end

Note: Because many systems think of their revisions as changes from one commit to another, fast-
import can also take commands with each commit to specify which files have been added, removed,
or modified and what the new contents are. Y ou could cal culate the differences between snapshots and
provide only this data, but doing so is more complex — you may as well give Git al the data and let

it figureit out. If thisis better suited to your data, check the f ast - i nport man page for details about
how to provide your datain this manner.

The format for listing the new file contents or specifying a modified file with the new contentsis as
follows:

M 644 inline path/to/file
data (size)
(file contents)

Here, 644 isthe mode (if you have executable files, you need to detect and specify 755 instead), and
inline saysyou'll list the contents immediately after thisline. Your i nl i ne_dat a method looks like
this:

def inline_data(file, code ="M, node = '644")
content = File.read(file)
puts "#{code} #{npbde} inline #{file}"
export_data(content)

end

Y ou reuse the expor t _dat a method you defined earlier, because it’ s the same as the way you
specified your commit message data.

The last thing you need to do is to return the current mark so it can be passed to the next iteration:

184

Pro Git

return mark
Note

If you are running on Windows you'll need to make sure that you add one extra step. As
metioned before, Windows uses CRLF for new line characters while git fast-import expects
only LF. To get around this problem and make git fast-import happy, you need to tell ruby to
use LF instead of CRLF:

$st dout . bi nnode

That'sit. If you run this script, you' Il get content that looks something like this:

$ ruby inmport.rb /opt/inport_from
conm t refs/heads/ master

mark :1

comrtter Scott Chacon <schacon@eemail.com> 1230883200 -0700
data 29

i mported from back_2009_01_ 02del et eal
M 644 inline file.rb

data 12

version two

conm t refs/heads/ master

mark : 2

committer Scott Chacon <schacon@eemail.com> 1231056000 - 0700
data 29

i nported from back_2009_01 04from:1
del et eal

M 644 inline file.rb

data 14

version three

M 644 inline new.rb

data 16

new versi on one

(...)

To run the importer, pipe this output through gi t f ast-i nport whilein the Git directory you want to
import into. You can create anew directory and thenrungi t init initfor astarting point, and then
run your script:

$git init

Initialized enpty Gt repository in /opt/inport_to/.git/

$ ruby inmport.rb /opt/inmport_from| git fast-inport

git-fast-inport statistics:

Al'loc' d objects: 5000
Total objects: 18 (1 duplicates)
bl obs : 7 (1 duplicates 0 del tas)
trees 6 (0 duplicates 1 deltas)
conmts: 5 (0 duplicates 0 del tas)
t ags 0 (0 duplicates 0 del tas)
Total branches: 1 (1 | oads)
mar ks: 1024 (5 uni que)
at ons: 3
Menory total: 2255 Ki B
pool s: 2098 Ki B
obj ect s: 156 Ki B

Pro Git

pack_report: getpagesize() = 4096
pack_report: core.packedG t W ndowSi ze = 33554432
pack_report: core.packedGtLimt = 268435456
pack_report: pack_used_ctr = 9
pack_report: pack_nmap_calls = 5
pack_report: pack_open_wi ndows = 1/ 1
pack_report: pack_mapped = 1356 / 1356

Asyou can see, when it completes successfully, it gives you a bunch of statistics about what it
accomplished. In this case, you imported 18 objects total for 5 commitsinto 1 branch. Now, you can
rungit | og to seeyour new history:

$ git log -2

comit 10bfe7d22cel5ee25b60a824c8982157ca593d41
Aut hor: Scott Chacon <schacon@xanpl e. conp

Dat e: Sun May 3 12:57:39 2009 -0700

i mported from current

commt 7e519590de754d079dd73b44d695a42c9d2df 452
Aut hor: Scott Chacon <schacon@xanpl e. conp
Dat e: Tue Feb 3 01:00: 00 2009 -0700

i mported from back 2009 02 03

There you go — anice, clean Git repository. It’s important to note that nothing is checked out — you
don’'t have any filesin your working directory at first. To get them, you must reset your branch to
where mast er iSnow:

$1s

$ git reset --hard naster

HEAD i s now at 10bfe7d inmported from current
$1s

file.rb lib

Y ou can do alot more with the f ast - i mport tool — handle different modes, binary data, multiple
branches and merging, tags, progress indicators, and more. A number of examples of more complex
scenarios are availableinthecont ri b/ f ast - i npor t directory of the Git source code; one of the
better onesisthegit - p4 script | just covered.

9.3. Summary

Y ou should feel comfortable using Git with Subversion or importing nearly any existing repository
into anew Git one without losing data. The next chapter will cover the raw internals of Git so you can
craft every single byte, if need be.

10. Git Internals

Y ou may have skipped to this chapter from a previous chapter, or you may have gotten here after
reading the rest of the book — in either case, thisis where you' Il go over the inner workings and
implementation of Git. | found that learning this information was fundamentally important to
understanding how useful and powerful Git is, but others have argued to me that it can be confusing
and unnecessarily complex for beginners. Thus, I’ ve made this discussion the last chapter in the book
so you could read it early or later in your learning process. | leave it up to you to decide.

186

Pro Git

Now that you're here, let’ s get started. First, if it isn’t yet clear, Git is fundamentally a content-
addressable filesystem with a VCS user interface written on top of it. You'll learn more about what
this meansin abit.

In the early days of Git (mostly pre 1.5), the user interface was much more complex because it
emphasized this filesystem rather than a polished VCS. In the last few years, the Ul has been refined
until it’s as clean and easy to use as any system out there; but often, the stereotype lingers about the
early Git Ul that was complex and difficult to learn.

The content-addressabl e filesystem layer is amazingly cool, so I'll cover that first in this chapter;
then, you'll learn about the transport mechanisms and the repository maintenance tasks that you may
eventually have to deal with.

10.1. Plumbing and Porcelain

This book covers how to use Git with 30 or so verbs such as checkout , br anch, r enot e, and so on.
But because Git was initially atoolkit for a VCS rather than afull user-friendly VCS, it has a bunch
of verbs that do low-level work and were designed to be chained together UNIX style or called from
scripts. These commands are generally referred to as "plumbing” commands, and the more user-
friendly commands are called "porcelain” commands.

The book’ sfirst eight chapters deal almost exclusively with porcelain commands. But in this chapter,
you'll be dealing mostly with the lower-level plumbing commands, because they give you access to
the inner workings of Git and help demonstrate how and why Git does what it does. These commands
aren’t meant to be used manually on the command line, but rather to be used as building blocks for
new tools and custom scripts.

Whenyourungit init inanew or existing directory, Git createsthe . gi t directory, which iswhere
almost everything that Git stores and manipulatesis located. If you want to back up or clone your
repository, copying this single directory elsewhere gives you nearly everything you need. This entire
chapter basically deals with the stuff in this directory. Here' swhat it looks like:

$1Is

HEAD

br anches/
config
description
hooks/

i ndex

i nfol

obj ect s/
refs/

Y ou may see some other filesin there, but thisisafreshgit init repository — it’swhat you see

by default. The br anches directory isn’'t used by newer Git versions, and thedescri pti on fileis
only used by the GitWeb program, so don’t worry about those. The conf i g file contains your project-
specific configuration options, and the i nf o directory keeps aglobal exclude file for ignored patterns
that you don’t want to track in a.gitignore file. The hooks directory contains your client- or server-
side hook scripts, which are discussed in detail in Chapter 6.

This leaves four important entries: the HEAD and i ndex files and the obj ect s and r ef s directories.
These are the core parts of Git. The obj ect s directory stores all the content for your database, the

187

Pro Git

ref s directory stores pointersinto commit objects in that data (branches), the HEAD file pointsto
the branch you currently have checked out, and thei ndex file iswhere Git stores your staging area
information. You’ll now look at each of these sectionsin detail to see how Git operates.

10.2. Git Objects

Git is a content-addressabl e filesystem. Great. What does that mean? It means that at the core of Git
isasimple key-value data store. Y ou can insert any kind of content into it, and it will give you back
akey that you can use to retrieve the content again at any time. To demonstrate, you can use the
plumbing command hash- obj ect , which takes some data, storesit inyour . gi t directory, and gives
you back the key the datais stored as. First, you initialize a new Git repository and verify that thereis
nothing in the obj ect s directory:

$ nkdir test

$ cd test

$git init

Initialized enpty Gt repository in /tnp/test/.git/
$ find .git/objects

.git/objects

.git/objects/info

. gi t/ objects/pack

$ find .git/objects -type f

$

Git hasinitialized the obj ect s directory and created pack and i nf o subdirectoriesin it, but there are
no regular files. Now, store some text in your Git database:

$ echo 'test content' | git hash-object -w --stdin
d670460b4b4aece5915caf 5¢68d12f 560a9f e3e4

The - wtellshash- obj ect to store the object; otherwise, the command simply tells you what the key
would be. - - st di n tells the command to read the content from stdin; if you don’t specify this, hash-
obj ect expects the path to afile. The output from the command is a 40-character checksum hash.
Thisisthe SHA-1 hash — a checksum of the content you' re storing plus a header, which you'll learn
about in a bit. Now you can see how Git has stored your data:

$ find .git/objects -type f
.git/ objects/d6/ 70460b4dbdaece5915caf 5¢68d12f 560a9f e3ed

You can see afilein the obj ect s directory. Thisis how Git stores the content initially — asa
single file per piece of content, named with the SHA-1 checksum of the content and its header. The
subdirectory is named with the first 2 characters of the SHA, and the filename is the remaining 38
characters.

Y ou can pull the content back out of Git with thecat - fi | e command. Thiscommand is sort of a
Swiss army knife for inspecting Git objects. Passing - p to it instructsthe cat - fi | e command to
figure out the type of content and display it nicely for you:

$ git cat-file -p d670460b4b4aece5915caf 5¢68d12f 560a9f e3e4
test content

Now, you can add content to Git and pull it back out again. Y ou can also do this with content in files.
For example, you can do some simple version control on afile. First, create a new file and save its
contents in your database:

188

Pro Git

$ echo 'version 1' > test.txt
$ git hash-object -wtest.txt
83baae61804e65cc73a7201a7252750c76066a30

Then, write some new content to the file, and save it again:

$ echo 'version 2' > test.txt
$ git hash-object -w test.txt
1f 7a7a472abf 3dd9643f d615f 6da379c4ach3e3a

Y our database contains the two new versions of the file as well as the first content you stored there:

$ find .git/objects -type f

.gi t/objects/1f/ 7a7a472abf 3dd9643f d615f 6da379c4acbh3e3a
. gi t/objects/ 83/ baae61804e65cc73a7201a7252750c76066a30
. gi t/ objects/d6/ 70460b4db4aece5915caf 5¢68d12f 560a9f e3e4

Now you can revert the file back to the first version

$ git cat-file -p 83baae61804e65cc73a7201a7252750c76066a30 > test.txt
$ cat test.txt
version 1

or the second version:

$ git cat-file -p 1f 7a7a472abf 3dd9643f d615f 6da379c4acbh3e3a > test.t xt
$ cat test.txt
version 2

But remembering the SHA-1 key for each version of your fileisn’t practical; plus, you aren’t storing
the filename in your system — just the content. This object typeis called ablob. You can have Git tell
you the object type of any object in Git, given its SHA-1 key, withcat-file -t:

$ git cat-file -t 1f 7a7a472abf 3dd9643f d615f 6da379c4acb3e3a
bl ob

10.2.1. Tree Objects

The next type you'll look at is the tree object, which solves the problem of storing the filename

and also allows you to store a group of files together. Git stores content in amanner similar to a
UNIX filesystem, but abit ssimplified. All the content is stored as tree and blob objects, with trees
corresponding to UNIX directory entries and blobs corresponding more or less to inodes or file
contents. A single tree object contains one or more tree entries, each of which containsa SHA-1
pointer to ablob or subtree with its associated mode, type, and filename. For example, the most recent
tree in the ssimplegit project may look something like this:

$ git cat-file -p master™{tree}

100644 bl ob a906cb2a4a904a152e80877d4088654daad0c859 README
100644 bl ob 8f94139338f 9404f 26296bef a88755f c2598c289 Rakefil e
040000 tree 99f 1a6d12cb4b6f 19c8655f ca46c3ecf 317074e0 lib

Themast er *{tree} syntax specifiesthe tree object that is pointed to by the last commit on your
mast er branch. Notice that thel i b subdirectory isn’t ablob but a pointer to another tree:

$ git cat-file -p 99f 1a6d12chb4b6f 19c¢8655f cad6c3ecf 317074e0
100644 bl ob 47c6340d6459e05787f 644c2447d2595f 5d3a54b sinmplegit.rb

189

Pro Git

Conceptualy, the datathat Git is storing is something like Figure 9-1.

tree

l
README Rakefile lib

g v S

blob blob tree

|
simplegit.rb

v

blob

Y ou can create your own tree. Git normally creates a tree by taking the state of your staging area or
index and writing a tree object from it. S0, to create atree object, you first have to set up an index

by staging somefiles. To create an index with asingle entry — the first version of your text.txt file
— you can use the plumbing command updat e- i ndex. Y ou use this command to artificially add the
earlier version of the test.txt file to anew staging area. You must passit the - - add option because
the file doesn't yet exist in your staging area (you don’t even have a staging area set up yet) and - -
cachei nf o because the file you're adding isn’t in your directory but isin your database. Then, you
specify the mode, SHA-1, and filename:

$ git update-index --add --cacheinfo 100644 \
83baae61804e65cc73a7201a7252750c76066a30 test . t xt

In this case, you' re specifying a mode of 100644, which meansit’s anormal file. Other options are
100755, which meansit’s an executabl e file; and 120000, which specifies a symbolic link. The mode
istaken from normal UNIX modes but is much less flexible — these three modes are the only ones
that are valid for files (blobs) in Git (although other modes are used for directories and submodules).

Now, you can usethewr i t e-t r ee command to write the staging area out to a tree object. No - w
option isneeded — callingwri t e- t r ee automatically creates atree object from the state of the index
if that tree doesn’t yet exist:

$git wite-tree

d8329f c1cc938780f f dd9f 94e0d364e0ea74f 579

$ git cat-file -p d8329f c1lcc938780f f ddof 94e0d364e0ea74f 579

100644 bl ob 83baae61804e65cc73a7201a7252750c76066a30 test.txt

Y ou can also verify that thisis atree object:

$ git cat-file -t d8329fcl1cc938780f f dd9f 94e0d364e0ea74f 579
tree

You'll now create a new tree with the second version of test.txt and a new file as well:

$ echo 'new file' > new txt
$ git update-index test.txt
$ git update-index --add new. txt

Y our staging area now has the new version of test.txt as well as the new file new.txt. Write out that
tree (recording the state of the staging area or index to atree object) and see what it looks like:

190

Pro Git

$ git wite-tree

0155eb4229851634a0f 03eb265b69f 5a2d56f 341

$ git cat-file -p 0155eb4229851634a0f 03eb265b69f 5a2d56f 341

100644 bl ob fa49b077972391ad58037050f 2a75f 74e3671e92 new. t xt
100644 bl ob 1f 7a7a472abf 3dd9643f d615f 6da379c4ach3e3a test.txt

Notice that this tree has both file entries and also that the test.txt SHA isthe "version 2" SHA from
earlier (1f 7a7a). Just for fun, you'll add the first tree as a subdirectory into this one. Y ou can read
treesinto your staging area by calling r ead- t r ee. In this case, you can read an existing tree into your
staging area as a subtree by using the - - pref i x optiontor ead-tr ee:

$ git read-tree --prefix=bak d8329fcl1cc938780f f dd9f 94e0d364e0ea74f 579
$git wite-tree

3c4e9cd789d88d8d89c1073707c3585e41b0e614

$ git cat-file -p 3c4e9cd789d88d8d89c1073707c3585e41b0e614

040000 tree d8329f c1cc938780f f dd9f 94e0d364e0ea74f 579 bak
100644 bl ob fa49b077972391ad58037050f 2a75f 74e3671e92 new. t xt
100644 bl ob 1f 7a7a472abf 3dd9643f d615f 6da379c4acb3e3a test. txt

If you created aworking directory from the new tree you just wrote, you would get the two filesin the
top level of the working directory and a subdirectory named bak that contained the first version of the
test.txt file. Y ou can think of the data that Git contains for these structures as being like Figure 9-2.

3c4edc
tree

|
new.txt test.txt bak

» A N
fa49b0 1f7a7a d8329f
"new file" "version 2" tree
I
test.txt
83baae
"version 1"

10.2.2. Commit Objects

Y ou have three trees that specify the different snapshots of your project that you want to track, but the
earlier problem remains; you must remember all three SHA-1 values in order to recall the snapshots.
Y ou also don’t have any information about who saved the snapshots, when they were saved, or why
they were saved. Thisisthe basic information that the commit object stores for you.

To create a commit object, you call conmi t - t r ee and specify asingle tree SHA-1 and which commit
objects, if any, directly preceded it. Start with the first tree you wrote:

$ echo 'first commt' | git commt-tree d8329f
f df 4f c3344e67ab068f 836878b6c4951e3b15f 3d

Now you can look at your new commit object with cat -fi |l e:

$ git cat-file -p fdf4fc3

tree d8329fcl1cc938780f f dd9f 94e0d364e0ea74f 579

aut hor Scott Chacon <schacon@nuail.com> 1243040974 -0700
conmtter Scott Chacon <schacon@nail.conm> 1243040974 -0700

191

Pro Git

first commt

The format for acommit object issimple: it specifies the top-level tree for the snapshot of the
project at that point; the author/committer information pulled from your user . name and user . emai |
configuration settings, with the current timestamp; a blank line, and then the commit message.

Next, you'll write the other two commit objects, each referencing the commit that came directly
before it:

$ echo 'second commit' | git conmt-tree 0155eb -p fdf4fc3
cac0cab538b970a37eale769cbbde608743bc96d
$ echo "third commit' | git commt-tree 3c4e9c -p cacOcab

1la410ef bd13591db07496601ebc7a059dd55cf e9

Each of the three commit objects points to one of the three snapshot trees you created. Oddly enough,
you have areal Git history now that you can view with thegi t 1 og command, if you run it on the last
commit SHA-1:

$ git log --stat la4l0Oe

commi t la410ef bd13591db07496601ebc7a059dd55cf e9
Aut hor: Scott Chacon <schacon@nuil . conp

Dat e: Fri May 22 18:15:24 2009 -0700

third comm t

bak/test.txt | 1+
1 files changed, 1 insertions(+), O deletions(-)

comit cacOcab538b970a37eale769cbbde608743bc96d
Aut hor: Scott Chacon <schacon@nuil . conp
Dat e: Fri May 22 18:14:29 2009 -0700

second comm t

new. t xt | 1+
test.txt | 2 +-
2 files changed, 2 insertions(+), 1 deletions(-)

comm t fdf 4f c3344e67ab068f 836878b6c4951e3b15f 3d
Aut hor: Scott Chacon <schacon@nmail . comnm
Dat e: Fri May 22 18:09: 34 2009 -0700

first conmt

test.txt | 1+
1 files changed, 1 insertions(+), O deletions(-)

Amazing. You've just done the low-level operations to build up a Git history without using any

of the front ends. Thisis essentially what Git doeswhenyou runthegit add andgit conmit
commands — it stores blobs for the files that have changed, updates the index, writes out trees, and
writes commit objects that reference the top-level trees and the commits that came immediately before
them. These three main Git objects — the blob, the tree, and the commit — are initially stored as
separate filesin your . gi t/ obj ect s directory. Here are al the objects in the example directory now,
commented with what they store:

$ find .git/objects -type f
.git/objects/ 01/ 55eb4229851634a0f 03eb265b69f 5a2d56f 341 # tree 2
.git/objects/lal/ 410ef bd13591db07496601ebc7a059dd55cfe9 # commit 3

192

Pro Git

.git/objects/1f/ 7a7a472abf 3dd9643f d615f 6da379c4ach3e3a # test.txt v2
.git/objects/3c/4e9cd789d88d8d89c1073707¢c3585e41b0e614 # tree 3
.git/objects/ 83/ baae61804e65cc73a7201a7252750c76066a30 # test.txt vl
.git/objects/cal cOcab538b970a37eale769cbbde608743bc96d # commit 2
.git/ objects/d6/ 70460b4dbdaece5915caf 5¢68d12f 560a9f e3e4 # 'test content
.git/objects/d8/329f c1cc938780f f dd9f 94e0d364e0ea74f 579 # tree 1
.git/objects/fal49b077972391ad58037050f 2a75f 74e3671e92 # new. t xt
.git/objects/fd/f4f c3344e67ab068f 836878b6c4951e3b15f3d # commit 1

If you follow al the internal pointers, you get an object graph something like Figure 9-3.

bak

1laé10e 3cedc
third commit - tree — new. txt

F—

test.txt
T 1f7a7a

"version 2"

test.txt ™
est.tx
caclca @155eb |
second commit [—— tree |
new. txt N

"new file" |-

fdfafc dB329f 83bace
first commit tree — test. txt —=| "version 1"

N

10.2.3. Object Storage

| mentioned earlier that a header is stored with the content. Let’ s take a minute to look at how Git
storesits objects. You'll see how to store a blob object — in this case, the string "what is up, doc?"
— interactively in the Ruby scripting language. Y ou can start up interactive Ruby mode with thei r b
command:

$irb
>> content = "what is up, doc?"
=> "what is up, doc?"

Git constructs a header that starts with the type of the object, in this case ablob. Then, it adds a space
followed by the size of the content and finally anull byte:

>> header = "blob #{content.|ength}\0"
=> "bl ob 16\ 000"

Git concatenates the header and the original content and then cal cul ates the SHA-1 checksum of that
new content. Y ou can calculate the SHA-1 value of a string in Ruby by including the SHA1 digest
library with ther equi r e command and then calling Di gest : : SHAL. hexdi gest () with the string:

>> store = header + content

=> "bl ob 16\ 000what is up, doc?"

>> require 'digest/shal'

=> true

>> shal = Digest::SHA1l. hexdi gest (store)

=> "bd9dbf 5aaela3862dd1526723246b20206e5f c37"

Git compresses the new content with zlib, which you can do in Ruby with the zlib library. First, you
need to require the library and thenrun zl i b: : Def | at e. def | at e() on the content:

193

Pro Git

>> require 'zlib'

=> true

>> zlib_content = Zlib::Deflate. defl ate(store)

=> "x\ 234K\ 312\ 3110R04c(\ 317H, Q 310, V(-\320QH 3110 266\ a\ 000_\ 034\ a\ 235"

Finally, you'll write your zlib-deflated content to an object on disk. You' | determine the path of

the object you want to write out (the first two characters of the SHA-1 value being the subdirectory
name, and the last 38 characters being the filename within that directory). In Ruby, you can use the
FileUils.nkdir_p() function to create the subdirectory if it doesn’t exist. Then, open the file with
Fi | e. open() and write out the previously zlib-compressed content to the filewithawri t e() call on
the resulting file handle:

>> path = '.git/objects/' + shal[0,2] + '/' + shal[2, 38]

=> ", git/objects/bd/ 9dbf 5aaela3862dd1526723246b20206e5f c37"
>> require 'fileutils'

=> true

>> FileUtils.nkdir_p(File.dirnanme(path))

=> ", git/objects/bd"

>> File.open(path, '"w) { [f|] f.wite zlib_content }

=> 32

That'sit — you' ve created avalid Git blob object. All Git objects are stored the same way, just with
different types — instead of the string blob, the header will begin with commit or tree. Also, although
the blob content can be nearly anything, the commit and tree content are very specifically formatted.

10.3. Git References

Y ou can run something likegi t 1 og 1a410e to look through your whole history, but you still have
to remember that 1a410e isthe last commit in order to walk that history to find all those objects. Y ou
need afile in which you can store the SHA-1 value under a simple name so you can use that pointer
rather than the raw SHA-1 value.

In Git, these are called "references’ or "refs'; you can find the files that contain the SHA-1 valuesin
the. gi t/ ref s directory. In the current project, this directory contains no files, but it does contain a
simple structure:

$ find .git/refs
.git/refs
.git/refs/heads
.git/refs/tags

$ find .git/refs -type f
$

To create anew reference that will help you remember where your latest commit is, you can
technically do something as simple as this:

$ echo "1a410ef bd13591db07496601ebc7a059dd55cf e9" > .git/refs/heads/ master

Now, you can use the head reference you just created instead of the SHA-1 value in your Git
commands:

$ git log --pretty=oneline master

1a410ef bd13591db07496601ebc7a059dd55cfe9 third commt
cac0cab538b970a37eale769cbbde608743bc96d second conmmit
f df 4f c3344e67ab068f 836878b6c4951e3b15f3d first commt

194

Pro Git

Y ou aren’t encouraged to directly edit the reference files. Git provides a safer command to do thisif
you want to update a reference called updat e-ref :

$ git update-ref refs/heads/naster la4l0efbd13591db07496601ebc7a059dd55cf e9

That's basically what abranch in Git is: a simple pointer or reference to the head of aline of work. To
create a branch back at the second commit, you can do this:

$ git update-ref refs/heads/test cacOca

Y our branch will contain only work from that commit down:

$ git log --pretty=oneline test
cacOcab538b970a37eale769cbbde608743bc96d second conm t
f df 4f c3344e67ab068f 836878b6c4951e3b15f3d first commt

Now, your Git database conceptually looks something like Figure 9-4.

bak

frT ET
refs/heads/master |——| third commit tree — new. txt

i)

test.txt

T
"wersion 2"
—
caceea Bisset test.txt
refs/heads/test second commit [——| tree

" new. txt

— [

"new file" |+

Fafafe GEIZSF E3boce
first commit tree test. txt —| "version 1"

'\

When you run commands likegit branch (branchnane), Git basicaly runsthat updat e- r ef
command to add the SHA-1 of the last commit of the branch you’ re on into whatever new reference
you want to create.

10.3.1. The HEAD

The question now is, whenyourungi t branch (branchnane), how does Git know the SHA-1 of
the last commit? The answer isthe HEAD file. The HEAD fileis a symbolic reference to the branch
you're currently on. By symbolic reference, | mean that unlike a normal reference, it doesn’t generally
contain a SHA-1 value but rather a pointer to another reference. If you look at the file, you' Il normally
see something like this:

$ cat .git/HEAD
ref: refs/heads/ naster

If yourungit checkout test, Git updatesthefileto look likethis:

$ cat .git/HEAD
ref: refs/heads/test

Whenyourungit conmit, it creates the commit object, specifying the parent of that commit object
to be whatever SHA-1 value the reference in HEAD points to.

Y ou can a'so manually edit thisfile, but again a safer command existsto do so: symbol i c-ref. You
can read the value of your HEAD viathis command:

195

Pro Git

$ git synbolic-ref HEAD
r ef s/ heads/ nast er

Y ou can also set the value of HEAD:

$ git synbolic-ref HEAD refs/heads/test
$ cat .git/HEAD
ref: refs/heads/test

You can't set a symbolic reference outside of the refs style:

$ git synbolic-ref HEAD test
fatal: Refusing to point HEAD outside of refs/

10.3.2. Tags

You'vejust gone over Git’'s three main object types, but there is afourth. The tag object isvery much
like acommit object — it contains atagger, a date, a message, and a pointer. The main differenceis
that atag object points to a commit rather than atree. It’ s like a branch reference, but it never moves
— it always points to the same commit but givesit afriendlier name.

As discussed in Chapter 2, there are two types of tags: annotated and lightweight. Y ou can make a
lightweight tag by running something like this:

$ git update-ref refs/tags/vl.0 cacOcab538b970a37eale769cbbde608743bc96d

That isall alightweight tag is— abranch that never moves. An annotated tag is more complex,
however. If you create an annotated tag, Git creates a tag object and then writes a reference to point to
it rather than directly to the commit. Y ou can see this by creating an annotated tag (- a specifies that
it's an annotated tag):

$ git tag -a vl1.1 1a410ef bd13591db07496601ebc7a059dd55cfe9 -m ' 'test tag'

Here sthe object SHA-1 value it created:

$ cat .git/refs/tags/vl.1
9585191f 37f 7b0f b9444f 35a9bf 50del191beadc?2

Now, runthecat - fi | e command on that SHA-1 vaue;

$ git cat-file -p 9585191f 37f 7b0f b9444f 35a9bf 50del191beadc2

obj ect 1a410efbd13591db07496601ebc7a059dd55cf e9

type commit

tag v1.1

tagger Scott Chacon <schacon@nuil.con> Sat May 23 16:48:58 2009 -0700

test tag

Notice that the object entry points to the commit SHA-1 value that you tagged. Also notice that it
doesn’t need to point to a commit; you can tag any Git object. In the Git source code, for example,
the maintainer has added their GPG public key as a blob object and then tagged it. Y ou can view the
public key by running

$ git cat-file blob junio-gpg-pub

in the Git source code repository. The Linux kernel repository also has a non-commit-pointing tag
object — the first tag created points to the initial tree of the import of the source code.

196

Pro Git

10.3.3. Remotes

The third type of reference that you'll seeis aremote reference. If you add aremote and push to it,
Git stores the value you last pushed to that remote for each branch in ther ef s/ r enot es directory. For
instance, you can add aremote called ori gi n and push your mast er branch to it:

$ git renmote add origin git@ithub.comschacon/sinplegit-progit.git
$ git push origin nmaster
Counting objects: 11, done.
Conpressi ng obj ects: 100% (5/5), done.
Witing objects: 100% (7/7), 716 bytes, done.
Total 7 (delta 2), reused 4 (delta 1)
To git@ithub. com schacon/sinplegit-progit.git
allbef0..caB82a6d naster -> master

Then, you can see what the mast er branch on the ori gi n remote was the last time you communicated
with the server, by checking ther ef s/ r enot es/ ori gi n/ mast er file:

$ cat .git/refs/renptes/origin/ master
ca82a6df f 817ec66f 44342007202690a93763949

Remote references differ from branches (r ef s/ heads references) mainly in that they can’'t be checked
out. Git moves them around as bookmarks to the last known state of where those branches were on
those servers.

10.4. Packfiles

Let’s go back to the objects database for your test Git repository. At this point, you have 11 objects —
4 blobs, 3 trees, 3 commits, and 1 tag:

$ find .git/objects -type f

.git/objects/01/55eb4229851634a0f 03eb265b69f 5a2d56f 341 # tree 2
.git/objects/la/ 410ef bd13591db07496601ebc7a059dd55cfe9 # commit 3
.git/objects/1f/ 7a7a472abf 3dd9643f d615f 6da379c4ach3e3a # test.txt v2
.git/objects/3c/4e9cd789d88d8d89c1073707¢c3585e41b0e614 # tree 3
.git/ objects/ 83/ baae61804e65cc73a7201a7252750c76066a30 # test.txt vl
. git/objects/95/85191f 37f 7b0f h9444f 35a9bf 50del91beadc2 # tag
.git/objects/cal cOcab538b970a37eale769cbbde608743bc96d # commit 2
.git/ objects/d6/ 70460b4dbdaece5915caf 5¢68d12f 560a9f e3e4 # 'test content
.git/objects/d8/329f c1cc938780f f dd9f 94e0d364e0ea74f 579 # tree 1
.git/objects/fal 49b077972391ad58037050f 2a75f 74e3671e92 # new. t xt
.git/objects/fd/fA4fc3344e67ab068f 836878b6c4951e3b15f3d # commit 1

Git compresses the contents of these files with zlib, and you’ re not storing much, so all these files
collectively take up only 925 bytes. You'll add some larger content to the repository to demonstrate an
interesting feature of Git. Add the repo.rb file from the Grit library you worked with earlier — thisis
about a 12K source codefile:

$ curl http://github.com nojonbo/grit/raw master/lib/grit/repo.rb > repo.rb
$ git add repo.rb
$ git coomit -m' added repo.rb'
[master 484a592] added repo.rb
3 files changed, 459 insertions(+), 2 deletions(-)
del ete node 100644 bak/test.txt
create node 100644 repo.rb

197

Pro Git

rewite test.txt (100%

If you look at the resulting tree, you can see the SHA-1 value your repo.rb file got for the blob object:

$ git cat-file -p master™{tree}

100644 bl ob fa49b077972391ad58037050f 2a75f 74e3671e92 new. t xt
100644 bl ob 9bcldc421dcd51b4ac296e3e5b6e2a99cf 44391e repo.rb
100644 bl ob e3f 094f 522629ae358806b17daf 78246¢c27c007b test.txt

Youcanthenusegit cat-file toseehow bigthat object is:

$ git cat-file -s 9bcldc421dcd51b4ac296e3e5b6e2a99cf 44391e
12898

Now, modify that file alittle, and see what happens:
$ echo '# testing' >> repo.rb
$ git conmit -am ' nodified repo a bit

[master ablafef] nodified repo a bit
1 files changed, 1 insertions(+), O deletions(-)

Check the tree created by that commit, and you see something interesting:

$ git cat-file -p master™{tree}

100644 bl ob fa49b077972391ad58037050f 2a75f 74e3671e92 new. t xt
100644 bl ob 05408d195263d853f 09dca71d55116663690c27c repo.rb
100644 bl ob e3f 094f 522629ae358806b17daf 78246¢27c007b test.txt

The blob is now adifferent blob, which means that although you added only a single line to the end of
a400-linefile, Git stored that new content as a completely new object:

$ git cat-file -s 05408d195263d853f 09dca71d55116663690c27c¢
12908

Y ou have two nearly identical 12K objects on your disk. Wouldn't it be nice if Git could store one of
them in full but then the second object only as the delta between it and the first?

It turns out that it can. The initial format in which Git saves objects on disk is called aloose object
format. However, occasionaly Git packs up several of these objectsinto asingle binary file called a
packfile in order to save space and be more efficient. Git does thisif you have too many loose objects
around, if you runthegit gc command manually, or if you push to aremote server. To see what
happens, you can manually ask Git to pack up the objects by calling thegit gc command:

$git gc

Counting objects: 17, done.

Del ta conpression using 2 threads.
Conpressi ng objects: 100% (13/13), done.
Witing objects: 100% (17/17), done.
Total 17 (delta 1), reused 10 (delta 0)

If you look in your objects directory, you'll find that most of your objects are gone, and anew pair of
files has appeared:

$ find .git/objects -type f

.git/objects/ 71/ 08f 7ech345ee9d0084193f 147cdad4d2998293
.git/objects/d6/ 70460b4bdaece5915caf 5¢68d12f 560a9f e3e4
.git/objects/infol packs

. gi t/objects/pack/ pack-7al6e4488ae40c7d2bc56ea2bd43e25212a66c45. i dx

198

Pro Git

. gi t/ obj ect s/ pack/ pack- 7al6e4488ae40c7d2bc56ea2bd43e25212a66c45. pack

The objects that remain are the blobs that aren’t pointed to by any commit — in this case, the "what is
up, doc?' example and the "test content” example blobs you created earlier. Because you never added
them to any commits, they’ re considered dangling and aren’t packed up in your new packfile.

The other files are your new packfile and an index. The packfile is asingle file containing the contents
of al the objects that were removed from your filesystem. The index is afile that contains offsetsinto
that packfile so you can quickly seek to a specific object. What is cool is that although the objects on
disk before you ran the gc were collectively about 12K in size, the new packfileisonly 6K. You've
halved your disk usage by packing your objects.

How does Git do this? When Git packs objects, it looks for files that are named and sized similarly,
and stores just the deltas from one version of the file to the next. Y ou can look into the packfile and
seewhat Git did to save space. Thegit veri fy-pack plumbing command allows you to see what

was packed up:

$ git verify-pack -v \

. gi t/ objects/pack/ pack-7al6e4488ae40c7d2bc56ea2bd43e25212a66¢c45. i dx
0155eb4229851634a0f 03eb265b69f 5a2d56f 341 tree 71 76 5400
05408d195263d853f 09dca71d55116663690c27c bl ob 12908 3478 874
09f 01ceab547666f 58d6a8d809583841a7c6f 0130 tree 106 107 5086
la410ef bd13591db07496601ebc7a059dd55cf e9 conmit 225 151 322
1f 7a7a472abf 3dd9643f d615f 6da379c4ach3e3a bl ob 10 19 5381
3c4e9cd789d88d8d89c¢1073707¢3585e41b0e614 tree 101 105 5211
484a59275031909e19aadb7¢92262719cf cdf 19a commit 226 153 169
83baae61804e65cc73a7201a7252750c76066a30 bl ob 10 19 5362
9585191f 37f 7b0f b9444f 35a9bf 50del191beadc?2 t ag 136 127 5476
9bcldc421dcd51b4ac296e3e5b6e2a99cf 44391e bl ob 7 18 5193 1
05408d195263d853f 09dca71d55116663690c27c \

ablaf ef 80f ac8e34258f f 41f c1b867c702daa24b commt 232 157 12
cac0Ocab538b970a37eale769cbbde608743bc96d commt 226 154 473
d8329f c1cc938780f f dd9f 94e0d364e0ea74f 579 tree 36 46 5316
e3f 094f 522629ae358806b17daf 78246c27c007b bl ob 1486 734 4352
f8f 51d7d8al760462eca26eebaf de32087499533 tree 106 107 749
fa49b077972391ad58037050f 2a75f 74e3671e92 bl ob 9 18 856
f df 4f c3344e67ab068f 836878b6c4951e3b15f3d commit 177 122 627
chain length = 1: 1 object
pack- 7a16e4488ae40c7d2bc56ea2bd43e25212a66c¢c45. pack: ok

Here, the 9bc1d blob, which if you remember was the first version of your repo.rb file, is referencing
the 05408 blob, which was the second version of the file. The third column in the output is the size

of the object in the pack, so you can see that 05408 takes up 12K of the file but that 9bc1d only takes
up 7 bytes. What is also interesting is that the second version of thefile isthe one that is stored intact,
whereas the original version is stored as a delta— this is because you're most likely to need faster
access to the most recent version of thefile.

Thereally nice thing about thisis that it can be repacked at any time. Git will occasionally repack
your database automatically, always trying to save more space. Y ou can also manually repack at any
time by running gi t gc by hand.

10.5. The Refspec

Throughout this book, you’ ve used simple mappings from remote branches to local references; but
they can be more complex. Suppose you add aremote like this:

199

Pro Git

$ git renmote add origin git@ithub.comschacon/sinplegit-progit.git

It adds a section to your . gi t / confi g file, specifying the name of the remote (ori gi n), the URL of
the remote repository, and the refspec for fetching:

[renpte "origin"]
url = git@ithub.com schacon/sinplegit-progit.git
fetch = +refs/heads/*:refs/renotes/origin/*

The format of the refspec isan optional +, followed by <sr c>: <dst >, where <sr c¢> is the pattern for
references on the remote side and <dst > is where those references will be written locally. The + tells
Git to update the reference even if it isn't afast-forward.

In the default case that is automatically written by agit renote add command, Git fetches all the
references under r ef s/ heads/ on the server and writesthem tor ef s/ renot es/ ori gi n/ localy. So,
if thereisamast er branch on the server, you can access the log of that branch locally via

$ git log origin/ master
$ git log renotes/origin/naster
$ git log refs/renotes/origin/master

They’'re all equivalent, because Git expands each of themtor ef s/ renot es/ ori gi n/ master.

If you want Git instead to pull down only the mast er branch each time, and not every other branch on
the remote server, you can change the fetch line to

fetch = +refs/heads/ master:refs/renotes/origin/ mster

Thisisjust the default refspec for gi t f et ch for that remote. If you want to do something one time,
you can specify the refspec on the command line, too. To pull the mast er branch on the remote down
toori gi n/ nymast er locally, you can run

$ git fetch origin master:refs/renotes/origin/nymaster

Y ou can also specify multiple refspecs. On the command line, you can pull down severa branches
like so:

$ git fetch origin master:refs/renmotes/origin/nymaster \
topic:refs/renmotes/origin/topic
From gi t @i t hub. com schacon/ si npl egi t
I [rejected] mast er -> origin/mymaster (non fast forward)
* [new branch] topic -> origin/topic

In this case, the master branch pull was rejected because it wasn't afast-forward reference. Y ou can
override that by specifying the + in front of the refspec.

Y ou can a'so specify multiple refspecs for fetching in your configuration file. If you want to always
fetch the master and experiment branches, add two lines:

[renpte "origin"]
url = git@ithub.com schacon/sinplegit-progit.git
fetch +r ef s/ heads/ nast er: ref s/ renot es/ ori gi n/ mast er
fetch +r ef s/ heads/ experi nent:refs/renotes/origin/experiment

You can't use partial globsin the pattern, so thiswould be invalid:

fetch = +refs/heads/ga*:refs/renotes/origin/ga*

200

Pro Git

However, you can use namespacing to accomplish something like that. If you have a QA team that
pushes a series of branches, and you want to get the master branch and any of the QA team’s branches
but nothing else, you can use a config section like this:

[rempte "origin"]
url = git@ithub.com schacon/sinplegit-progit.git
fetch +r ef s/ heads/ nast er: ref s/ renot es/ ori gi n/ mast er
fetch +ref s/ heads/ qa/ *: refs/renmotes/origi n/ ga/ *

If you have a complex workflow process that has a QA team pushing branches, devel opers pushing
branches, and integration teams pushing and collaborating on remote branches, you can namespace
them easily thisway.

10.5.1. Pushing Refspecs

It s nice that you can fetch namespaced references that way, but how does the QA team get their
branchesinto aga/ namespace in the first place? Y ou accomplish that by using refspecs to push.

If the QA team wants to push their mast er branch to qa/ mast er on the remote server, they can run

$ git push origin naster:refs/heads/ga/ master

If they want Git to do that automatically each timethey rungit push ori gi n, they can add apush
valueto their config file:
[renpte "origin"]

url = git@ithub.com schacon/sinplegit-progit.git

fetch = +refs/heads/*:refs/renmotes/origin/*
push = refs/heads/ naster:refs/heads/ qa/ naster

Again, thiswill causeagit push ori gi nto pushthelocal mast er branch to the remote qa/ mast er
branch by default.

10.5.2. Deleting References

Y ou can also use the refspec to delete references from the remote server by running something like
this:.

$ git push origin :topic

Because the refspec is <sr ¢>: <dst >, by leaving off the <sr ¢> part, this basically says to make the
topic branch on the remote nothing, which deletes it.

10.6. Transfer Protocols

Git can transfer data between two repositories in two major ways: over HTTP and via the so-called
smart protocolsused inthefile://,ssh://,andgit:// transports. This section will quickly cover
how these two main protocols operate.

10.6.1. The Dumb Protocol

Git transport over HTTP is often referred to as the dumb protocol because it requires no Git-specific
code on the server side during the transport process. The fetch process is a series of GET requests,

201

Pro Git

where the client can assume the layout of the Git repository on the server. Let’sfollow the ht t p-
f et ch process for the simplegit library:

$ git clone http://github.conm schacon/sinplegit-progit.git

The first thing this command doesis pull down thei nf o/ r ef s file. Thisfile iswritten by the updat e-
server - i nf o command, which iswhy you need to enable that asapost - r ecei ve hook in order for
the HTTP transport to work properly:

=> GET infolrefs
caB82abdf f 817ec66f 44342007202690a93763949 r ef s/ heads/ nast er

Now you have alist of the remote references and SHAs. Next, you look for what the HEAD reference
is so you know what to check out when you' re finished:

=> GET HEAD
ref: refs/heads/ master

Y ou need to check out the mast er branch when you’ ve completed the process. At this point, you're
ready to start the walking process. Because your starting point isthe cag2a6 commit object you saw
inthei nf o/ ref s file, you start by fetching that:

=> CET obj ects/cal/ 82a6dff817ec66f44342007202690a93763949
(179 bytes of binary data)

Y ou get an object back — that object isin loose format on the server, and you fetched it over a static
HTTP GET request. Y ou can zlib-uncompressiit, strip off the header, and look at the commit content:

$ git cat-file -p caB82a6dff817ec66f44342007202690a93763949
tree cfda3bf 379e4f 8dba8717dee55aab78aef 7f 4daf

parent 085bb3bcb608ele8451d4b2432f 8eche6306e7e7

aut hor Scott Chacon <schacon@nuail.comr 1205815931 -0700
conmitter Scott Chacon <schacon@nuail.com> 1240030591 -0700

changed the versi on nunber

Next, you have two more objects to retrieve — cf da3b, which is the tree of content that the commit
we just retrieved points to; and 085bb3, which is the parent commit:

=> CET obj ect s/ 08/ 5bb3bcb608e1e8451d4b2432f 8eche6306e7e7
(179 bytes of data)

That gives you your next commit object. Grab the tree object:

=> CET obj ect s/ cf/da3bf 379e4f 8dba8717dee55aab78aef 7f 4daf
(404 - Not Found)

Oops — it looks like that tree object isn’t in loose format on the server, so you get a 404 response
back. There are a couple of reasons for this— the object could be in an alternate repository, or it
could be in a packfilein this repository. Git checks for any listed alternates first:

=> CET objects/info/http-alternates
(enpty file)

If this comes back with alist of alternate URLS, Git checks for loose files and packfiles there — this
isanice mechanism for projects that are forks of one another to share objects on disk. However,
because no aternates are listed in this case, your object must be in a packfile. To see what packfiles

202

Pro Git

are available on this server, you need to get the obj ect s/ i nf o/ packs file, which contains alisting of
them (also generated by updat e- ser ver - i nf 0):

=> CET obj ects/info/packs
P pack-816a9b2334da9953e530f 27bcac22082a9f 5b835. pack

Thereis only one packfile on the server, so your object is obviously in there, but you'll check the
index file to make sure. Thisisalso useful if you have multiple packfiles on the server, so you can see
which packfile contains the object you need:

=> CET obj ect s/ pack/ pack-816a9b2334da9953e530f 27bcac22082a9f 5b835. i dx
(4k of binary data)

Now that you have the packfile index, you can seeif your object isin it — because the index lists the
SHA s of the objects contained in the packfile and the offsets to those objects. Y our object is there, so
go ahead and get the whole packfile:

=> CGET obj ect s/ pack/ pack-816a9b2334da9953e530f 27bcac22082a9f 5b835. pack
(13k of binary data)

Y ou have your tree object, so you continue walking your commits. They’re al also within the packfile
you just downloaded, so you don’t have to do any more requests to your server. Git checks out a
working copy of the mast er branch that was pointed to by the HEAD reference you downloaded at
the beginning.

The entire output of this process looks like this:

$ git clone http://github.com schacon/sinplegit-progit.git

Initialized enpty Gt repository in /private/tnp/sinplegit-progit/.git/
got caB82a6dff817ec66f44342007202690a93763949

wal k ca82a6dff817ec66f44342007202690a93763949

got 085bb3bcbh608ele8451d4b2432f 8eche6306e7e7

Getting alternates list for http://github.com schacon/sinplegit-progit.git
Getting pack list for http://github.com schacon/sinplegit-progit.git
Cetting i ndex for pack 816a9b2334da9953e530f 27bcac22082a9f 5b835
CGetting pack 816a9h2334da9953e530f 27bcac22082a9f 5b835

whi ch cont ai ns cf da3bf 379e4f 8dba8717dee55aab78aef 7f 4daf

wal k 085bb3bcbh608e1e8451d4b2432f 8eche6306e7e7

wal k allbef 06a3f 659402f e7563abf 99ad00de2209e6

10.6.2. The Smart Protocol

The HTTP method is simple but a bit inefficient. Using smart protocols is a more common method of
transferring data. These protocols have a process on the remote end that is intelligent about Git — it
can read local data and figure out what the client has or needs and generate custom data for it. There
are two sets of processes for transferring data: a pair for uploading data and a pair for downloading
data.

Uploading Data

To upload datato aremote process, Git usesthe send- pack and r ecei ve- pack processes. The send-
pack process runs on the client and connectsto ar ecei ve- pack process on the remote side.

For example, say yourungit push origin master inyour project, and ori gi n isdefined asa URL
that uses the SSH protocol. Git fires up the send- pack process, which initiates a connection over SSH

203

Pro Git

to your server. It tries to run acommand on the remote server viaan SSH call that |ooks something
likethis:

$ ssh -x git@ithub.com"git-receive-pack 'schacon/sinplegit-progit.git"'"
005bca82a6df f 817ec66f 4437202690a93763949 ref s/ heads/ master report-status delete-refs
003e085bb3bch608ele84hb2432f 8ecbe6306e7e7 ref s/ heads/topic

0000

Thegi t - recei ve- pack command immediately responds with one line for each reference it currently
has — in this case, just the mast er branch and its SHA. Thefirst line also has alist of the server’s
capabilities (here, report - st at us and del et e-ref s).

Each line starts with a 4-byte hex value specifying how long the rest of thelineis. Your first line starts
with 005b, which is 91 in hex, meaning that 91 bytes remain on that line. The next line starts with
003e, which is 62, so you read the remaining 62 bytes. The next line is 0000, meaning the server is
done with its references listing.

Now that it knows the server’ s state, your send- pack process determines what commitsit has that
the server doesn't. For each reference that this push will update, the send- pack processtellsthe
recei ve- pack process that information. For instance, if you’ re updating the mast er branch and
adding an exper i nent branch, the send- pack response may look something like this:

0085ca82a6df f 817ec66f 44342007202690a93763949 15027957951b64cf 874c3557a0f 3547bd83b3ff6 r
006700 cdf db42577e2506715f 8cf eacdbabc092bf 63e8d r e
0000

The SHA-1 value of all '0’s means that nothing was there before — because you' re adding the
experiment reference. If you were deleting areference, you would see the opposite: al '0’s on the
right side.

Git sends aline for each reference you' re updating with the old SHA, the new SHA, and the reference
that is being updated. The first line also has the client’ s capabilities. Next, the client uploads a packfile
of al the objects the server doesn’t have yet. Finally, the server responds with a success (or failure)
indication:

000Aunpack ok

Downloading Data

When you download data, thef et ch- pack and upl oad- pack processes areinvolved. The client
initiates af et ch- pack process that connects to an upl oad- pack process on the remote side to
negotiate what datawill be transferred down.

There are different waysto initiate the upl oad- pack process on the remote repository. Y ou can run
via SSH in the same manner asther ecei ve- pack process. You can aso initiate the process viathe
Git daemon, which listens on a server on port 9418 by default. Thef et ch- pack process sends data
that looks like this to the daemon after connecting:

003f gi t - upl oad- pack schacon/sinplegit-progit.git\Ohost=nyserver.comO0

It starts with the 4 bytes specifying how much datais following, then the command to run followed

by anull byte, and then the server’s hostname followed by afina null byte. The Git daemon checks
that the command can be run and that the repository exists and has public permissions. If everything is
cool, it fires up the upl oad- pack process and hands off the request to it.

204

Pro Git

If you're doing the fetch over SSH, f et ch- pack instead runs something like this:
$ ssh -x git@ithub.com "git-upl oad-pack 'schacon/sinplegit-progit.git""
In either case, after f et ch- pack connects, upl oad- pack sends back something like this:

0088ca82a6df f 817ec66f 44342007202690a93763949 HEAD\ Orul ti _ack t hi n-pack \
si de- band si de-band- 64k ofs-delta shal |l ow no-progress include-tag

003f ca82a6df f 817ec66f 44342007202690a93763949 ref s/ heads/ mast er

003e085bb3bch608e1e8451d4b2432f 8eche6306e7e7 refs/ heads/topic

0000

Thisisvery similar to what r ecei ve- pack responds with, but the capabilities are different. In
addition, it sends back the HEAD reference so the client knows what to check out if thisis aclone.

At this point, the f et ch- pack process|ooks at what objects it has and responds with the objects that it
needs by sending "want" and then the SHA it wants. It sends all the objectsit already has with "have"

and then the SHA. At the end of thislist, it writes "done" to initiate the upl oad- pack process to begin
sending the packfile of the data it needs:

0054want ca82a6dff817ec66f44342007202690a93763949 of s-delta
0032have 085bb3bcb608e1e8451d4b2432f 8eche6306e7e7

0000

0009done

That isavery basic case of the transfer protocols. In more complex cases, the client supports
mul ti _ack oOr si de- band capabilities; but this example shows you the basic back and forth used by
the smart protocol processes.

10.7. Maintenance and Data Recovery

Occasionaly, you may have to do some cleanup — make a repository more compact, clean up an
imported repository, or recover lost work. This section will cover some of these scenarios.

10.7.1. Maintenance

Occasionadly, Git automatically runs acommand called "auto gc". Most of the time, this command
does nothing. However, if there are too many |oose objects (objects not in a packfile) or too many
packfiles, Git launches afull-fledged gi t gc command. The gc stands for garbage collect, and the
command does a number of things: it gathers up al the loose objects and places them in packfiles,
it consolidates packfiles into one big packfile, and it removes objects that aren’t reachable from any
commit and are a few months old.

Y ou can run auto gc manually as follows:
$ git gc --auto

Again, this generally does nothing. Y ou must have around 7,000 loose objects or more than 50
packfiles for Git to fire up areal gc command. Y ou can modify these limits with the gc. aut o and
gc. aut opackl i mi t config settings, respectively.

The other thing gc will do is pack up your references into a single file. Suppose your repository
contains the following branches and tags:

$find .git/refs -type f

205

Pro Git

.git/refs/heads/ experi nment
.git/refs/heads/ naster
.git/refs/tags/v1l.0
.git/refs/tags/vl. 1

If yourungit gc,you'll nolonger havethesefilesinther ef s directory. Git will move them for the
sake of efficiency into afile named . gi t / packed- r ef s that looks like this:

$ cat .git/packed-refs

pack-refs with: peel ed
cac0cab538b970a37eale769cbbde608743bc96d ref s/ heads/ experi ment
ablaf ef 80f ac8e34258f f 41f c1b867c702daa24b ref s/ heads/ mast er
cac0cab538b970a37eale769cbbde608743bc96d refs/tags/v1. 0
9585191f 37f 7b0f b9444f 35a9bf 50de191beadc2 refs/tags/vl. 1l
~N1a410ef bd13591db07496601ebc7a059dd55cf e9

If you update areference, Git doesn’t edit thisfile but instead writesanew filetor ef s/ heads. To
get the appropriate SHA for agiven reference, Git checks for that referencein ther ef s directory and
then checks the packed- r ef s file as afallback. However, if you can't find areferencein theref s
directory, it’s probably in your packed- r ef s file.

Notice the last line of the file, which begins with a~. This means the tag directly aboveisan
annotated tag and that line is the commit that the annotated tag points to.

10.7.2. Data Recovery

At some point in your Git journey, you may accidentally lose acommit. Generally, this happens
because you force-del ete a branch that had work on it, and it turns out you wanted the branch after all;
or you hard-reset a branch, thus abandoning commits that you wanted something from. Assuming this
happens, how can you get your commits back?

Here' s an example that hard-resets the master branch in your test repository to an older commit and
then recovers the lost commits. First, let’s review where your repository is at this point:

$ git log --pretty=oneline

ablaf ef 80f ac8e34258f f 41f c1b867c702daa24b nodified repo a bit
484a59275031909e19aadb7¢c92262719cf cdf 19a added repo.rb
1a410ef bd13591db07496601ebc7a059dd55cfe9 third conmt
cac0cab538b970a37eale769cbbde608743bc96d second commit

f df 4f c3344e67ab068f 836878b6c4951e3b15f3d first commt

Now, move the mast er branch back to the middle commit:

$ git reset --hard la4l1l0ef bd13591db07496601ebc7a059dd55cf e9
HEAD i s now at l1la410ef third commit

$ git log --pretty=oneline

1a410ef bd13591db07496601ebc7a059dd55cfe9 third comm t
cac0cab538b970a37eale769cbbde608743bc96d second commit

f df 4f c3344e67ab068f 836878b6c4951e3b15f3d first commt

You've effectively lost the top two commits — you have no branch from which those commits are
reachable. Y ou need to find the latest commit SHA and then add a branch that pointsto it. Thetrick is
finding that latest commit SHA — it’s not like you’ ve memorized it, right?

Often, the quickest way isto useatool called gi t refl og. Asyou reworking, Git silently records
what your HEAD is every time you change it. Each time you commit or change branches, the reflog is

206

Pro Git

updated. Thereflog is also updated by the gi t updat e- ref command, which is another reason to use
it instead of just writing the SHA value to your ref files, aswe covered in the "Git References" section
of this chapter earlier. Y ou can see where you’ ve been at any time by running gi t ref ! og:

$git reflog
la410ef HEAD@0}: l1la410ef bd13591db07496601ebc7a059dd55cf e9: updati ng HEAD
ablaf ef HEAD@ 1}: ablaf ef 80f ac8e34258ff 41f c1b867c702daa24b: updati ng HEAD

Here we can see the two commits that we have had checked out, however there is not much
information here. To see the same information in amuch more useful way, wecanrungit 1og -g,
which will give you anormal log output for your reflog.

$git log -g

comit l1la4l10ef bd13591db07496601ebc7a059dd55cf e9
Ref | og: HEAD@ 0} (Scott Chacon <schacon@nuil . conp)
Ref | og nessage: updating HEAD

Aut hor: Scott Chacon <schacon@nuil . conp

Dat e: Fri May 22 18:22:37 2009 -0700

third conm t

conmit ablaf ef 80f ac8e34258f f 41f c1b867c702daa24b
Ref | og: HEAD@ 1} (Scott Chacon <schacon@nuil . conp)
Ref | og nessage: updating HEAD

Aut hor: Scott Chacon <schacon@nuil . conp

Dat e: Fri May 22 18:15:24 2009 -0700

nodified repo a bit

It looks like the bottom commit is the one you lost, so you can recover it by creating a new branch at
that commit. For example, you can start a branch named r ecover - br anch at that commit (ablafef):

$ git branch recover-branch ablaf ef

$ git log --pretty=oneline recover-branch

ablaf ef 80f ac8e34258f f 41f c1b867c702daa24b nodified repo a bit
484a59275031909e19aadb7¢92262719cf cdf 19a added repo.rb
1a410ef bd13591db07496601ebc7a059dd55cfe9 third commit
cacOcab538b970a37eale769cbbde608743bc96d second conmit

f df 4f c3344e67ab068f 836878b6c4951e3b15f3d first conmmt

Cool — now you have a branch named r ecover - br anch that iswhere your nast er branch used to be,
making the first two commits reachable again. Next, suppose your loss was for some reason not in the
reflog — you can simulate that by removing r ecover - br anch and deleting the reflog. Now the first
two commits aren’t reachable by anything:

$ git branch -D recover-branch
$rm-Rf .git/logs/

Because thereflog datais kept inthe. gi t /1 ogs/ directory, you effectively have no reflog. How can
you recover that commit at this point? One way isto usethegit fsck utility, which checks your
database for integrity. If you run it withthe - - ful | option, it showsyou all objects that aren’t pointed
to by another object:

$ git fsck --ful

dangl i ng bl ob d670460b4b4aece5915caf 5c68d12f 560a9f e3e4
dangling commt ablaf ef 80f ac8e34258ff41f c1b867c702daa24b
dangling tree aea790b9a58f 6¢f 6f 2804eeac9f 0abbe9631e4c9
dangling bl ob 7108f 7ecb345ee9d0084193f 147cdad4d2998293

207

Pro Git

In this case, you can see your missing commit after the dangling commit. Y ou can recover it the same
way, by adding a branch that points to that SHA.

10.7.3. Removing Objects

There are alot of great things about Git, but one feature that can cause issuesis the fact that agi t

cl one downloads the entire history of the project, including every version of every file. Thisisfine
if the whole thing is source code, because Git is highly optimized to compress that data efficiently.
However, if someone at any point in the history of your project added a single huge file, every clone
for al time will be forced to download that large file, even if it was removed from the project in the
very next commit. Because it’ s reachable from the history, it will always be there.

This can be a huge problem when you’ re converting Subversion or Perforce repositoriesinto Git.
Because you don’'t download the whole history in those systems, this type of addition carries few
consequences. If you did an import from another system or otherwise find that your repository is
much larger than it should be, here is how you can find and remove large objects.

Be warned: this technique is destructive to your commit history. It rewrites every commit object
downstream from the earliest tree you have to modify to remove alarge file reference. If you do
thisimmediately after an import, before anyone has started to base work on the commit, you're fine
— otherwise, you have to notify all contributors that they must rebase their work onto your new
commits.

To demonstrate, you'll add alarge file into your test repository, remove it in the next commit, find it,
and remove it permanently from the repository. First, add alarge object to your history:

$ curl http://kernel.org/pub/software/scnmgit/git-1.6.3.1.tar.bz2 > git.tbz2
$ git add git.tbz2
$ git commit -am ' added git tarball"’
[master 6df 7640] added git tarbal
1 files changed, 0 insertions(+), O deletions(-)
create node 100644 git.tbz2

Oops — you didn’t want to add a huge tarball to your project. Better get rid of it:

$ git rmgit.thz2

rm'git.tbhz2

$ git commit -m'oops - renpved | arge tarball

[master da3f30d] oops - renoved | arge tarbal
1 files changed, 0 insertions(+), O deletions(-)
del ete node 100644 git.tbz2

Now, gc your database and see how much space you' re using:

$ git gc

Counti ng objects: 21, done.

Del ta conpression using 2 threads.
Conpressi ng objects: 100% (16/16), done.
Witing objects: 100% (21/21), done
Total 21 (delta 3), reused 15 (delta 1)

Y ou can run the count - obj ect s command to quickly see how much space you' re using:

$ git count-objects -v
count: 4

208

Pro Git

size: 16

i n-pack: 21
packs: 1

si ze- pack: 2016
prune- packabl e: 0
gar bage: O

Thessi ze- pack entry isthe size of your packfilesin kilobytes, so you're using 2MB. Before the last
commit, you were using closer to 2K — clearly, removing the file from the previous commit didn’t
remove it from your history. Every time anyone clones this repository, they will have to clone al
2MB just to get thistiny project, because you accidentally added abig file. Let’ s get rid of it.

First you haveto find it. In this case, you already know what fileit is. But suppose you didn’t; how
would you identify what file or files were taking up so much space? If yourungi t gc, al the objects
arein apackfile; you can identify the big objects by running another plumbing command called

git verify-pack and sorting on the third field in the output, which isfile size. Y ou can also pipeit
through thet ai I command because you' re only interested in the last few largest files:

$ git verify-pack -v .git/objects/pack/pack-3f8c0...bb.idx | sort -k 3 -n | tail -3
e3f 094f 522629ae358806b17daf 78246c27c007b bl ob 1486 734 4667

05408d195263d853f 09dca71d55116663690c27c bl ob 12908 3478 1189

7a9eb2f ba2b1811321254ac360970f c169ba2330 bl ob 2056716 2056872 5401

The big object is at the bottom: 2MB. To find out what fileit is, you'll usetherev-1i st command,
which you used briefly in Chapter 7. If you pass - - obj ect s torev- i st, it listsall the commit SHAS
and also the blob SHAs with the file paths associated with them. Y ou can use this to find your blob’s
name;

$ git rev-list --objects --all | grep 7a9eb2fb
7a9eb2f ba2b1811321254ac360970f c169ba2330 git.tbz2

Now, you need to remove thisfile from all treesin your past. You can easily see what commits
modified thisfile:

$ git log --pretty=oneline -- git.tbz2
da3f 30d019005479¢c99ehb4c3406225613985al1db oops - renoved | arge tarbal
6df 764092f 3e7c8f 5f 94cbe08eebcf 42e92a0289 added git tarbal

Y ou must rewrite all the commits downstream from 6df 76 to fully remove this file from your Git
history. To do so, you usefi | t er - br anch, which you used in Chapter 6:

$ git filter-branch --index-filter \

"git rm--cached --ignore-unmatch git.tbz2' -- 6df7640"..
Rewrite 6df 764092f 3e7c8f 5f 94che08ee5cf 42e92a0289 (1/2)rm'git.tbz2
Rewrite da3f30d019005479c99eb4c3406225613985aldb (2/2)

Ref 'refs/heads/master’ was rewitten

The--index-filter optionissimilartothe--tree-filter option usedin Chapter 6, except that
instead of passing acommand that modifies files checked out on disk, you’' re modifying your staging
area or index each time. Rather than remove a specific file with something likerm i | e, you have to
removeit withgit rm --cached — you must remove it from the index, not from disk. The reason to
do it thisway is speed — because Git doesn’t have to check out each revision to disk before running
your filter, the process can be much, much faster. Y ou can accomplish the same task with - - t r ee-
filter if youwant. The--ignore-unmatch optiontogit rmtellsit not to error out if the pattern
you're trying to removeisn’t there. Finally, you ask fi | t er - br anch to rewrite your history only from

209

Pro Git

the 6df 7640 commit up, because you know that is where this problem started. Otherwise, it will start
from the beginning and will unnecessarily take longer.

Y our history no longer contains areference to that file. However, your reflog and a new set of refs
that Git added when you did thefi | t er-branch under . gi t/refs/origi nal still do, soyou haveto
remove them and then repack the database. Y ou need to get rid of anything that has a pointer to those
old commits before you repack:

$rm-Rf .git/refs/original

$rm-R .git/logs/

$git gc

Counti ng objects: 19, done.

Del ta conpression using 2 threads.
Conpressi ng objects: 100% (14/14), done.
Witing objects: 100% (19/19), done.
Total 19 (delta 3), reused 16 (delta 1)

Let’s see how much space you saved.

$ git count-objects -v
count: 8

size: 2040

i n-pack: 19

packs: 1

si ze- pack: 7

prune- packable: 0

gar bage: 0

The packed repository sizeis down to 7K, which is much better than 2MB. Y ou can see from the size
value that the big object is still in your loose objects, so it’s not gone; but it won't be transferred on a
push or subsequent clone, which iswhat isimportant. If you really wanted to, you could remove the
object completely by running git prune --expire.

10.8. Summary

Y ou should have a pretty good understanding of what Git does in the background and, to some degree,
how it’simplemented. This chapter has covered a number of plumbing commands — commands that
are lower level and simpler than the porcelain commands you' ve learned about in the rest of the book.
Understanding how Git works at alower level should make it easier to understand why it’s doing what
it's doing and also to write your own tools and hel ping scripts to make your specific workflow work
for you.

Git as a content-addressable filesystem is a very powerful tool that you can easily use as more than
just aVCS. | hope you can use your newfound knowledge of Git internals to implement your own
cool application of this technology and feel more comfortable using Git in more advanced ways.

210

	Pro Git
	Table of Contents
	1. Introduction
	2. Getting Started
	2.1. About Version Control
	2.1.1. Local Version Control Systems
	2.1.2. Centralized Version Control Systems
	2.1.3. Distributed Version Control Systems

	2.2. A Short History of Git
	2.3. Git Basics
	2.3.1. Snapshots, Not Differences
	2.3.2. Nearly Every Operation Is Local
	2.3.3. Git Has Integrity
	2.3.4. Git Generally Only Adds Data
	2.3.5. The Three States

	2.4. Installing Git
	2.4.1. Installing from Source
	2.4.2. Installing on Linux
	2.4.3. Installing on Mac
	2.4.4. Installing on Windows

	2.5. First-Time Git Setup
	2.5.1. Your Identity
	2.5.2. Your Editor
	2.5.3. Your Diff Tool
	2.5.4. Checking Your Settings

	2.6. Getting Help
	2.7. Summary

	3. Git Basics
	3.1. Getting a Git Repository
	3.1.1. Initializing a Repository in an Existing Directory
	3.1.2. Cloning an Existing Repository

	3.2. Recording Changes to the Repository
	3.2.1. Checking the Status of Your Files
	3.2.2. Tracking New Files
	3.2.3. Staging Modified Files
	3.2.4. Ignoring Files
	3.2.5. Viewing Your Staged and Unstaged Changes
	3.2.6. Committing Your Changes
	3.2.7. Skipping the Staging Area
	3.2.8. Removing Files
	3.2.9. Moving Files

	3.3. Viewing the Commit History
	3.3.1. Limiting Log Output
	3.3.2. Using a GUI to Visualize History

	3.4. Undoing Things
	3.4.1. Changing Your Last Commit
	3.4.2. Unstaging a Staged File
	3.4.3. Unmodifying a Modified File

	3.5. Working with Remotes
	3.5.1. Showing Your Remotes
	3.5.2. Adding Remote Repositories
	3.5.3. Fetching and Pulling from Your Remotes
	3.5.4. Pushing to Your Remotes
	3.5.5. Inspecting a Remote
	3.5.6. Removing and Renaming Remotes

	3.6. Tagging
	3.6.1. Listing Your Tags
	3.6.2. Creating Tags
	3.6.3. Annotated Tags
	3.6.4. Signed Tags
	3.6.5. Lightweight Tags
	3.6.6. Verifying Tags
	3.6.7. Tagging Later
	3.6.8. Sharing Tags

	3.7. Tips and Tricks
	3.7.1. Auto-Completion
	3.7.2. Git Aliases

	3.8. Summary

	4. Git Branching
	4.1. What a Branch Is
	4.2. Basic Branching and Merging
	4.2.1. Basic Branching
	4.2.2. Basic Merging
	4.2.3. Basic Merge Conflicts

	4.3. Branch Management
	4.4. Branching Workflows
	4.4.1. Long-Running Branches
	4.4.2. Topic Branches

	4.5. Remote Branches
	4.5.1. Pushing
	4.5.2. Tracking Branches
	4.5.3. Deleting Remote Branches

	4.6. Rebasing
	4.6.1. The Basic Rebase
	4.6.2. More Interesting Rebases
	4.6.3. The Perils of Rebasing

	4.7. Summary

	5. Git on the Server
	5.1. The Protocols
	5.1.1. Local Protocol
	5.1.2. The SSH Protocol
	5.1.3. The Git Protocol
	5.1.4. The HTTP/S Protocol

	5.2. Getting Git on a Server
	5.2.1. Putting the Bare Repository on a Server
	5.2.2. Small Setups

	5.3. Generating Your SSH Public Key
	5.4. Setting Up the Server
	5.5. Public Access
	5.6. GitWeb
	5.7. Gitosis
	5.8. Gitolite
	5.8.1. Installing
	5.8.2. Customising the Install
	5.8.3. Config File and Access Control Rules
	5.8.4. Advanced Access Control with "deny" rules
	5.8.5. Restricting pushes by files changed
	5.8.6. Personal Branches
	5.8.7. "Wildcard" repositories
	5.8.8. Other Features

	5.9. Git Daemon
	5.10. Hosted Git
	5.10.1. GitHub
	5.10.2. Setting Up a User Account
	5.10.3. Creating a New Repository
	5.10.4. Importing from Subversion
	5.10.5. Adding Collaborators
	5.10.6. Your Project
	5.10.7. Forking Projects
	5.10.8. GitHub Summary

	5.11. Summary

	6. Distributed Git
	6.1. Distributed Workflows
	6.1.1. Centralized Workflow
	6.1.2. Integration-Manager Workflow
	6.1.3. Dictator and Lieutenants Workflow

	6.2. Contributing to a Project
	6.2.1. Commit Guidelines
	6.2.2. Private Small Team
	6.2.3. Private Managed Team
	6.2.4. Public Small Project
	6.2.5. Public Large Project
	6.2.6. Summary

	6.3. Maintaining a Project
	6.3.1. Working in Topic Branches
	6.3.2. Applying Patches from E-mail
	6.3.3. Checking Out Remote Branches
	6.3.4. Determining What Is Introduced
	6.3.5. Integrating Contributed Work
	6.3.6. Tagging Your Releases
	6.3.7. Generating a Build Number
	6.3.8. Preparing a Release
	6.3.9. The Shortlog

	6.4. Summary

	7. Git Tools
	7.1. Revision Selection
	7.1.1. Single Revisions
	7.1.2. Short SHA
	7.1.3. A SHORT NOTE ABOUT SHA-1
	7.1.4. Branch References
	7.1.5. RefLog Shortnames
	7.1.6. Ancestry References
	7.1.7. Commit Ranges

	7.2. Interactive Staging
	7.2.1. Staging and Unstaging Files
	7.2.2. Staging Patches

	7.3. Stashing
	7.3.1. Stashing Your Work
	7.3.2. Un-applying a Stash
	7.3.3. Creating a Branch from a Stash

	7.4. Rewriting History
	7.4.1. Changing the Last Commit
	7.4.2. Changing Multiple Commit Messages
	7.4.3. Reordering Commits
	7.4.4. Squashing a Commit
	7.4.5. Splitting a Commit
	7.4.6. The Nuclear Option: filter-branch

	7.5. Debugging with Git
	7.5.1. File Annotation
	7.5.2. Binary Search

	7.6. Submodules
	7.6.1. Starting with Submodules
	7.6.2. Cloning a Project with Submodules
	7.6.3. Superprojects
	7.6.4. Issues with Submodules

	7.7. Subtree Merging
	7.8. Summary

	8. Customizing Git
	8.1. Git Configuration
	8.1.1. Basic Client Configuration
	8.1.2. Colors in Git
	8.1.3. External Merge and Diff Tools
	8.1.4. Formatting and Whitespace
	8.1.5. Server Configuration

	8.2. Git Attributes
	8.2.1. Binary Files
	8.2.2. Keyword Expansion
	8.2.3. Exporting Your Repository
	8.2.4. Merge Strategies

	8.3. Git Hooks
	8.3.1. Installing a Hook
	8.3.2. Client-Side Hooks
	8.3.3. Server-Side Hooks

	8.4. An Example Git-Enforced Policy
	8.4.1. Server-Side Hook
	8.4.2. Client-Side Hooks

	8.5. Summary

	9. Git and Other Systems
	9.1. Git and Subversion
	9.1.1. git svn
	9.1.2. Setting Up
	9.1.3. Getting Started
	9.1.4. Committing Back to Subversion
	9.1.5. Pulling in New Changes
	9.1.6. Git Branching Issues
	9.1.7. Subversion Branching
	9.1.8. Switching Active Branches
	9.1.9. Subversion Commands
	9.1.10. Git-Svn Summary

	9.2. Migrating to Git
	9.2.1. Importing
	9.2.2. Subversion
	9.2.3. Perforce
	9.2.4. A Custom Importer

	9.3. Summary

	10. Git Internals
	10.1. Plumbing and Porcelain
	10.2. Git Objects
	10.2.1. Tree Objects
	10.2.2. Commit Objects
	10.2.3. Object Storage

	10.3. Git References
	10.3.1. The HEAD
	10.3.2. Tags
	10.3.3. Remotes

	10.4. Packfiles
	10.5. The Refspec
	10.5.1. Pushing Refspecs
	10.5.2. Deleting References

	10.6. Transfer Protocols
	10.6.1. The Dumb Protocol
	10.6.2. The Smart Protocol

	10.7. Maintenance and Data Recovery
	10.7.1. Maintenance
	10.7.2. Data Recovery
	10.7.3. Removing Objects

	10.8. Summary

