In this repository we provide a partial hand-labelled ground-truth eye movment annotation of the large Hollywood2 data set [1]. ## ALGORITHM EVALUATION Below we provide preliminary evaluation results for some popular eye movement classification algorithms. The reported F1 scores are computed through the quality evaluation functionality of the sp\_tool [2]. | | | Sample F1 | Sample F1 | Sample F1 | Event F1 | Event F1 | Event F1 | | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | | Model | average F1 | Fixation | Saccade | SP | Fixation | Saccade | SP | | 1D CNN-BLSTM: speed + direction | 0.787 | 0.872 | 0.827 | 0.680 | 0.808 | 0.946 | 0.588 | | sp\_tool smoothed | 0.755 | 0.853 | 0.816 | 0.617 | 0.820 | 0.905 | 0.516 | | REMoDNaV [3] | 0.748 | 0.779 | 0.755 | 0.622 | 0.784 | 0.931 | 0.615 | | sp\_tool [2] | 0.703 | 0.819 | 0.815 | 0.616 | 0.587 | 0.900 | 0.483 | | (Dorr et al. 2010) [4] | 0.685 | 0.832 | 0.796 | 0.373 | 0.821 | 0.884 | 0.403 | | (Larsson et al. 2015) [5] | 0.647 | 0.796 | 0.803 | 0.317 | 0.807 | 0.886 | 0.274 | | (Berg et al. 2009) [6] | 0.601 | 0.824 | 0.729 | 0.137 | 0.845 | 0.826 | 0.243 | | I-VMP | 0.564 | 0.726 | 0.688 | 0.564 | 0.503 | 0.563 | 0.338 | | I-KF | 0.523 | 0.816 | 0.770 | 0.000 | 0.748 | 0.803 | 0.000 | | I-VDT | 0.504 | 0.813 | 0.700 | 0.136 | 0.557 | 0.559 | 0.263 | | I-HMM | 0.480 | 0.811 | 0.720 | 0.000 | 0.646 | 0.700 | 0.000 | | I-DT | 0.473 | 0.803 | 0.486 | 0.000 | 0.744 | 0.802 | 0.000 | | I-VT | 0.432 | 0.810 | 0.705 | 0.000 | 0.520 | 0.555 | 0.000 | | I-VVT | 0.390 | 0.751 | 0.705 | 0.247 | 0.061 | 0.555 | 0.023 | | I-MST | 0.385 | 0.793 | 0.349 | 0.000 | 0.590 | 0.576 | 0.000 | ## REFERENCES [1] Mathe, S., & Sminchisescu, C. (2012, October). Dynamic eye movement datasets and learnt saliency models for visual action recognition. In European Conference on Computer Vision (pp. 842-856). Springer, Berlin, Heidelberg. [2] Startsev, M., & Agtzidis, I, & Dorr, M. (2019). Characterising and Automatically Detecting Smooth Pursuit in a Large-Scale Ground-Truth Data Set of Dynamic Natural Scenes. Journal of Vision [3] Dar, A. H., Wagner, A. S., & Hanke, M. (2019). REMoDNaV: Robust Eye Movement Detection for Natural Viewing. BioRxiv, 619254. [4] Dorr, M., Martinetz, T., Gegenfurtner, K. R., & Barth, E. (2010). Variability of eye movements when viewing dynamic natural scenes. Journal of vision, 10(10), 28-28. [5] Larsson, L., Nyström, M., Andersson, R., & Stridh, M. (2015). Detection of fixations and smooth pursuit movements in high-speed eye-tracking data. Biomedical Signal Processing and Control, 18, 145-152. [6] Berg, D. J., Boehnke, S. E., Marino, R. A., Munoz, D. P., & Itti, L. (2009). Free viewing of dynamic stimuli by humans and monkeys. Journal of vision, 9(5), 19-19.